
Ulf Leser

Datenbanksysteme II:
Hashing

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 2

5 Layer Architecture

We are here

Data Model

Logical Access

Data Structures

Buffer Management

Operating System

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 3

Content of this Lecture

• Hashing
• Extensible Hashing
• Linear Hashing

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 4

Sorting or Hashing

• Sorted or indexed files
– Typically log(n) IO for searching / deletions
– Overhead for keeping order in file or in index
– Maintaining low overhead (overflows) brings danger of degradation
– Multiple orders require multiple indexes – multiple overhead
– Good support for range queries

• Can we do better … on average? … under certain
circumstances?

• Hash files
– Can provide access in 1 IO
– Can support searching for multiple attributes (with some overhead)
– Incurs notable overhead if table size changes considerably
– Are bad at range queries

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 5

Hash Files

• Set of buckets (≥ 1 blocks) B0, ...,Bm-1 , m>1
• Hash function h(K) = {0 ,..., m-1} on a set K of values
• Hash table H (bucket directory) of size m with ptrs to Bi’s
• Hash files are structured according to one attribute only

Hash Table
(in-memory)

First block (bucket) Overflow blocks

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 6

• Hash function on Name
h (Name) = 0 if last character ≤ M

 1 if last character ≥ N

Bond
George
Victoria

Bucket 0

Adams
Carter

Truman

Bucket 1

Wilson
Washington

Search “Adams”
1. h(Adams)=1
2. Bucket 1, Block 0?

Success

Search “Wilson”
1. h(Wilson)=1
2. Bucket 1, Block 0?
3. Bucket 1, Block 1?

Success

Search “Elisabeth”
1. h(Elisabeth)=0
2. Bucket 0, Block 0?

Failure

Example

Why last char?

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 7

Efficiency of Hashing

• Given: n records, R records per block, m buckets
• Assume hash table is in main memory
• Average number of blocks per bucket: n / (m*R)

– Assuming a (perfect) uniformly distributing hash function

• Search
– n / (m*R) / 2 for successful search
– n / (m*R) for unsuccessful search

• Insert
– n / (m*R) if end of bucket cannot be accessed directly
– n / (2m*R) if free space in one of the bucket

• If |H|=m large enough and good hash function: 1 IO

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 8

Hash Functions

• Examples: Modulo, Bit-Shifting
• Desirable: Uniform mapping of hash keys onto m
• “Ideal” (i.e. uniform) mapping possible if data distribution

and number of records are known in advance
– Which is unusual – data changes

• Application-dependent hash functions
– Incorporating knowledge on expected distribution of keys

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 9

Problems with Hashing

• Hashing may degenerate to sequential scan

– If number of buckets static and too small
– If hash function produces large skew

• Extending hash range requires complete rehashing
• No efficient range queries

– Requires enumerating all distinct values in range

• Very powerful, if everything works fine
• “Almost constant” access time

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 10

Content of this Lecture

• Hashing
• Extensible Hashing
• Linear Hashing

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 11

Extensible Hashing

• Traditionally, hashing is a static index structure

– Structure (buckets, hash function) is fixed once and never changed

• To be used in DBS, hash tables/function must adapt to
changing data volumes and value distributions

• Principle idea of Extensible Hashing
– Hash function generates (long) bitstring

• Should distribute values evenly on every position of bitstring

– Only a prefix of this bitstring as index in hash table
– Size of prefix adapts to number of records

• As does size of hash table

– Different buckets use different prefix sizes

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 12

Hash functions

• h: K → {0,1}*
• Size of bitstring should be long enough for mapping into

as many buckets as maximally desired
– Though we do not use them all most of the time

• Example: inverse person IDs
– h(004) = 001000000... (4=0..0100)
– h(006) = 011000000... (6=0..0110)
– h(007) = 111000000... (7 =0..0111)
– h(013) = 101100000... (13 =0..01101)
– h(018) = 010010000... (18 =0..010010)
– h(032) = 000001000... (32 =0..0100000)
– H(048) = 000011000... (48 =0..0110000)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 13

Extensible Hashing

• Parameters
– d: global „depth“ of hash table, size of longest prefix currently used
– t: local „depth“ of each bucket, size of prefix used in this bucket

• Example
– Let a bucket store two records
– Start with two buckets and 1 bit for identification (d=t1=t2=1)

Keys as bitstring inverse hd=1(k)
2125 100001001101 101100100001 1

2126 100001001110 011100100001 0

2127 100001001111 111100100001 1

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 14

Example cont‘d

• New record with x=2129
• Bucket for „1“ full
• Need to split

– Duplicate hash table, d++
– Pointers to un-splitted

blocks remain unchanged
– Overflowing bucket is split

and records are distributed
according to bits until new d

k as bitstring inverse hd=1

2125 100001001101 101100100001 1

2126 100001001110 011100100001 0

2127 100001001111 111100100001 1

2129 100001010001 100010100001 1

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 15

7 13
6 18

32 48

4 Bucket: 001

Bucket: 01X

Bucket: 000

Bucket: 1XX

More Complex Example

• Assume reversed
bit hash function
on integers

• Currently four
buckets in use

• Global depth d=3
• Local depth t

between 1 and 3
• Size of global

directory: 2d=8

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 16

7 13
6 18

32 48

4 Bucket: 001

Bucket: 01X

Bucket: 000

Bucket: 1XX

Example: Hash Table

001

010

011

100

101

110

111

000

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 17

001: 4, 12; t=3

01X: 6, 18; t=2

000: 32, 40; t=3
1XX:7, 13; t=1

001

010

011

100

101

110

111

000

INSERT(28)
• 28 = 011100
• h(28)=001110

d=t;
Overflow

Inserting Values

Current
content
40 = 101000
32 = 100000
18 = 010010
13 = 001101
12 = 001100
7 = 000111
6 = 000110
4 = 000100

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 18

01XX: 6, 18; t=2 0010: 4; t=4
1XXX: 7, 13; t=1

Splitting Deep Buckets

0011: 12, 28; t=4
000X: 32, 40; t=3

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

h(12) = 001100

h(4) = 001000

h(28) = 001110

Content
40 = 101000
32 = 100000
18 = 010010
13 = 001101
12 = 001100
7 = 000111
6 = 000110
4 = 000100

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 19

6, 18; t=2 12, 28; t=4

Next Insert

4; t=4
32, 40; t=3

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

INSERT(5)
• 5 = 000101
• h(5)=101000

d≠t: Overflow but
no dir duplication

7, 13; t=1

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 20

Splitting Shallow Buckets

• Assume we have to split overflowing bucket B
• B is shallow: t<d
• For all records r∈B, h(r) has the same length-t prefix
• If we split at next position (t++)

– Generate new bucket and rehash records
– This might generate an empty bucket

• May be suppressed: NULL in hash table

– The other bucket might still be overflowing – repeat split
• In the example, we rehash 5=101000, 7=111000, 13=101100
• Hence, one split suffices (with block prefixes 10 and 11)
• But, if we had 5=10100, 13=101100, 21=101010?

• Might eventually force a deep split with increase in d
• Suboptimal space usage (many almost empty buckets)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 21

Summary

• Advantages
– Adapts to growing or shrinking number of records

• Deletion not shown – think yourself

– No rehashing of the entire table – only overflown bucket
– Very fast if directory can be cached and h is well chosen

• Disadvantages
– Directory needs to be maintained (locks during splits, storage …)
– Does not properly handle skew wrt hash function

• No guaranteed bucket fill degree
– Many buckets might be almost empty, few almost full

• Directory can grow exponentially for linearly more records
– If all records share a very long prefix

– Values are not sorted, no range queries

• Use for uniformly distributed data with proper hash function

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 22

Content of this Lecture

• Hashing
• Extensible Hashing
• Linear Hashing

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 23

Linear Hashing

• Similar scheme as in extensible hashing, but
– Don’t double directory on overflow, but increase one-by-one
– Guaranteed lower bound on bucket fill-degree
– Tolerate some overflow blocks in buckets

• Few on average if hash function spreads evenly

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 24

Overview

• h generates bitstring of length x, read right to left
• Parameters

– i: Current number of bits from x used
• As i grows, more bits are considered
• If h generates x bits, we use a1a2…ai for the last i bits of h(k)

– n: Total number of buckets currently used
• Only the first n values of bitstrings of length i have their own buckets

– r: Total number of records

• Fix threshold t – linear hashing guarantees that r/n<t
– As r increases, we sometimes increase n such that always r/n<t
– Linear hashing only guarantees the average fill-degree

• But does not prevent chaining in case of “bad” hash function

– Restricts the average #buckets that must be searched (not WC)

011101010110
grows

x

i

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 25

Insert(k): First Action

• Insert new record with key k

– Let m by the integer value encoded by the i last bits of h(k)
– If m<n

• Hence, the target bucket exists
• Store k in bucket m, potentially using overflow blocks

– If m≥n
• Bucket m does not exist

– There exist buckets 0 … n-1

• We redirect k into a bucket that does exist
• Flip i-th bit (from the right) of m to 0 and store k in this bucket

– Algorithm ensures that here the i’th bit must be 1

• This flipping also needs to be done when searching keys

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 26

Insert(k): Second Action

• Check threshold; if r/n≥t, then

– If n=2i

• No more room to add another bucket
• Set i++
• This is only a conceptual increase – no physical action
• Proceed (now we have n<2i)

– If n<2i
• There is still (now) room on our address space
• We add (n+1)th bucket and set n++
• We need to choose which bucket to split

– We do not split the bucket where we just inserted (why should we?)
– We do not search for overflowed buckets (too costly)
– Instead, we use a cyclic scheme

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 27

Which Bucket to Split

• We split buckets in fixed, cyclic order
• Split bucket with number n-2i-1

– As n increases, this pointer cycles through all buckets
– Let n=1a2a3…ai; then we split block with ID a2a3…ai into two blocks

with ID 0a2a3…ai and ID 1a2a3…ai

• Requires redistribution of bucket with hash key a2a3…ai
• This is one of the buckets where we had put redirected records
• This is not necessarily an overflowed bucket
• Recall: Only the average fill degree is guaranteed

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 28

Buckets Split Order

Assume we would split after every insert

i n Existing buckets Bucket to split: n-2i-1 Generates

1 2=10 0,1 0 00
10

2 3=11 00,10
1

1 01
11

4=100 00,10
01,11

00 000
100

3 5=101 000,100
10, 01,11

01 001
101

6=110 000,100
001,101
10,11

10 010
110

7=111 000,100,001,101,
010,110,

11

11 011
111

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 29

Example

• Assume 2 records in one block, x=4, t=1.74, i=1

0 0000
1010

1 1111

1a) Insert 0101
 m=1<n=10b
 Insert into bucket 1
 But now r/n≥t

0 0000
1010

1 1111
0101

1b) Since n=2i=2=10b
 We need more address space
 Increase i (virtually)
 Add bucket number 2=10b
 n=10b=1a1: Split bucket 0
 into 10 and 00
 n++

00 0000

01 1111
0101

10 1010

Start (with arbitray keys)

01: Yet unsplit
 stores 01 and 11
 (by flipping)

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 30

Example 2

2) Insert 0001
 m=1, bucket exists
 Insert into m
 Requires overflow block

00 0000

01 1111
0101

0001

10 1010

3a) Insert 0111
 m=3=n=11b
 Bucket doesn’t exist
 Flip and redirect to 01

00 0000

01 1111
0101

0001
0111

10 1010

3b) r/n=6/3≥t – We split
 n<4, so no need to increase i
 Add bucket number 3=11b
 Since n=3=11b, with split 01
 Delete overflow block

00 0000

01 0001
0101

10 1010

11 1111
0111

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 31

Example 3

4a) Insert 0011
 m=3=11b < n=4=100b
 Insert into 11b

4b) We must split again
 Since n=2i, increase i
 Nothing to do physically
 (“Think” a leading 0)

00 0000

01 0001
0101

10 1010

11 1111
0111

0011

00 0000

01 0001
0101

10 1010

11 1111
0111

0011

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 32

Example 4

4c) Split
 Add block number 4=100b
 Split 000b into 000b and 100b

000 0000

001 0001
0101

010 1010

011 1111
0111

0011

100 -

We keep the average bucket filling
But we have unevenly filled buckets –

some empty, some overflow

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 33

Observations

• Due to the extension mechanism: 2i-1 ≤ n ≤ 2i

– Whenever n reaches 2i, i is increased => 2i doubles and n=2i/2 (for
the new i)

– Hence, n as binary number always has the form 1b1b2...bi-1

• As defined: m<2i
– But possibly: m>n

• Such m must have a leading 1, as n must have one (see prev
observation)

• If we drop the leading 1 in m, we get mnew<m/2
• Since n ≥ 2i-1, mnew ≤ n
• Thus, the chosen bucket mnew must already exist

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 34

Summary

• Advantages

– Adapts to varying number of records
– Slower growth and on average better space usage compared to

extensible hashing
– If buckets are sequential on disk, we don’t need a directory

• Compute m: look in m’th bucket (possible after flipping)

• Disadvantages
– Can degrade, as buckets are split in fixed order
– No adaptation to skewed value distribution
– Creates random IO on disk through overflow blocks

	Foliennummer 1
	5 Layer Architecture
	Content of this Lecture
	Sorting or Hashing
	Hash Files
	Example
	Efficiency of Hashing
	Hash Functions
	Problems with Hashing
	Content of this Lecture
	Extensible Hashing
	Hash functions
	Extensible Hashing
	Example cont‘d
	More Complex Example
	Example: Hash Table
	Inserting Values
	Splitting Deep Buckets
	Next Insert
	Splitting Shallow Buckets
	Summary
	Content of this Lecture
	Linear Hashing
	Overview
	Insert(k): First Action
	Insert(k): Second Action
	Which Bucket to Split
	Buckets Split Order
	Example
	Example 2
	Example 3
	Example 4
	Observations
	Summary

