Interval graph representation with
given interval and intersection lengths

Johannes Kébler!, Sebastian Kuhnert'*, and Osamu Watanabe?

! Humboldt-Universitat zu Berlin, Inst. fiir Informatik
2 Tokyo Institute of Technology, Dept. of Mathematical and Computing Sciences

Abstract. We consider the problem of finding interval representations
of graphs that additionally respect given interval lengths and/or pairwise
intersection lengths, which are represented as weight functions on the
vertices and edges, respectively. Pe’er and Shamir proved that the problem
is NP-complete if only the former are given [SIAM J. Discr. Math. 10.4,
1997]. We give both a linear-time and a logspace algorithm for the case
when both are given, and both an O(n-m) time and a logspace algorithm
when only the latter are given. We also show that the resulting interval
systems are unique up to isomorphism.

Complementing their hardness result, Pe’er and Shamir give a polynomial-
time algorithm for the case that the input graph has a unique interval
ordering of its maxcliques. For such graphs, their algorithm computes an
interval representation that respects a given set of distance inequalities
between the interval endpoints (if it exists). We observe that deciding if
such a representation exists is NL-complete.

1 Introduction

Algorithmic aspects of interval graphs have been the subject of ongoing research
for several decades, stimulated by their numerous applications; see e.g. [Gol04].

The interval representation problem asks, given a graph G, if G is an inter-
val graph, and if so, to compute an interval representation for it. Booth and
Lueker [BLT6] solve this problem in linear time, introducing the widely used
concept of PQ-trees to efficiently encode all possible orderings of the maximal
cliques. Hsu and Ma [HM99] give a simpler linear-time algorithm that relies on
modular decomposition instead. Corneil, Olariu, and Stewart [COS09] show a
further simplification, avoiding ordering the maximal cliques, by using lexico-
graphic breadth first search. Klein gave a parallel AC? algorithm [Kle96]. Kobler
et al. [KKLVT1I] show that the interval representation problem is complete for
logspace.

In this paper, we consider the problems whether a graph with a weight func-
tion £ on its vertices and/or a weight function s on its edges admits ¢-respecting
interval representations (where for each vertex v, its weight ¢(v) prescribes
the length of its interval), s-respecting interval representations (where for each

* Supported by DFG grant KO 1053/7-1.

2 Johannes Kdobler, Sebastian Kuhnert, and Osamu Watanabe

edge {u,v}, its weight s({u,v}) prescribes the length of the intersection of the
intervals of w and v), and (¥, s)-respecting interval representations (which are
required to fulfill both these restrictions). Pe’er and Shamir showed that it is
NP-complete to decide if a graph G admits an f-respecting interval represen-
tation [PS97]. The problem of finding s-respecting interval representations was
introduced in [YamO07].

Our results. We show how to construct (¢, s)-respecting interval representations in
linear time or alternatively in logspace, and s-respecting interval representations
in O(n-m) time or alternatively in logspace. Since computing ¢-respecting interval
representations is NP-hard, our result illustrates that the information on interval
intersections is quite helpful.

The first step towards our algorithms is to show that all interval representa-
tions of the appropriate type have the same inclusion and overlap relationships,
and that these relations can be computed efficiently when G, ¢ (and s) are given
as input. This is described in Section [3]

To obtain our results on (¢, s)-respecting interval representations (which are
in Section , we first focus on graphs with overlap-connected representations.
We show that these representations are unique up to reflection and can be
computed efficiently (if they exist). For graphs with several overlap components
we arrange these components into a tree, and combine their (¢, s)-respecting
interval representations into one for the whole graph. We also show that all
(¢, s)-respecting interval representations are isomorphic.

In Section [5| we show how to compute s-respecting interval representations
efficiently. To obtain our result, we repeatedly use our algorithm for computing
an (¢, s)-respecting interval representation as a subroutine. We prove that the
lengths of the pairwise intersections already determine the interval lengths (up
to insertion of points that are only present in a single interval). The resulting
s-respecting interval representation is minimal, i.e., it contains no superfluous
points. We also show that all minimal s-respecting interval representations are
isomorphic.

In Section [6] we consider the variant of the interval representation problem
for which Pe’er and Shamir gave a polynomial time algorithm [PS97]: On the
one hand, the input graph is required to have a unique interval ordering of its
inclusion-maximal cliques (up to reflection); on the other hand, general lower
and upper bounds on distances between interval endpoints are allowed. We
observe that this variant is in fact NL-complete. That is, it is unlikely that this
generalization of the ¢-respecting interval representation problem is solvable in
deterministic logspace even for the restricted input graphs.

2 Preliminaries

We say that two sets A and B overlap and write A § B, if ANB # &, A\ B # &,
and B\ A # &. The cardinality of a finite set A is denoted by || A]|.

For a graph G = (V| E), the set of neighbors of a vertex v € V is denoted
by N(v). G is an interval graph if there is a system Z of nonempty intervals

Interval graph representation with given intersection lengths 3

over N (we allow Z to be a multiset) and a bijection p: V. — T such that
{u,v} € E < p(u) N p(v) # @. In this case, p is called an interval representation
of G and 7 is called an interval model of G. The latter is also denoted by p(G).

We write [[, 7] to denote the interval {¢ € N |[<i < r}. With the length of an
interval we denote the number of points in itEI For an interval model Z we always
suppose | ;o7 I = [1,k] for some £, i.e., we disallow shifting and gaps between
connected components. Z can be regarded as hypergraph with nodes [1, k] and
hyperedges Z. Two interval models Z and Z’ with points [1, k] are isomorphic if
they are isomorphic as hypergraphs, i.e., if there is a permutation 7: [1, k] — [, k]
of the points that induces a bijection between the intervals of Z and Z’ (preserving
multiplicities). We call two interval representations p; and ps of a graph G
isomorphic if p1(G) and p2(G) are isomorphic. The slots of T are the equivalence
classes on [1, k] w.r.t. containment in the intervals in Z. That is, two vertices are
in the same slot, if all hyperedges contain either both or none of them.

For functions £: V' — N and s: £ — N, an interval representation p: V' — 7
of G = (V, E) is called {-respecting if ||p(v)| = ¢(v) for all v € V, s-respecting
if [[p(w) Np)|| = s({u,v}) for all {u,v} € E, and (¢, s)-respecting if both
conditions hold. An s-respecting interval representation p of G is called minimal
if there is no s-respecting interval representation p’ of G that uses fewer points,
L.e., that satisfies ||U,cy £/ (v)]| < [|Upev £(0)||-

As usual, L is the class of all languages decidable by Turing machines with a
read-only input tape using only O(log N) space on the working tapes, where N
is the input size. FL is the class of all functions computable by such machines
that additionally have a write-only output tape. Note that FL is closed under
composition: To compute f(g(z)) for f,g € FL, simulate the Turing machine
for f and keep track of the position of its input head. Every time this simulation
needs a character from f’s input tape, simulate the Turing machine for g on input
2 until it outputs the required character. Note also that g can first output a copy
of its input z and afterwards compute additional information to be used by f.
This construction can be iterated a constant number of times, still preserving the
logarithmic space bound. We will utilize this closure property in our logspace
algorithms by employing pre- and post-processing steps.

This closure property can also be used to generalize our logspace results
to the case where the prescribed lengths are rational: Bring all lengths to
a common denominator and use the resulting numerators. This transforma-
tion is possible in logspace as iterative integer multiplication is in DLOGTIME-
uniform TC° [HABO2].

3 Deriving structural information

Let G = (V, E) be a graph, let n = |V and m = ||E||, and let £: V — N and
s: E — N specify the desired interval and intersection lengths. For convenience, we

3 This does not coincide with the usual notion of length r — I. However, if we use the
real interval (I — 0.5, 7 + 0.5), then both measures coincide.

4 Johannes Kdobler, Sebastian Kuhnert, and Osamu Watanabe

write s(u,v) instead of s({u,v}) for {u,v} € E; for {u,v} ¢ E we let s(u,v) = 0.
Using this convention, we define two relations Ry s, Ry C V2:

(u,v) € Ry s & {u,v} € ENL(u) > s(u,v)
(u,v) € Ry < {u,v} € EATw e V\{u,v}: s(w,u) > min {s(w,v), s(u,v)}

By the following lemma, these relations characterize a structural property
that all (¢, s)-respecting (resp., minimal s-respecting) interval representations
of G have in common.

Lemma 1.

(a) Let p: V — T be any (¢, s)-respecting interval representation of G, and let
{u,v} € E. Then p(u) \ p(v) # @ if and only if (u,v) € Ry .

(b) Let p: V — T be any minimal s-respecting interval representation of G, and
let {u,v} € E. Then p(u) \ p(v) # @ if and only if (u,v) € R,.

Proof. Part (a) follows directly from the definitions.

We now show part (b). By definition, (u,v) € Ry means that there isaw € V
such that s(w,u) > s(w,v) or s(w,u) > s(u,v). Either way, there must be a
point p € p(w) M (p(u) \ p(v)), implying p(u) \ p(v) # 2.

For the backward direction, consider a point p € p(u) \ p(v). By minimality
of p, there is a vertex w € V \ {u} with p € p(w). Note that w # v by
choice of p. If p(w) D p(u) N p(v), it follows that s(w,u) > s(u,v). Otherwise
p(w) N p(u) 2 p(w) N p(v) and thus s(w,u) > s(w,v). O

Lemma 2. Ry, and R, can be enumerated in time O(m) and O(n - m), respec-
tively, and both can be enumerated in logspace.

Proof. The logspace part is obvious. To enumerate R, in linear time, loop
over all edges {u,v} € E (considering both orientations) and output (u,v)
if {(u) > s(u,v). To enumerate Rg, loop over all edges {w,u} € E (again,
considering both orientations) and all nodes v € V' \ {w,u}, and output (u,v) if
s(w,u) > min {s(w,v), s(u,v)}. O

We write u g5 v if (u,v) € Rgs A (v,u) € Ry, and u Cp 5 v if {u,v} €
E A (u,v) ¢ Ry 5. The relations (s and C, are defined analogously using R,. By
Lemmal] these relations describe the situation in any appropriate representation
of G, e.g. we have u o, v & p(u) (p(v) in any (4, s)-respecting interval
representation p of G, and u (s v < p'(u) § p'(v) in any minimal s-respecting
interval representation p’ of G.

Lemma 3. Let p: V — T be any s-respecting interval representation of G. For
any three vertices v, w1, ws € V such that p(w1) § p(v) § p(ws), the intervals
p(w1) and p(ws) overlap p(v) from the same side if and only if s(wy,we) >
min {s(w1,v), s(wa,v)}.

Note that this condition can be decided both in constant time and in logspace.

Interval graph representation with given intersection lengths 5

Proof. If p(wy) and p(ws) overlap p(v) from the same side, then p(wq) and p(ws)
contain at least one common point outside p(v), making their intersection larger
than the minimum of ||p(w1) N p(v)|| and ||p(w2) N p(v)]|-

Now suppose to the contrary that p(w;) and p(ws) overlap p(v) from different
sides. In this case (p(w1) N p(v)) \ p(wz) and (p(wz) N p(v)) \ p(w1) are both
non-empty, implying that ||p(w1) N p(ws)|| is smaller than both ||p(w1) N p(v)]|
and |[p(ws) 1 (o). 0

4 Given interval and intersection lengths

Let G = (V, E) be a graph, and let £: V — N and s: E — N specify the desired
interval and intersection lengths, respectively. In this section, we give linear-time
and logspace algorithms that construct an (¢, s)-respecting interval representation
of GG, or detect that such a representation does not exist.

We define Ey s = {{u,v} € E|u o, v} and Gy = (V,E;s) and call the
connected components of Gy s the overlap components of G. As a first step, we
consider overlap-connected graphs.

Lemma 4. Given G = (V,E), { and s, such that Gy s is connected, it is possible
in linear time (resp., in logspace) to compute an (¢, s)-respecting interval rep-
resentation p: V. — I of G, or to detect that none exists. Moreover, if existent,
p 1s unique up to reflection.

Proof. Let v1,v9,...,vn be a walk in Gy, that visits every vertex at least once;
such a walk can be constructed in linear time using depth first search or in logspace
using Reingold’s universal exploration sequences [Rei08]. The following algorithm
computes an interval representation p: V' — Z of G by moving along this walk
(which we assume has been computed in a pre-processing step). It computes an
interval I; for v; at each step and outputs p(v;) = I;, if there is no j < i with
vj = v;. Define I = [1,4(v1)] and Ir = [£(v1)—s(v1, v2)+1, €(v1)—s(v1, v2)+£(v2)].
Note that after I; has been placed, there are only two possibilities for I that
respect (¢, s); see Fig. [1| for an illustration. After that, all further intervals are
completely determined because of Lemma 3] and can be computed from the walk,
{ and s, remembering only the two previous intervals.

In a post-processing step, check that p is (¢, s)-respecting. Additionally, shift
the resulting intervals such that 1 becomes the smallest point.

Fig. 1. Proof of Lemma [&} If v; {jss vi—1, and if p(v;_1) is already determined, there
remain only the two dashed possibilities for p(v;).

6 Johannes Kdobler, Sebastian Kuhnert, and Osamu Watanabe

The uniqueness up to reflection follows from the fact that the only arbitrary
decision (except shifting) was to place p(vg) right of p(vy). O

The next step is to generalize Lemma to the case that G is not connected.
We can assume that there are no vertices v and v’ such that both v C; 5 v" and
v Cy s v hold; otherwise compute an (¢, s)-respecting interval representation
for G\ {v'} and extend it by v’ — p(v) afterwards. Let C = {Gy,...,Gy} be
the connected components of G¢ ;. We write G; <, G; if i = j or if there are
vertices u in G; and v in G; such that v Cg u. The latter implies that, for
any (/,s)-respecting interval representation p of G, the interval J,cq. p(u) is
contained in some slot S C p(v) of p(G;), because otherwise there would be an
overlap-path from p(G;) to p(G,). Thus <, is a partial order on the overlap
components of G. If G is connected, (C, <y s) is also connected; by removing
reflexive and transitive edges, we obtain a rooted tree Tj ;, which we call the
overlap component tree of G.

Theorem 5. Given G = (V, E), { and s, il is possible in linear time (resp.,
logspace) to compute an (¢, s)-respecting interval representation p: V. — T of G,
or to detect that none exists. Moreover, p is unique up to isomorphism.

Proof. We assume that G is connected, otherwise consider its connected compo-
nents separately and concatenate their representations afterwards.

The algorithm works as follows: As pre-processing steps, compute the con-
nected components G1, . .., Gy of Gy s, an (¢, s)-respecting interval representation
for each of them, and the overlap component tree Tp ;. The main part of the al-
gorithm constructs an (¢, s)-respecting interval representation of G' by combining
appropriately shifted copies of the representations of the overlap components.
This is done in a depth-first traversal of the overlap component tree. The repre-
sentation of the root component is not shifted. The representations of the other
components are shifted to the appropriate slot of their parent component; if
several child components are contained in the same slot, they are placed beside
each other in the order in which they are encountered. It remains to check that
the result is indeed an (¢, s)-respecting interval representation of G.

If G admits an (¢, s)-respecting interval representation, then this algorithm
will find it: The representations of the components are unique up to reflection by
Lemma[4] implying that they have the same length in all representations; and
in every (¢, s)-respecting interval representation of G, each overlap component
must be placed in the appropriate slot of its parent overlap component. In the
construction of the representation, the only arbitrary choices are the precise
placement of overlap components within their containing slot, the order of the
connected components of (G, and whether the representations of the individual
overlap components are reflected. All these choices can be transformed into one
another by isomorphisms of the resulting interval system, so p is unique up to
isomorphism.

To finish the proof, we show that the algorithm can be implemented in linear
time or logspace. Connected components can be found in linear time using depth
first search, and in logspace using Reingold’s connectivity algorithm [Rei08]. The

Interval graph representation with given intersection lengths 7

(¢, s)-respecting representations of the components of Gy s can be computed using
Lemma El The construction of the overlap component tree Ty s can easily be
implemented in logspace. To obtain it in linear time, compute <, ; by iterating
over the edges of G, and remove reflexive and transitive arcs; see [HMR93|
Proposition 3.6] for how the latter is possible in linear time. Computing the
offsets for shifting is clearly possible in linear time, and also in logspace if during
the tree traversal (see e.g. [Lin92] for how to do this in logspace) a current
shift-offset is maintained. a

5 Given intersection lengths

Let G = (V, E) be a graph and let s: F — T prescribe the desired intersection
lengths. In this section, we reduce finding a minimal s-respecting interval repre-
sentation of G to finding (¢, s)-respecting interval representations. In particular,
we show that the lengths of the intervals in a minimal s-respecting representation
are determined by G and s, and can be computed efficiently.

Note that we need minimality here, in contrast to the case of (¢, s)-respecting
representations. The reason is that adding a point to an interval of an (¢, s)-
respecting representation always destroys this property, while in an s-respecting
representation, we can always duplicate points that are contained in a single
interval.

Lemma 6. Let G = (V, E) be an interval graph with length function s: E — N,
and let p: V. — I be an arbitrary minimal s-respecting interval representation
of G. Then the interval lengths £(v) = ||p(v)|| do not depend on the choice of p
and can be computed from G and s in logspace; or in O(n + m) time, if Ry is
given as additional input.

Proof. We first describe the algorithm. For each v € V, consider these cases:
1. If N(v) = @, set £(v) := 1.
2. If 3w € N(v) : v C5 w, then set £(v) := s(v,w).
3. Else, if Jwi,wy € N(v) such that v (s w1 §s wa §s v and s(wi,ws) <
min {s(wy,v), s(wa,v)}, then set £(v) := s(w,v) + s(wa, v) — s(wy, ws).
4. Otherwise, consider the subgraph G[N(v)] and define ¢,: N(v) — N by
ly(w) = s(w,v) for all w € N(v). Additionally, define s,: (EN (Né”))) - N
by s, (w1, ws) = min {s(wy,v), s(ws,v)} if wy and we overlap v from the same
side, and s, (w1, ws) = s(wq, w2) otherwise. Compute an (¢, s,)-respecting
interval representation p,: N(v) = Z, of G[N(v)], and set £(v) := HUIGL, I|.
Next, we show that the computed ¢ satisfies £(v) = ||p(v)|| for each v € V. For
an isolated vertex v, as considered in case [I} we have ||p(v)|| = 1 by minimality
of p, so £(v) =1 is correct. By Lemma nd the definitions of 5 and C;, we
have u (5, v < p(u) § p(v) and u €, v < p(u) C p(v). In case[2] this immediately
implies £(v) = s(v, w) = [|p(v) N p(w)]| = [lp(v)]-

In case |3} p(wy) and p(ws) cover p(v), overlapping it from different sides
(the latter is true by Lemma [3)), so we have the situation depicted in Fig.

8 Johannes Kdobler, Sebastian Kuhnert, and Osamu Watanabe

s(w2,v)

1 p(we2)

— s(wr,w2) —

p(w:)

— s(w1,v) ————

p(v)

£(v)

Fig. 2. Proof of Lemma [6] case B} p(w1) and p(w2) cover p(v), overlapping it from
different sides.

Thus, £(v) = s(w1,v) + 5(ws, v) — s(wr, w3) = [lp(wr) N ()| +[lp(ws) A p(v)]| -
[lo(w1) N p(w2) || = [[(p(w1) U p(w2)) N p(v)[| = [lp(v)]

In case[4] the definitions of ¢, and s, truncate the intervals of the vertices
in N(v) to include only their intersections with p(v). We have ||p, (u)|| = ||p(w)]|
for all u C; v, and ||p,(w)] = ||p(w) N p)| for all w §s v. So truncating
p(G[N (v)]) gives an (£,, s,)-respecting model p, (G[N(v)]) of G|N(v)]. By Theo-
rem |5} this model is unique up to isomorphism; in particular, its length is uniquely
determined, implying ||p(v)| > £(v). By minimality of p, both values are equal.

It is obvious that this algorithm can be implemented in logspace. To see that
it is also possible in linear time, observe that in case [3] Lemma [3] allows us to
partition the (js-neighbors of v into two sets W, and Ws, where neighbors that
overlap from the same side are in the same set, and that we can require wy; € Wi
and wo € Wy. For the linear-time implementation of case EL observe that each
vertex u of G can occur in at most three of the auxiliary graphs: Suppose to
the contrary that there are vertices vq,va,v3,v4 such that for each i € [1,4],
u € N(v;) and case is reached for v;. The latter implies that no p(v;) = [v;", v;']
is contained in any other interval, and that none of them is covered by two
overlapping intervals. Because case [2[does not hold, there are no containments,
so we can assume vy < vy < vy <v; and v] < vy <wvf <vf. As case|3 holds
neither, it follows that v]” < v; and v < v; . Now let p(u) = [u™,ut]. As u
is a neighbor of all v;, we know v~ < vf’ and v, < uT. But this implies that
p(u) either covers p(vy) alone or together with p(vy), contradicting that case 4| is
reached for vs. a

The following is a consequence of Theorem [5] and Lemmas 2] and [6]

Corollary 7. Given G = (V,E) and s, it is possible in O(n -m) time (resp., in
logspace) to compute a minimal s-respecting interval representation p: V. — T
of G, or to detect that none exists. Moreover, p is unique up to isomorphism.

6 Interval graphs with unique maxclique ordering

As mentioned before, deciding if a graph has an ¢-respecting interval representa-
tion is NP-complete [PS97]. However, if the input graph G is required to have a
unique interval ordering of its inclusion-maximal cliques (up to reflection), even

Interval graph representation with given intersection lengths 9

the more general problem DCIG (short for distance constrained interval graph)
becomes tractable: Additionally to G, a system of difference inequalities of the
form x; — x; > c is given, where the variables are the left and right endpoints
of the intervals (strict inequalities are allowed, too). The problem is to decide if
G has an interval model that satisfies these inequalities. Pe’er and Shamir show
that DCIG is linear-time equivalent to the problem NEGCYCLE, i.e., deciding if
a digraph has a negative cycle [PS97]. Based on the following facts, we observe
that this problem is NL-complete.

Fact 8 NEGCYCLE is NL-complete.

Proof. The problem is in NL, because one can check if a nondeterministically
chosen path is a negative cycle, storing only the first vertex, the number of steps
taken so far and the accumulated weight. To prove the hardness, we reduce from
the NL-complete problem s-t-CON to decide if there is a directed path from s to ¢
in a given digraph: Let all arcs have weight 1, except (¢, s), which is introduced
if not yet present, and assigned the weight —n. a

Fact 9 The linear-time reductions between NEGCYCLE and DCIG for interval
graphs with unique mazxclique ordering can be implemented in logspace.

Proof idea. For most steps of the reductions in [PS97] this is obvious, only
computing the unique maxclique ordering requires the algorithm from [KKLVTI].
O

We remark that the reduction from NEGCYCLE to DCIG generates only lower
and upper bounds on interval lengths, so NL-hardness holds for this special case,
too.

Conclusion

We have shown how to compute (¢, s)- and s-respecting interval representations,
giving a linear-time algorithm for the former, an O(n - m) time algorithm for
the latter, and logspace algorithms for both. We remark that deciding whether
a graph admits an (¢, s)- or s-respecting interval representation is L-complete:
In the reduction proving that recognizing interval graphs is L-hard [KKLVI1I]
Theorem 7.7], all generated yes-instances are paths; so these graphs have (¢, s)-
and s-respecting interval representations if we let £(v) = 2 and s(e) = 1 for all
vertices u and edges e.

We also have shown that (¢, s)- and minimal s-respecting interval represen-
tations are unique up to isomorphism. This implies that any algorithm that
computes canonical interval representations of interval hypergraphs can be used
to obtain canonical (¢,s)- and s-respecting interval representations. The algo-
rithm given in [KKLV11], Theorem 4.6] solves this in logspace, and it can also be
done in linear time using the PQ-tree algorithms of [BL76].

10 Johannes Kdobler, Sebastian Kuhnert, and Osamu Watanabe

Open questions. The bottleneck in our O(n - m) time algorithm for computing
s-respecting interval representations is the enumeration of R (see Lemma .
Can this also be implemented in linear, or at least O(n?), time?

Does the complexity of computing (¢, s)- and s-respecting interval represen-
tations increase, when the interval and intersection lengths are restricted only
for some vertices? Our techniques are not directly applicable in this case, as the
algorithm of Lemma [4] relies on the uniqueness of the representation, which is
not necessarily preserved in the modified scenario.

Acknowledgement. We thank Oleg Verbitsky for interesting discussions about
these results.

References

[BL76] Kellogg S. Booth and George S. Lueker. ‘Testing for the consecutive ones
property, interval graphs, and graph planarity using PQ-tree algorithms’.
In: J. Comput. Syst. Sci. 13.3 (1976), pp. 335-379.

[COS09] Derek G. Corneil, Stephan Olariu, and Lorna Stewart. ‘The LBFS Struc-
ture and Recognition of Interval Graphs’. In: STAM J. Discr. Math. 23.4
(2009), pp. 1905-1953.

[Gol04] Martin Charles Golumbic. Algorithmic graph theory and perfect graphs.
2nd ed. Annals of Discrete Mathematics 57. Amsterdam: Elsevier, 2004.

[HABO2] William Hesse, Eric Allender, and David A. Mix Barrington. ‘Uniform
constant-depth threshold circuits for division and iterated multiplication’.
In: J. Comput. Syst. Sci. 65.4 (2002), pp. 695-716.

[HM99] Wen-Lian Hsu and Tze-Heng Ma. ‘Fast and simple algorithms for rec-
ognizing chordal comparability graphs and interval graphs’. In: STAM J.
Comput. 28.3 (1999), pp. 1004-1020.

[HMR93] Michel Habib, Michel Morvan, and Jean-Xavier Rampon. ‘On the calcula-
tion of transitive reduction—closure of orders’. In: Discrete Math. 111.1-3
(1993), pp. 289-303.

[KKLV11] Johannes Ké&bler, Sebastian Kuhnert, Bastian Laubner, and Oleg Verbit-
sky. ‘Interval graphs: Canonical representations in logspace’. In: STAM J.
Comput. 40.5 (2011), pp. 1292-1315.

[K1e96] Philip N. Klein. ‘Efficient parallel algorithms for chordal graphs’. In: STAM
J. Comput. 25.4 (1996), pp. 797-827.

[Lin92] Steven Lindell. ‘A logspace algorithm for tree canonization. extended
abstract’. In: Proc. 24th STOC. 1992, pp. 400-404.

[PS97] Itsik Pe’er and Ron Shamir. ‘Realizing interval graphs with size and
distance constraints’. In: SIAM J. Discr. Math. 10.4 (1997), pp. 662-687.

[Rei08] Omer Reingold. ‘Undirected connectivity in log-space’. In: J. ACM 55.4
(2008), 17:1-17:24.

[YamO07] Naoki Yamamoto. ‘Weighted interval graphs and their representations’.

(In Japanese.) Master’s Thesis. Tokyo Inst. of Technology, 2007.

	Interval graph representation with given interval and intersection lengths

