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5 Layer Architecture 

We are here 

Data Model 

Logical Access 

Data Structures 

Buffer Management 

Operating System 
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Content of this Lecture 

 
 
 

• Hashing 
• Extensible Hashing 
• Linear Hashing 
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Sorting or Hashing 

• Sorted or indexed files 
– Typically log(n) IO for searching / deletions 
– Overhead for keeping order in file or in index 
– Maintaining low overhead (overflows) brings danger of degradation 
– Multiple orders require multiple indexes – multiple overhead 
– Good support for range queries 

• Can we do better … on average? … under certain 
circumstances? 

• Hash files 
– Can provide access in 1 IO  
– Can support searching for multiple attributes (with some overhead) 
– Incurs notable overhead if table size changes considerably 
– Are bad at range queries 
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Hash Files 

• Set of buckets  (≥ 1 blocks) B0, ...,Bm-1 , m>1  
• Hash function h(K)  = {0 ,..., m-1}  on a set K of values 
• Hash table H (bucket directory) of size m with ptrs to Bi’s 
• Hash files are structured according to one attribute only 

Hash Table  
(in-memory) 

First block (bucket) Overflow blocks 



Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 6 

• Hash function on Name 
h (Name) =  0 if last character  ≤   M 

    1 if last character  ≥   N 

Bond 
George  
Victoria 

Bucket 0 

Adams 
Carter 

Truman 

Bucket 1 

Wilson 
Washington 

Search “Adams” 
1. h(Adams)=1 
2. Bucket 1, Block 0? 
 

Success 

Search “Wilson” 
1. h(Wilson)=1 
2. Bucket 1, Block 0? 
3. Bucket 1, Block 1? 

Success 

Search “Elisabeth” 
1. h(Elisabeth)=0 
2. Bucket 0, Block 0? 
 

Failure 

Example 

Why last char? 
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Efficiency of Hashing 

• Given: n records, R records per block, m buckets 
• Assume hash table is in main memory 
• Average number of blocks per bucket:  n / (m*R) 

– Assuming a (perfect) uniformly distributing hash function 

• Search 
– n / (m*R) / 2   for successful search 
– n / (m*R)   for unsuccessful search 

• Insert 
– n / (m*R)  if end of bucket cannot be accessed directly 
– n / (2m*R) if free space in one of the bucket 

• If  |H|=m large enough and good hash function: 1 IO 
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Hash Functions 

 
 

• Examples: Modulo, Bit-Shifting 
• Desirable: Uniform mapping of hash keys onto m 
• “Ideal” (i.e. uniform) mapping possible if data distribution 

and number of records are known in advance 
– Which is unusual – data changes 

• Application-dependent hash functions 
– Incorporating knowledge on expected distribution of keys 
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Problems with Hashing 

 
• Hashing may degenerate to sequential scan  

– If number of buckets static and too small 
– If hash function produces large skew 

• Extending hash range requires complete rehashing 
• No efficient range queries 

– Requires enumerating all distinct values in range 

• Very powerful, if everything works fine 
• “Almost constant” access time 
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Content of this Lecture 

 
 
 

• Hashing 
• Extensible Hashing 
• Linear Hashing 
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Extensible Hashing 

 
• Traditionally, hashing is a static index structure 

– Structure (buckets, hash function) is fixed once and never changed 

• To be used in DBS, hash tables/function must adapt to 
changing data volumes and value distributions  

• Principle idea of Extensible Hashing 
– Hash function generates (long) bitstring 

• Should distribute values evenly on every position of bitstring 

– Only a prefix of this bitstring as index in hash table 
– Size of prefix adapts to number of records 

• As does size of hash table 

– Different buckets use different prefix sizes 
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Hash functions 

• h: K → {0,1}* 
• Size of bitstring should be long enough for mapping into 

as many buckets as maximally desired 
– Though we do not use them all most of the time 

• Example: inverse person IDs 
– h(004) = 001000000...       (4=0..0100) 
– h(006) = 011000000...       (6=0..0110) 
– h(007) = 111000000...       (7 =0..0111) 
– h(013) = 101100000...       (13 =0..01101) 
– h(018) = 010010000...       (18 =0..010010) 
– h(032) = 000001000...       (32 =0..0100000) 
– H(048) = 000011000...       (48 =0..0110000) 
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Extensible Hashing 

• Parameters 
– d: global „depth“ of hash table, size of longest prefix currently used 
– t: local „depth“ of each bucket, size of prefix used in this bucket 

• Example 
– Let a bucket store two records 
– Start with two buckets and 1 bit for identification (d=t1=t2=1) 

Keys as bitstring inverse hd=1(k) 
2125 100001001101 101100100001 1 

2126 100001001110 011100100001 0 

2127 100001001111 111100100001 1 
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Example cont‘d 

 
 

• New record with x=2129 
• Bucket for „1“ full 
• Need to split 

– Duplicate hash table, d++ 
– Pointers to un-splitted 

blocks remain unchanged 
– Overflowing bucket is split 

and records are distributed 
according to bits until new d 

k as bitstring inverse hd=1 

2125 100001001101 101100100001 1 

2126 100001001110 011100100001 0 

2127 100001001111 111100100001 1 

2129 100001010001 100010100001 1 
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7                 13 
6                 18 

32               48 

4                     Bucket: 001 

Bucket: 01X 

Bucket: 000 

Bucket: 1XX 

More Complex Example 

• Assume reversed 
bit hash function 
on integers 

• Currently four 
buckets in use 

• Global depth d=3 
• Local depth t 

between 1 and 3 
• Size of global 

directory: 2d=8 
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7                 13 
6                 18 

32               48 

4                     Bucket: 001 

Bucket: 01X 

Bucket: 000 

Bucket: 1XX 

Example: Hash Table 

001 

010 

011 

100 

101 

110 

111 

000 
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001: 4, 12; t=3 

01X: 6, 18; t=2 

000: 32, 40; t=3 
1XX:7, 13; t=1 

001 

010 

011 

100 

101 

110 

111 

000 

INSERT( 28)  
• 28 = 011100 
• h(28)=001110 

d=t; 
Overflow 

Inserting Values 

Current 
content 
40 = 101000 
32 = 100000 
18 = 010010 
13 = 001101 
12 = 001100 
7 = 000111 
6 = 000110 
4 = 000100 
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01XX: 6, 18; t=2 0010: 4; t=4 
1XXX: 7, 13; t=1 

Splitting Deep Buckets 

0011: 12, 28; t=4 
000X: 32, 40; t=3 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

0000 

h(12) = 001100 

h(4) = 001000 

h(28) = 001110 

Content 
40 = 101000 
32 = 100000 
18 = 010010 
13 = 001101 
12 = 001100 
7 = 000111 
6 = 000110 
4 = 000100 
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6, 18; t=2 12, 28; t=4 

Next Insert 

4; t=4 
32, 40; t=3 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

0000 

INSERT( 5)  
• 5 = 000101 
• h(5)=101000 

d≠t: Overflow but  
no dir duplication 

7, 13; t=1 
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Splitting Shallow Buckets 

• Assume we have to split overflowing bucket B 
• B is shallow: t<d 
• For all records r∈B, h(r) has the same length-t prefix 
• If we split at next position (t++) 

– Generate new bucket and rehash records 
– This might generate an empty bucket  

• May be suppressed: NULL in hash table 

– The other bucket might still be overflowing – repeat split  
• In the example, we rehash 5=101000, 7=111000, 13=101100 
• Hence, one split suffices (with block prefixes 10 and 11) 
• But, if we had 5=10100, 13=101100, 21=101010? 

• Might eventually force a deep split with increase in d 
• Suboptimal space usage (many almost empty buckets) 
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Summary 

• Advantages 
– Adapts to growing or shrinking number of records  

• Deletion not shown – think yourself 

– No rehashing of the entire table – only overflown bucket 
– Very fast if directory can be cached and h is well chosen 

• Disadvantages 
– Directory needs to be maintained  (locks during splits, storage …) 
– Does not properly handle skew wrt hash function 

• No guaranteed bucket fill degree  
– Many buckets might be almost empty, few almost full 

• Directory can grow exponentially for linearly more records 
– If all records share a very long prefix 

– Values are not sorted, no range queries 

• Use for uniformly distributed data with proper hash function  
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Content of this Lecture 

 
 
 

• Hashing 
• Extensible Hashing 
• Linear Hashing 
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Linear Hashing 

 
 
 

• Similar scheme as in extensible hashing, but 
– Don’t double directory on overflow, but increase one-by-one 
– Guaranteed lower bound on bucket fill-degree 
– Tolerate some overflow blocks in buckets 

• Few on average if hash function spreads evenly 
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Overview 

• h generates bitstring of length x, read right to left 
• Parameters 

– i: Current number of bits from x used 
• As i grows, more bits are considered  
• If h generates x bits, we use a1a2…ai for the last i bits of h(k) 

– n: Total number of buckets currently used  
• Only the first n values of bitstrings of length i have their own buckets 

– r: Total number of records 

• Fix threshold t – linear hashing guarantees that r/n<t 
– As r increases, we sometimes increase n such that always r/n<t 
– Linear hashing only guarantees the average fill-degree 

• But does not prevent chaining in case of “bad” hash function 

– Restricts the average #buckets that must be searched (not WC ) 

011101010110 
grows 

x 

i 
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Insert(k): First Action 

 
• Insert new record with key k 

– Let m by the integer value encoded by the i last bits of h(k) 
– If m<n 

• Hence, the target bucket exists 
• Store k in bucket m, potentially using overflow blocks 

– If m≥n 
• Bucket m does not exist 

– There exist buckets 0 … n-1 

• We redirect k into a bucket that does exist 
• Flip i-th bit (from the right) of m to 0 and store k in this bucket 

– Algorithm ensures that here the i’th bit must be 1 

• This flipping also needs to be done when searching keys 
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Insert( k): Second Action 

 
• Check threshold; if r/n≥t, then 

– If n=2i 

• No more room to add another bucket 
• Set i++ 
• This is only a conceptual increase – no physical action 
• Proceed (now we have n<2i) 

– If n<2i 
• There is still (now) room on our address space 
• We add (n+1)th bucket and set n++ 
• We need to choose which bucket to split 

– We do not split the bucket where we just inserted (why should we?) 
– We do not search for overflowed buckets (too costly) 
– Instead, we use a cyclic scheme 
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Which Bucket to Split 

 
• We split buckets in fixed, cyclic order 
• Split bucket with number n-2i-1 

– As n increases, this pointer cycles through all buckets 
– Let n=1a2a3…ai; then we split block with ID a2a3…ai into two blocks 

with ID 0a2a3…ai and ID 1a2a3…ai 

• Requires redistribution of bucket with hash key a2a3…ai  
• This is one of the buckets where we had put redirected records 
• This is not necessarily an overflowed bucket 
• Recall: Only the average fill degree is guaranteed 
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Buckets Split Order 

Assume we would split after every insert  

i n Existing buckets Bucket to split: n-2i-1 Generates 

1 2=10 0,1 0 00 
10 

2 3=11 00,10 
1 

1 01 
11 

4=100 00,10 
01,11 

00 000 
100 

3 5=101 000,100 
10, 01,11 

01 001 
101 

6=110 000,100 
001,101 
10,11 

10 010 
110 

7=111 000,100,001,101, 
010,110, 

11 

11 011 
111 
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Example 

• Assume 2 records in one block, x=4, t=1.74, i=1 

0 0000 
1010 

1 1111 

1a) Insert 0101 
  m=1<n=10b 
  Insert into bucket 1 
  But now r/n≥t   

0 0000 
1010 

1 1111 
0101 

1b) Since n=2i=2=10b 
  We need more address space 
  Increase i (virtually) 
  Add bucket number 2=10b 
  n=10b=1a1: Split bucket 0  
                    into 10 and 00 
  n++ 

00 0000 
 

01 1111 
0101 

10 1010 
 

Start (with arbitray keys) 

01: Yet unsplit 
  stores 01 and 11 
   (by flipping) 
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Example 2 

2) Insert 0001 
  m=1, bucket exists 
  Insert into m 
  Requires overflow block 

00 0000 
 

01 1111 
0101 

0001 

10 1010 
 

3a) Insert 0111 
  m=3=n=11b 
  Bucket doesn’t exist 
  Flip and redirect to 01 

00 0000 
 

01 1111 
0101 

0001 
0111 

10 1010 
 

3b) r/n=6/3≥t – We split 
  n<4, so no need to increase i 
 Add bucket number 3=11b 
  Since n=3=11b, with split 01 
  Delete overflow block 

00 0000 

01 0001 
0101 

10 1010 

11 1111 
0111 
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Example 3 

4a) Insert 0011 
  m=3=11b < n=4=100b 
  Insert into 11b 

4b) We must split again 
  Since n=2i, increase i 
  Nothing to do physically 
  (“Think” a leading 0) 

00 0000 

01 0001 
0101 

10 1010 

11 1111 
0111 

0011 

00 0000 

01 0001 
0101 

10 1010 

11 1111 
0111 

0011 
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Example 4 

4c) Split 
  Add block number 4=100b 
  Split 000b into 000b and 100b 

000 0000 

001 0001 
0101 

010 1010 

011 1111 
0111 

0011 

100 - 

We keep the average bucket filling 
But we have unevenly filled buckets – 

some empty, some overflow 
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Observations 

 
• Due to the extension mechanism: 2i-1 ≤ n ≤ 2i 

– Whenever n reaches 2i, i is increased => 2i doubles and n=2i/2 (for 
the new i) 

– Hence, n as binary number always has the form 1b1b2...bi-1 

• As defined: m<2i 
– But possibly: m>n 

• Such m must have a leading 1, as n must have one (see prev 
observation) 

• If we drop the leading 1 in m, we get mnew<m/2 
• Since n ≥ 2i-1, mnew ≤ n 
• Thus, the chosen bucket mnew must already exist 
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Summary 

 
• Advantages 

– Adapts to varying number of records 
– Slower growth and on average better space usage compared to 

extensible hashing 
– If buckets are sequential on disk, we don’t need a directory 

• Compute m: look in m’th bucket (possible after flipping) 

• Disadvantages 
– Can degrade, as buckets are split in fixed order 
– No adaptation to skewed value distribution 
– Creates random IO on disk through overflow blocks 
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