Vorlesungsskript

Einführung in die Theoretische Informatik

Wintersemester 2011/12

Prof. Dr. Johannes Köbler Humboldt-Universität zu Berlin Lehrstuhl Komplexität und Kryptografie Inhaltsverzeichnis

Inhaltsverzeichnis

I	Ein	leitung	1
2	Reg	guläre Sprachen	2
	2.1	Endliche Automaten	2
	2.2	Nichtdeterministische endliche Automaten	4
	2.3	Reguläre Ausdrücke	7
	2.4	Relationalstrukturen	9
		2.4.1 Ordnungs- und Äquivalenzrelationen	13
		2.4.2 Abbildungen	16
		2.4.3 Homo- und Isomorphismen	17
	2.5	Minimierung von DFAs	19
	2.6	Das Pumping-Lemma	23
	2.7	Grammatiken	24
3	Kor	ntextfreie Sprachen	27
	3.1	Chomsky-Normalform	29
	3.2	Das Pumping-Lemma für kontextfreie Sprachen	33
	3.3	Der CYK-Algorithmus	34
	3.4		35
	3.5	Deterministisch kontextfreie Sprachen	40

1 Einleitung

Rechenmaschinen spielen in der Informatik eine zentrale Rolle. In dieser Vorlesung beschäftigen wir uns mit mathematischen Modellen für Maschinentypen von unterschiedlicher Berechnungskraft. Unter anderem lernen wir das Rechenmodell der Turingmaschine (TM) kennen, mit dem sich alle anderen Rechenmodelle simulieren lassen. Ein weiteres wichtiges Thema der Vorlesung ist die Frage, welche Probleme algorithmisch lösbar sind und wo die Grenzen der Berechenbarkeit verlaufen.

Schließlich untersuchen wir die Komplexität von algorithmischen Problemen, indem wir den benötigten Rechenaufwand möglichst gut nach oben und unten abschätzen. Eine besondere Rolle spielen hierbei die NP-vollständigen Probleme, deren Komplexität bis heute offen ist.

Themen der Vorlesung

- Welche Rechenmodelle sind für bestimmte Aufgaben adäquat? (Automatentheorie)
- Welche Probleme sind lösbar? (Berechenbarkeitstheorie)
- Welcher Aufwand ist zur Lösung eines algorithmischen Problems nötig? (Komplexitätstheorie)

In den theoretisch orientierten Folgeveranstaltungen wird es dagegen um folgende Themen gehen.

Thema der Vorlesung Algorithmen und Datenstrukturen

• Wie lassen sich praktisch relevante Problemstellungen möglichst effizient lösen? (Algorithmik)

Thema der Vorlesung Logik in der Informatik

 Mathematische Grundlagen der Informatik, Beweise führen, Modellierung (Aussagenlogik, Prädikatenlogik)

Der Begriff Algorithmus geht auf den persischen Gelehrten Muhammed Al Chwarizmi (8./9. Jhd.) zurück. Der älteste bekannte nicht-triviale Algorithmus ist der nach Euklid benannte Algorithmus zur Berechnung des größten gemeinsamen Teilers zweier natürlicher Zahlen (300 v. Chr.). Von einem Algorithmus wird erwartet, dass er jede Problemeingabe nach endlich vielen Rechenschritten löst (etwa durch Produktion einer Ausgabe). Eine wichtige Rolle spielen Entscheidungsprobleme, bei denen jede Eingabe nur mit ja oder nein beantwortet wird. Problemeingaben können Zahlen, Formeln, Graphen etc. sein. Diese werden über einem Eingabealphabet Σ kodiert.

Definition 1.

- a) Ein **Alphabet** $\Sigma = \{a_1, \dots, a_m\}$ ist eine geordnete Menge von endlich vielen **Zeichen**.
- b) Eine Folge $x = x_1 \dots x_n$ von n Zeichen heißt Wort (der Länge n).
- c) Die Menge aller Wörter über Σ ist

$$\Sigma^* = \bigcup_{n>0} \Sigma^n,$$

wobei $\Sigma^n = \{x_1 \dots x_n \mid n \geq 0 \text{ und } x_i \in \Sigma \text{ für } i = 1, \dots, n\}$ alle Wörter der Länge n enthält.

- d) Das (einzige) Wort der Länge n = 0 ist das **leere Wort**, welches wir mit ε bezeichnen.
- e) Jede Teilmenge $L \subseteq \Sigma^*$ heißt **Sprache** über dem Alphabet Σ .

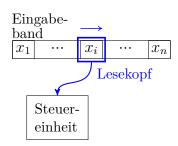
Das zu einer Sprache L gehörige Entscheidungsproblem ist die Frage, ob ein gegebenes Wort x in L enthalten ist oder nicht.

2 Reguläre Sprachen

Wir betrachten zunächst Einschränkungen des TM-Modells, die vielfältige praktische Anwendungen haben, wie z.B. endliche Automaten (DFA, NFA), Kellerautomaten (PDA, DPDA) etc.

2.1 Endliche Automaten

Ein endlicher Automat führt bei einer Eingabe der Länge n nur n Rechenschritte aus. Um die gesamte Eingabe lesen zu können,



muss der Automat also in jedem Schritt ein Zeichen der Eingabe verarbeiten.

Definition 2. Ein **endlicher Automat** (kurz: DFA; deterministic finite automaton) wird durch ein 5-Tupel $M = (Z, \Sigma, \delta, q_0, E)$ beschrieben, wobei

- $Z \neq \emptyset$ eine endliche Menge von **Zuständen**,
- Σ das **Eingabealphabet**,
- $\delta: Z \times \Sigma \to Z$ die **Überführungsfunktion**,
- $q_0 \in Z$ der **Startzustand** und
- $E \subseteq Z$ die Menge der **Endzustände** ist.

Die von M akzeptierte oder erkannte Sprache ist

$$L(M) = \left\{ x_1 \dots x_n \in \Sigma^* \middle| \begin{array}{c} \exists q_1, \dots, q_{n-1} \in Z, q_n \in E : \\ \delta(q_i, x_{i+1}) = q_{i+1} \ f \ddot{u} r \ i = 0, \dots, n-1 \end{array} \right\}.$$

Beispiel 3. Betrachte den DFA $M = (Z, \Sigma, \delta, 0, E)$ mit $Z = \{0, 1, 2\}, \Sigma = \{a, b\}, E = \{1\}$ und der Überführungsfunktion

Graphische Darstellung:

Der Startzustand wird meist durch einen Pfeil und Endzustände werden durch einen doppelten Kreis gekennzeichnet.

Bezeichne $\hat{\delta}(q,x)$ denjenigen Zustand, in dem sich M nach Lesen von x befindet, wenn M im Zustand q gestartet wird. Dann können wir die Funktion

$$\hat{\delta}: Z \times \Sigma^* \to Z$$

induktiv wie folgt definieren. Für $q \in \mathbb{Z}$, $x \in \Sigma^*$ und $a \in \Sigma$ sei

$$\hat{\delta}(q,\varepsilon) = q,$$

$$\hat{\delta}(q,xa) = \delta(\hat{\delta}(q,x),a).$$

Die von M erkannte Sprache lässt sich nun auch in der Form

$$L(M) = \{ x \in \Sigma^* \mid \hat{\delta}(q_0, x) \in E \}$$

schreiben.

Behauptung 4. Der DFA M aus Beispiel 3 akzeptiert die Sprache

$$L(M) = \{x \in \Sigma^* \mid \#_a(x) - \#_b(x) \equiv 1 \mod 3\},\$$

wobei $\#_a(x)$ die Anzahl der Vorkommen des Zeichens a in x bezeichnet und $j \equiv k \mod m$ bedeutet, dass j - k durch m teilbar ist. Für Letzteres schreiben wir auch kurz $j \equiv_m k$.

Beweis. Da M nur den Endzustand 1 hat, ist $L(M) = \{x \in \Sigma^* \mid \hat{\delta}(0,x) = 1\}$, d.h. wir müssen folgende Äquivalenz zeigen:

$$\hat{\delta}(0,x) = 1 \Leftrightarrow \#_a(x) - \#_b(x) \equiv_3 1.$$

Hierzu reicht es, die Kongruenz

$$\hat{\delta}(0,x) \equiv_3 \#_a(x) - \#_b(x).$$

zu beweisen, wofür wir Induktion über die Länge n von x benutzen. Induktionsanfang (n = 0): klar, da $\hat{\delta}(0,\varepsilon) = \#_a(\varepsilon) = \#_b(\varepsilon) = 0$ ist. Induktionsschritt (n \rightsquigarrow n + 1): Sei $x = x_1 \dots x_{n+1}$ gegeben und sei $i = \hat{\delta}(0, x_1 \dots x_n)$. Nach IV gilt dann

$$i \equiv_3 \#_a(x_1 \dots x_n) - \#_b(x_1 \dots x_n).$$

Wegen $\delta(i, a) \equiv_3 i + 1$ und $\delta(i, b) \equiv_3 i - 1$ folgt

$$\delta(i, x_{n+1}) \equiv_3 i + \#_a(x_{n+1}) - \#_b(x_{n+1})$$

$$\equiv_3 \#_a(x_1 \dots x_n) - \#_b(x_1 \dots x_n) + \#_a(x_{n+1}) - \#_b(x_{n+1})$$

$$= \#_a(x) - \#_b(x).$$

Folglich ist

$$\hat{\delta}(0,x) = \delta(\hat{\delta}(0,x_1...x_n),x_{n+1}) = \delta(i,x_{n+1}) \equiv_3 \#_a(x) - \#_b(x).$$

Eine von einem DFA akzeptierte Sprache wird als **regulär** bezeichnet. Die zugehörige Sprachklasse ist

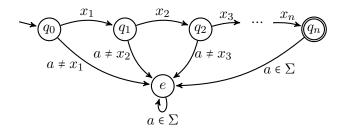
$$\mathsf{REG} = \{ L(M) \mid M \text{ ist ein DFA} \}.$$

Um ein intuitives Verständnis für die Berechnungskraft von DFAs zu entwickeln, werden wir Antworten auf folgende Frage suchen.

Frage: Welche Sprachen gehören zu REG und welche nicht?

Dabei legen wir unseren Überlegungen ein beliebiges aber fest gewähltes Alphabet $\Sigma = \{a_1, \dots, a_m\}$ zugrunde.

Beobachtung 5. Alle Sprachen, die aus einem einzigen Wort $x = x_1 \dots x_n \in \Sigma^*$ bestehen (diese Sprachen werden auch als Singletonsprachen bezeichnet), sind regulär. Für folgenden DFA M_x gilt nämlich $L(M_x) = \{x\}$.



Formal ist M_x also das Tupel $(Z, \Sigma, \delta, q_0, E)$ mit $Z = \{q_0, \dots, q_n, e\}$, $E = \{q_n\}$ und der Überführungsfunktion

$$\delta(q, a_j) = \begin{cases} q_{i+1}, & q = q_i \text{ für ein } i \text{ mit } 0 \le i \le n-1 \text{ und } a_j = x_{i+1} \\ e, & sonst. \end{cases}$$

Als nächstes betrachten wir Abschlusseigenschaften der Sprachklasse REG.

Definition 6. Ein k-stelliger Sprachoperator ist eine Abbildung op, die k Sprachen L_1, \ldots, L_k auf eine Sprache op (L_1, \ldots, L_k) abbildet.

Beispiel 7. Der Schnittoperator \cap bildet zwei Sprachen L_1 und L_2 auf die Sprache $L_1 \cap L_2$ ab.

Definition 8. Eine Sprachklasse K heißt unter op abgeschlossen, wenn gilt:

$$L_1, \ldots, L_k \in \mathcal{K} \Rightarrow op(L_1, \ldots, L_k) \in \mathcal{K}.$$

Der Abschluss von K unter op ist die bzgl. Inklusion kleinste Sprachklasse K', die K enthält und unter op abgeschlossen ist. **Beispiel 9.** Der Abschluss der Singletonsprachen unter Vereinigung besteht aus allen nichtleeren endlichen Sprachen.

Definition 10. Für eine Sprachklasse C bezeichne co-C die Klasse $\{\bar{L} \mid L \in C\}$ aller Komplemente von Sprachen in C.

Es ist leicht zu sehen, dass \mathcal{C} genau dann unter Komplementbildung abgeschlossen ist, wenn $co-\mathcal{C}=\mathcal{C}$ ist.

Beobachtung 11. Mit $L_1, L_2 \in \mathsf{REG}$ sind auch die Sprachen $\overline{L_1} = \Sigma^* \setminus L_1$, $L_1 \cap L_2$ und $L_1 \cup L_2$ regulär. Sind nämlich $M_i = (Z_i, \Sigma, \delta_i, q_0, E_i)$, i = 1, 2, DFAs mit $L(M_i) = L_i$, so akzeptiert der DFA

$$\overline{M_1} = (Z_1, \Sigma, \delta_1, q_0, Z_1 \setminus E_1)$$

das Komplement $\overline{L_1}$ von L_1 . Der Schnitt $L_1 \cap L_2$ von L_1 und L_2 wird dagegen von dem DFA

$$M = (Z_1 \times Z_2, \Sigma, \delta, (q_0, q_0), E_1 \times E_2)$$

mit

$$\delta((q,p),a) = (\delta_1(q,a),\delta_2(p,a))$$

akzeptiert (M wird auch Kreuzproduktautomat genannt). Wegen $L_1 \cup L_2 = \overline{(\overline{L_1} \cap \overline{L_2})}$ ist dann aber auch die Vereinigung von L_1 und L_2 regulär. (Wie sieht der zugehörige DFA aus?)

Aus Beobachtung 11 folgt, dass alle endlichen und alle co-endlichen Sprachen regulär sind. Da die in Beispiel 3 betrachtete Sprache weder endlich noch co-endlich ist, haben wir damit allerdings noch nicht alle regulären Sprachen erfasst.

Es stellt sich die Frage, ob REG neben den mengentheoretischen Operationen Schnitt, Vereinigung und Komplement unter weiteren Operationen wie etwa der **Produktbildung**

$$L_1L_2 = \{xy \mid x \in L_1, y \in L_2\}$$

(auch Verkettung oder Konkatenation genannt) oder der Bildung der Sternhülle

$$L^* = \bigcup_{n \ge 0} L^n$$

abgeschlossen ist. Die n-fache Potenz L^n von L ist dabei induktiv definiert durch

$$L^0 = \{\varepsilon\}, \ L^{n+1} = L^n L.$$

Die **Plushülle** von L ist

$$L^+ = \bigcup_{n>1} L^n = LL^*.$$

Ist $L_1 = \{x\}$ eine Singletonsprache, so schreiben wir für das Produkt $\{x\}L_2$ auch einfach xL_2 .

Im übernächsten Abschnitt werden wir sehen, dass die Klasse REG als der Abschluss der endlichen Sprachen unter Vereinigung, Produktbildung und Sternhülle charakterisierbar ist.

Beim Versuch, einen endlichen Automaten für das Produkt L_1L_2 zweier regulärer Sprachen zu konstruieren, stößt man auf die Schwierigkeit, den richtigen Zeitpunkt für den Übergang von (der Simulation von) M_1 zu M_2 zu finden. Unter Verwendung eines nichtdeterministischen Automaten lässt sich dieses Problem jedoch leicht beheben, da dieser den richtigen Zeitpunkt "erraten" kann.

Im nächsten Abschnitt werden wir nachweisen, dass auch nichtdeterministische endliche Automaten nur reguläre Sprachen erkennen können.

2.2 Nichtdeterministische endliche Automaten

Definition 12. Ein nichtdeterministischer endlicher Automat (kurz: NFA; nondeterministic finite automaton) $N = (Z, \Sigma, \delta, Q_0, E)$ ist ähnlich aufgebaut wie ein DFA, nur dass er mehrere Startzustände (zusammengefasst in der Menge $Q_0 \subseteq Z$) haben kann

und seine Überführungsfunktion die Form

$$\delta: Z \times \Sigma \to \mathcal{P}(Z)$$

hat. Hierbei bezeichnet $\mathcal{P}(Z)$ die Potenzmenge (also die Menge aller Teilmengen) von Z. Diese wird auch oft mit 2^Z bezeichnet. Die von N akzeptierte Sprache ist

$$L(N) = \left\{ x_1 \dots x_n \in \Sigma^* \middle| \begin{array}{l} \exists q_0 \in Q_0, q_1, \dots, q_{n-1} \in Z, q_n \in E: \\ q_{i+1} \in \delta(q_i, x_{i+1}) \ f \ddot{u} r \ i = 0, \dots, n-1 \end{array} \right\}.$$

Ein NFA kann also nicht nur eine, sondern mehrere verschiedene Rechnungen ausführen. Die Eingabe gehört bereits dann zu L(N), wenn bei einer dieser Rechnungen nach Lesen des gesamten Eingabewortes ein Endzustand erreicht wird.

Im Gegensatz zu einem DFA, dessen Überführungsfunktion auf der gesamten Menge $Z \times \Sigma$ definiert ist, kann ein NFA "stecken bleiben". Das ist dann der Fall, wenn er in einen Zustand q gelangt, in dem das nächste Eingabezeichen x_i wegen $\delta(q, x_i) = \emptyset$ nicht gelesen werden kann.

Beispiel 13. Betrachte den NFA $N = (Z, \Sigma, \delta, Q_0, E)$ mit Zustandsmenge $Z = \{p, q, r, s\}$, Eingabealphabet $\Sigma = \{0, 1, 2\}$, Start- und Endzustandsmenge $Q_0 = \{p\}$ und $E = \{s\}$ sowie der Überführungsfunktion

Graphische Darstellung:

$$\begin{array}{c|ccccc} \delta & p & q & r & s \\ \hline 0 & \{p,q\} & \varnothing & \varnothing & \varnothing \\ 1 & \{p\} & \{r\} & \varnothing & \varnothing \\ 2 & \{p\} & \varnothing & \{s\} & \varnothing \\ \end{array}$$

Offensichtlich akzeptiert N die Sprache $L(N) = \{x012 \mid x \in \Sigma^*\}$ aller Wörter, die mit dem Suffix 012 enden.

Beobachtung 14. Sind $N_i = (Z_i, \Sigma, \delta_i, Q_i, E_i)$ (i = 1, 2) NFAs, so werden auch die Sprachen $L(N_1)L(N_2)$ und $L(N_1)^*$ von einem NFA erkannt. Wir können $Z_1 \cap Z_2 = \emptyset$ annehmen. Dann akzeptiert der NFA

$$N = (Z_1 \cup Z_2, \Sigma, \delta_3, Q_1, E)$$

mit

$$\delta_3(p,a) = \begin{cases} \delta_1(p,a), & p \in Z_1 \setminus E_1, \\ \delta_1(p,a) \cup \bigcup_{q \in Q_2} \delta_2(q,a), & p \in E_1, \\ \delta_2(p,a), & sonst \end{cases}$$

und

$$E = \begin{cases} E_2, & Q_2 \cap E_2 = \emptyset \\ E_1 \cup E_2, & sonst \end{cases}$$

die Sprache $L(N_1)L(N_2)$ und der NFA

$$N^* = (Z_1 \cup \{q_{neu}\}, \Sigma, \delta_4, Q_1 \cup \{q_{neu}\}, E_1 \cup \{q_{neu}\})$$

mit

$$\delta_4(p,a) = \begin{cases} \delta_1(p,a), & p \in Z_1 \setminus E_1, \\ \delta_1(p,a) \cup \bigcup_{q \in Q_1} \delta_1(q,a), & p \in E_1, \\ \emptyset, & sonst \end{cases}$$

die Sprache $L(N_1)^*$.

Satz 15 (Rabin und Scott). REG = $\{L(N) \mid N \text{ ist } ein \text{ NFA}\}.$

Beweis. Die Inklusion von links nach rechts ist klar, da jeder DFA auch als NFA aufgefasst werden kann. Für die Gegenrichtung konstruieren wir zu einem NFA $N = (Z, \Sigma, \delta, Q_0, E)$ einen DFA $M = (\mathcal{P}(Z), \Sigma, \delta', Q_0, E')$ mit L(M) = L(N). Wir definieren die Überführungsfunktion $\delta' : \mathcal{P}(Z) \times \Sigma \to \mathcal{P}(Z)$ von M mittels

$$\delta'(Q, a) = \bigcup_{q \in Q} \delta(q, a).$$

Die Menge $\delta'(Q, a)$ enthält also alle Zustände, in die N gelangen kann, wenn N ausgehend von einem beliebigen Zustand $q \in Q$ das Zeichen a liest. Intuitiv bedeutet dies, dass der DFA M den NFA N simuliert, indem M in seinem aktuellen Zustand Q die Information speichert, in welchen Zuständen sich N momentan befinden könnte. Für die Erweiterung $\hat{\delta'}: \mathcal{P}(Z) \times \Sigma^* \to \mathcal{P}(Z)$ von δ' (siehe Seite 2) können wir nun folgende Behauptung zeigen:

 $\hat{\delta}'(Q_0, x)$ enthält alle Zustände, die N ausgehend von einem Startzustand nach Lesen der Eingabe x erreichen kann.

Wir beweisen die Behauptung induktiv über die Länge n von x.

Induktionsanfang (n = 0): klar, da $\hat{\delta}'(Q_0, \varepsilon) = Q_0$ ist.

Induktionsschritt (n – 1 \sim n): Sei $x = x_1 \dots x_n$ gegeben. Nach Induktionsvoraussetzung enthält

$$Q_{n-1} = \hat{\delta}'(Q_0, x_1 \dots x_{n-1})$$

alle Zustände, die N(x) in genau n-1 Schritten erreichen kann. Wegen

$$\hat{\delta}'(Q_0, x) = \delta'(Q_{n-1}, x_n) = \bigcup_{q \in Q_{n-1}} \delta(q, x_n)$$

enthält dann aber $\hat{\delta}'(Q_0, x)$ alle Zustände, die N(x) in genau n Schritten erreichen kann.

Deklarieren wir nun diejenigen Teilmengen $Q \subseteq Z$, die mindestens einen Endzustand von N enthalten, als Endzustände des **Potenz-mengenautomaten** M, d.h.

$$E' = \{ Q \subseteq Z \mid Q \cap E \neq \emptyset \},$$

so folgt für alle Wörter $x \in \Sigma^*$:

 $x \in L(N) \iff N(x)$ kann in genau |x| Schritten einen Endzustand erreichen

$$\Leftrightarrow \hat{\delta'}(Q_0, x) \cap E \neq \emptyset$$

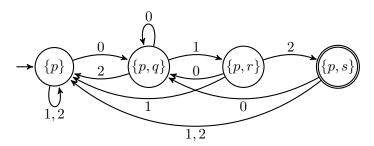
$$\Leftrightarrow \hat{\delta}'(Q_0, x) \in E'$$

$$\Leftrightarrow x \in L(M).$$

Beispiel 16. Für den NFA $N = (Z, \Sigma, \delta, Q_0, E)$ aus Beispiel 13

ergibt die Konstruktion des vorigen Satzes den folgenden DFA M (nach Entfernen aller vom Startzustand $Q_0 = \{p\}$ aus nicht erreichbaren Zustände):

δ'	0	1	2
$Q_0 = \{p\}$	$ \{p,q\} $	$\{p\}$	$\{p\}$
$Q_1 = \{p, q\}$ $Q_2 = \{p, r\}$	$\{p,q\}$	$\{p,r\}$	$\{p\}$
Q_2 = $\{p,r\}$	$\{p,q\}$	$\{p\}$	$\{p,s\}$
$Q_3 = \{p, s\}$	$\mid \{p,q\}$	$\{p\}$	$\{p\}$



2 Reguläre Sprachen 2.3 Reguläre Ausdrücke

Im obigen Beispiel wurden für die Konstruktion des DFA M aus dem NFA N nur 4 der insgesamt $2^{\|Z\|} = 16$ Zustände benötigt, da die übrigen 12 Zustände in $\mathcal{P}(Z)$ nicht vom Startzustand $Q_0 = \{p\}$ aus erreichbar sind. Es gibt jedoch Beispiele, bei denen alle $2^{\|Z\|}$ Zustände in $\mathcal{P}(Z)$ für die Konstruktion des Potenzmengenautomaten benötigt werden (siehe Übungen).

Korollar 17. Die Klasse REG der regulären Sprachen ist unter folgenden Operationen abgeschlossen:

• Komplement,

• Produkt,

• Durchschnitt,

• Sternhülle.

• Vereinigung,

2.3 Reguläre Ausdrücke

Wir haben uns im letzten Abschnitt davon überzeugt, dass auch NFAs nur reguläre Sprachen erkennen können:

$$\mathsf{REG} = \{ L(M) \mid M \text{ ist ein DFA} \} = \{ L(N) \mid N \text{ ist ein NFA} \}.$$

In diesem Abschnitt werden wir eine weitere Charakterisierung der regulären Sprachen kennen lernen:

REG ist die Klasse aller Sprachen, die sich mittels der Operationen Vereinigung, Durchschnitt, Komplement, Produkt und Sternhülle aus der leeren Menge und den Singletonsprachen bilden lassen.

Tatsächlich kann hierbei sogar auf die Durchschnitts- und Komplementbildung verzichtet werden.

Definition 18. Die Menge der **regulären Ausdrücke** γ (über einem Alphabet Σ) und die durch γ dargestellte Sprache $L(\gamma)$ sind induktiv wie folgt definiert. Die Symbole \emptyset , ϵ und a $(a \in \Sigma)$ sind reguläre Ausdrücke, die

- die leere Sprache $L(\emptyset) = \emptyset$,
- die Sprache $L(\epsilon) = \{\varepsilon\}$ und
- $f\ddot{u}r$ jedes Zeichen $a \in \Sigma$ die Sprache $L(a) = \{a\}$

beschreiben. Sind α und β reguläre Ausdrücke, die die Sprachen $L(\alpha)$ und $L(\beta)$ beschreiben, so sind auch $\alpha\beta$, $(\alpha|\beta)$ und $(\alpha)^*$ reguläre Ausdrücke, die die Sprachen

- $L(\alpha\beta) = L(\alpha)L(\beta)$,
- $L(\alpha|\beta) = L(\alpha) \cup L(\beta)$ und
- $L((\alpha)^*) = L(\alpha)^*$

beschreiben.

Bemerkung 19.

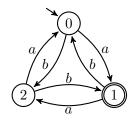
- Um Klammern zu sparen, definieren wir folgende **Präzedenz ordnung**: Der Sternoperator * bindet stärker als der Produktoperator und dieser wiederum stärker als der Vereinigungsoperator. Für ((a|b(c)*)|d) können wir also kurz a|bc*|d schreiben.
- Da der reguläre Ausdruck $\gamma \gamma^*$ die Sprache $L(\gamma)^+$ beschreibt, verwenden wir γ^+ als Abkürzung für den Ausdruck $\gamma \gamma^*$.

Beispiel 20. Die regulären Ausdrücke ϵ^* , \varnothing^* , $(0|1)^*00$ und $(\epsilon 0|\varnothing 1^*)$ beschreiben folgende Sprachen:

Beispiel 21. Betrachte nebenstehenden DFA M. Um für die von M erkannte Sprache

$$L(M) = \{x \in \{a, b\}^* \mid \#_a(x) - \#_b(x) \equiv_3 1\}$$

einen regulären Ausdruck zu finden, betrachten wir zunächst die Sprache $L_{0,0}$ aller Wörter x, die den DFA M ausgehend vom Zustand 0 in den



Zustand 0 überführen. Weiter sei $L_{0,0}^{\neq 0}$ die Teilsprache der Wörter $y \neq \varepsilon$ in $L_{0,0}$, die dies tun ohne zwischendurch den Zustand 0 zu besuchen. Dann setzt sich jedes $x \in L_{0,0}$ aus beliebig vielen Teilwörtern $y_1, \ldots, y_k \in L_{0,0}^{\neq 0}$ zusammen, d.h. $L_{0,0} = (L_{0,0}^{\neq 0})^*$.

Jedes $y \in L_{0,0}^{\sharp 0}$ beginnt entweder mit einem a (Übergang von 0 nach 1) oder mit einem b (Übergang von 0 nach 2). Im ersten Fall folgt eine beliebige Anzahl von Teilwörtern ab (Wechsel zwischen 1 und 2), an die sich entweder das Suffix aa (Rückkehr von 1 nach 0 über 2) oder das Suffix b (direkte Rückkehr von 1 nach 0) anschließt. Analog folgt im zweiten Fall eine beliebige Anzahl von Teilwörtern ba (Wechsel zwischen 2 und 1), an die sich entweder das Suffix a (direkte Rückkehr von 2 nach 0) oder das Suffix bb (Rückkehr von 2 nach 0 über 1) anschließt. Daher lässt sich $L_{0,0}^{\sharp 0}$ durch den regulären Ausdruck

$$\gamma_{0,0}^{\neq 0} = a(ab)^*(aa|b) \mid b(ba)^*(a|bb)$$

beschreiben. Eine ähnliche Überlegung zeigt, dass sich die die Sprache $L_{0,1}^{\neq 0}$ aller Wörter, die M ausgehend von 0 in den Zustand 1 überführen, ohne dass zwischendurch der Zustand 0 nochmals besucht wird, durch den regulären Ausdruck $\gamma_{0,1}^{\neq 0} = (a|bb)(ab)^*$ beschreibbar ist. Somit erhalten wir für L(M) den regulären Ausdruck

$$\gamma_{0,1} = (\gamma_{0,0}^{\neq 0})^* \gamma_{0,1}^{\neq 0} = (a(ab)^*(aa|b) \mid b(ba)^*(a|bb))^*(a|bb)(ab)^*.$$

 \triangleleft

Satz 22. $\{L(\gamma) \mid \gamma \text{ ist ein regul\"{a}rer Ausdruck}\} \subseteq REG.$

Beweis. Die Inklusion von rechts nach links ist klar, da die Basisausdrücke \emptyset , ϵ und a, $a \in \Sigma^*$, nur reguläre Sprachen beschreiben und die Sprachklasse REG unter Produkt, Vereinigung und Sternhülle abgeschlossen ist (siehe Beobachtungen 11 und 14).

Für die Gegenrichtung konstruieren wir zu einem DFA M einen regulären Ausdruck γ mit $L(\gamma) = L(M)$. Sei also $M = (Z, \Sigma, \delta, q_0, E)$ ein DFA, wobei wir annehmen können, dass $Z = \{1, \ldots, m\}$ und $q_0 = 1$ ist. Dann lässt sich L(M) als Vereinigung

$$L(M) = \bigcup_{q \in E} L_{1,q}$$

von Sprachen der Form

$$L_{p,q} = \{ x \in \Sigma^* \mid \hat{\delta}(p, x) = q \}$$

darstellen. Folglich reicht es zu zeigen, dass die Sprachen $L_{p,q}$ durch reguläre Ausdrücke beschreibbar sind. Hierzu betrachten wir die Sprachen

$$L_{p,q}^{r} = \left\{ x_{1} \dots x_{n} \in \Sigma^{*} \middle| \begin{array}{c} \hat{\delta}(p, x_{1} \dots x_{n}) = q \text{ und für} \\ i = 1, \dots, n-1 \text{ gilt } \hat{\delta}(p, x_{1} \dots x_{i}) \leq r \end{array} \right\}.$$

Wegen $L_{p,q}=L_{p,q}^m$ reicht es, reguläre Ausdrücke $\gamma_{p,q}^r$ für die Sprachen $L_{p,q}^r$ anzugeben. Im Fall r=0 enthält

$$L_{p,q}^{0} = \begin{cases} \{a \in \Sigma \mid \delta(p,a) = q\} \cup \{\varepsilon\}, & p = q, \\ \{a \in \Sigma \mid \delta(p,a) = q\}, & \text{sonst} \end{cases}$$

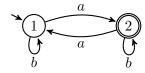
nur Buchstaben (und eventuell das leere Wort) und ist somit leicht durch einen regulären Ausdruck $\gamma_{p,q}^0$ beschreibbar. Wegen

$$L_{p,q}^{r+1} = L_{p,q}^r \cup L_{p,r+1}^r (L_{r+1,r+1}^r)^* L_{r+1,q}^r$$

lassen sich aus den regulären Ausdrücken $\gamma_{p,q}^r$ für die Sprachen $L_{p,q}^r$ leicht reguläre Ausdrücke für die Sprachen $L_{p,q}^{r+1}$ gewinnen:

$$\gamma_{p,q}^{r+1} = \gamma_{p,q}^r | \gamma_{p,r+1}^r (\gamma_{r+1,r+1}^r)^* \gamma_{r+1,q}^r.$$

Beispiel 23. Betrachte den DFA



 $Da\ M\ insgesamt\ m$ = 2 Zustände und nur den Endzustand 2 besitzt, ist

$$L(M) = \bigcup_{q \in E} L_{1,q} = L_{1,2} = L_{1,2}^2 = L(\gamma_{1,2}^2).$$

Um $\gamma_{1,2}^2$ zu berechnen, benutzen wir die Rekursionsformel

$$\gamma_{p,q}^{r+1} = \gamma_{p,q}^r | \gamma_{p,r+1}^r (\gamma_{r+1,r+1}^r)^* \gamma_{r+1,q}^r$$

und erhalten

$$\begin{split} \gamma_{1,2}^2 &= \gamma_{1,2}^1 \big| \gamma_{1,2}^1 \big(\gamma_{2,2}^1 \big)^* \gamma_{2,2}^1, \\ \gamma_{1,2}^1 &= \gamma_{1,2}^0 \big| \gamma_{1,1}^0 \big(\gamma_{1,1}^0 \big)^* \gamma_{1,2}^0, \\ \gamma_{2,2}^1 &= \gamma_{2,2}^0 \big| \gamma_{2,1}^0 \big(\gamma_{1,1}^0 \big)^* \gamma_{1,2}^0. \end{split}$$

Um den regulären Ausdruck $\gamma_{1,2}^2$ für L(M) zu erhalten, genügt es also, die regulären Ausdrücke $\gamma_{1,1}^0$, $\gamma_{1,2}^0$, $\gamma_{2,1}^0$, $\gamma_{2,2}^0$, $\gamma_{1,2}^1$ und $\gamma_{2,2}^1$ zu berechnen:

r	p,q						
	$\overline{1,1}$	1,2	2,1	2,2			
0	ϵb	a	a	ϵb			
1	-	$\underbrace{a (\epsilon b)(\epsilon b)^*a}_{b^*a}$	-	$\underbrace{(\epsilon b) a(\epsilon b)^*a}_{\epsilon b ab^*a}$			
2	-	$\underbrace{b^*a b^*a(\epsilon b ab^*a)^*(\epsilon b ab^*a)}_{b^*a(b ab^*a)^*}$	-	- -			

Korollar 24. Sei L eine Sprache. Dann sind folgende Aussagen äquivalent:

- L ist regulär,
- es gibt einen DFA M mit L = L(M),
- es gibt einen NFA N mit L = L(N),
- es gibt einen regulären Ausdruck γ mit $L = L(\gamma)$,
- L lässt sich mit den Operationen Vereinigung, Produkt und Sternhülle aus endlichen Sprachen gewinnen,
- L lässt sich mit den Operationen ∩, ∪, Komplement, Produkt und Sternhülle aus endlichen Sprachen gewinnen.

Wir werden bald noch eine weitere Charakterisierung von REG kennenlernen, nämlich durch reguläre Grammatiken. Zuvor befassen wir uns jedoch mit dem Problem, DFAs zu minimieren. Dabei spielen Relationen (insbesondere Äquivalenzrelationen) eine wichtige Rolle.

2.4 Relationalstrukturen

Sei A eine nichtleere Menge, R_i eine k_i -stellige Relation auf A, d.h. $R_i \subseteq A^{k_i}$ für i = 1, ..., n. Dann heißt $(A; R_1, ..., R_n)$ **Relational-struktur**. Die Menge A heißt **Grundmenge**, **Trägermenge** oder **Individuenbereich** der Relationalstruktur.

Wir werden hier hauptsächlich den Fall n = 1, $k_1 = 2$, also (A, R) mit $R \subseteq A \times A$ betrachten. Man nennt dann R eine (binäre) Relation auf A. Oft wird für $(a,b) \in R$ auch die Infix-Schreibweise aRb benutzt.

Beispiel 25.

• (F, M) mit $F = \{f \mid f \text{ ist Fluss in Europa}\}$ und

$$M = \{(f, g) \in F \times F \mid f \text{ mündet in } g\}.$$

 \triangleleft

• (U,B) mit $U = \{x \mid x \text{ ist Berliner}\}$ und $B = \{(x,y) \in U \times U \mid x \text{ ist Bruder von } y\}.$

- $(P(M),\subseteq)$, wobei P(M) die Potenzmenge einer beliebigen Menge M und \subseteq die Inklusionsbeziehung auf den Teilmengen von M ist.
- (A, Id_A) , wobei $Id_A = \{(x, x) \mid x \in A\}$ die **Identität auf** A ist.
- (\mathbb{R}, \leq) .
- $(\mathbb{Z}, |)$, wobei | die "teilt"-Relation bezeichnet (d.h. a|b, falls ein $c \in \mathbb{Z}$ mit b = ac existiert).

Da Relationen Mengen sind, sind auf ihnen die mengentheoretischen Operationen **Durchschnitt**, **Vereinigung**, **Komplement** und **Differenz** definiert. Seien R und S Relationen auf A, dann ist

$$R \cap S = \{(x,y) \in A \times A \mid xRy \wedge xSy\},\$$

$$R \cup S = \{(x,y) \in A \times A \mid xRy \vee xSy\},\$$

$$R - S = \{(x,y) \in A \times A \mid xRy \wedge \neg xSy\},\$$

$$\overline{R} = (A \times A) - R.$$

Sei allgemeiner $\mathcal{M} \subseteq \mathcal{P}(A \times A)$ eine beliebige Menge von Relationen auf A. Dann sind der **Schnitt über** \mathcal{M} und die **Vereinigung über** \mathcal{M} folgende Relationen:

$$\bigcap \mathcal{M} = \bigcap_{R \in \mathcal{M}} R = \{(x, y) \mid \forall R \in \mathcal{M} : xRy\},$$

$$\bigcup \mathcal{M} = \bigcup_{R \in \mathcal{M}} R = \{(x, y) \mid \exists R \in \mathcal{M} : xRy\}.$$

Die transponierte (konverse) Relation zu R ist

$$R^T = \{(y, x) \mid xRy\}.$$

 R^T wird oft auch mit R^{-1} bezeichnet. Z.B. ist $(\mathbb{R}, \leq^T) = (\mathbb{R}, \geq)$.

Seien R und S Relationen auf A. Das **Produkt** oder die **Komposition** von R und S ist

$$R \circ S = \{(x, z) \in A \times A \mid \exists y \in A : xRy \land ySz\}.$$

Beispiel 26. Ist B die Relation "ist Bruder von", V "ist Vater von", M "ist Mutter von" und $E = V \cup M$ "ist Elternteil von", so ist $B \circ E$ die Onkel-Relation.

Übliche Bezeichnungen für das Relationenprodukt sind auch R;S und $R \cdot S$ oder einfach RS. Das n-fache Relationenprodukt $R \circ \cdots \circ R$ von R wird mit R^n bezeichnet. Dabei ist $R^0 = Id$.

Vorsicht: Das n-fache Relationenprodukt R^n von R sollte nicht mit dem n-fachen kartesischen Produkt $R \times \cdots \times R$ der Menge R verwechselt werden. Wir vereinbaren, dass R^n das n-fache Relationenprodukt bezeichnen soll, falls R eine Relation ist.

Eigenschaften von Relationen

Sei R eine Relation auf A. Dann heißt R

renexiv,	falls $\forall x \in A : xRx$	(also $Ia_A \subseteq R$)
irreflexiv,	falls $\forall x \in A : \neg x R x$	(also $Id_A \subseteq \overline{R}$)
${\bf symmetrisch},$	falls $\forall x, y \in A : xRy \Rightarrow yRx$	c (also $R \subseteq R^T$)
${\bf asymmetrisch},$	falls $\forall x, y \in A : xRy \Rightarrow \neg y B$	$Rx \text{ (also } R \subseteq \overline{R^T})$
antisymmetrisch	, falls $\forall x, y \in A : xRy \land yRx$	$\Rightarrow x = y$
	3)	also $R \cap R^T \subseteq Id$)
konnex,	falls $\forall x, y \in A : xRy \vee yRx$	
	(also	$A \times A \subseteq R \cup R^T$
$\boldsymbol{semikonnex},$	falls $\forall x, y \in A : x \neq y \Rightarrow xR$	$y \vee yRx$
	(8)	also $\overline{Id} \subseteq R \cup R^T$)
${m transitiv},$	falls $\forall x, y, z \in A : xRy \land yR$	$2z \Rightarrow xRz$
		(also $R^2 \subseteq R$)
cilt		,

 f_{α} lla $\forall m \in A : m D_m$

 $(algo Id \subset D)$

nofforcia:

Die nachfolgende Tabelle gibt einen Überblick über die wichtigsten Relationalstrukturen.

	refl.	sym.	trans.	antisym.	asym.	konnex	semikon.
Äquivalenzrelation	✓	\checkmark	\checkmark				
(Halb-)Ordnung	✓		\checkmark	\checkmark			
Striktordnung			\checkmark		\checkmark		
lineare Ordnung			\checkmark	\checkmark		\checkmark	
lin. Striktord.			\checkmark		\checkmark		\checkmark
Quasiordnung	✓		\checkmark				

In der Tabelle sind nur die definierenden Eigenschaften durch ein " \checkmark " gekennzeichnet. Das schließt nicht aus, dass gleichzeitig auch noch weitere Eigenschaften vorliegen können.

Beispiel 27.

- Die Relation "ist Schwester von" ist zwar in einer reinen Damengesellschaft symmetrisch, i.a. jedoch weder symmetrisch noch asymmetrisch noch antisymmetrisch.
- Die Relation "ist Geschwister von" ist zwar symmetrisch, aber weder reflexiv noch transitiv und somit keine Äquivalenzrelation.
- $(\mathbb{R}, <)$ ist irreflexiv, asymmetrisch, transitiv und semikonnex und somit eine lineare Striktordnung.
- (\mathbb{R}, \leq) und $(\mathsf{P}(M), \subseteq)$ sind reflexiv, antisymmetrisch und transitiv und somit Ordnungen.
- (\mathbb{R}, \leq) ist auch konnex und somit eine lineare Ordnung.
- $(P(M), \subseteq)$ ist zwar im Fall $||M|| \le 1$ konnex, aber im Fall $||M|| \ge 2$ weder semikonnex noch konnex.

Graphische Darstellung von Relationen

Eine Relation R auf einer endlichen Menge A kann durch einen **gerichteten Graphen** (oder **Digraphen**) G = (V, E) mit **Knoten**-

menge V = A und **Kantenmenge** E = R veranschaulicht werden. Hierzu stellen wir jedes Element $x \in A$ als einen Knoten dar und verbinden jedes Knotenpaar $(x,y) \in R$ durch eine gerichtete Kante (Pfeil). Zwei durch eine Kante verbundene Knoten heißen **benachbart** oder **adjazent**.

Beispiel 28. Für die Relation (A, R) mit $A = \{a, b, c, d\}$ und $R = \{(b, c), (b, d), (c, a), (c, d), (d, d)\}$ erhalten wir folgende graphische Darstellung.

Der **Ausgangsgrad** eines Knotens $x \in V$ ist $\deg^+(x) = ||R[x]||$, wobei $R[x] = \{y \in V \mid xRy\}$ die Menge der **Nachfolger** von x ist. Entsprechend ist $\deg^-(x) = ||\{y \in V \mid yRx\}||$ der **Eingangsgrad** von x und $R^{-1}[x] = \{y \in V \mid yRx\}$ die Menge der **Vorgänger** von x. Falls R symmetrisch ist, werden die Pfeilspitzen meist weggelassen. In diesem Fall ist $d(x) = \deg^-(x) = \deg^+(x)$ der **Grad** von x und $R[x] = R^{-1}[x]$ heißt die **Nachbarschaft** von x. Ist R zudem irreflexiv, so ist R schleifenfrei und wir erhalten einen **(ungerichteten) Graphen**.

Darstellung durch eine Adjazenzmatrix

Eine Relation R auf einer endlichen (geordneten) Menge $A = \{a_1, \ldots, a_n\}$ lässt sich durch eine boolesche $n \times n$ -Matrix $M_R = (m_{ij})$ mit

$$m_{ij} \coloneqq \begin{cases} 1, \ a_i R a_j, \\ 0, \ \text{sonst} \end{cases}$$

darstellen. Beispielsweise hat die Relation

$$R = \{(b,c), (b,d), (c,a), (c,d), (d,d)\}$$

auf der Menge $A = \{a, b, c, d\}$ die Matrixdarstellung

$$M_R = \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{array}\right).$$

Darstellung durch eine Adjazenzliste

Eine weitere Möglichkeit besteht darin, eine endliche Relation R in Form einer Tabelle darzustellen, die jedem Element $x \in A$ seine Nachfolgermenge R[x] in Form einer Liste zuordnet:

x	R[x]
a	-
b	c, d
c	a, d
d	d

Sind $M_R = (r_{ij})$ und $M_S = (s_{ij})$ boolesche $n \times n$ -Matrizen für R und S, so erhalten wir für $T = R \circ S$ die Matrix $M_T = (t_{ij})$ mit

$$t_{ij} = \bigvee_{k=1,\dots,n} (r_{ik} \wedge s_{kj})$$

Die Nachfolgermenge T[x] von x bzgl. der Relation T = $R \circ S$ berechnet sich zu

$$T[x] = \bigcup \{S[y] \mid y \in R[x]\} = \bigcup_{y \in R[x]} S[y].$$

Beispiel 29. Betrachte die Relationen $R = \{(a, a), (a, c), (c, b), (c, d)\}$ und $S = \{(a, b), (d, a), (d, c)\}$ auf der Menge $A = \{a, b, c, d\}$.

Relation	R	S	$R \circ S$	$S \circ R$
Digraph		(a)→(b)	(a)→(b)	
Adjazenz- $matrix$	$ \begin{array}{c} (c) \rightarrow (d) \\ 1010 \\ 0000 \\ 0101 \\ \end{array} $	$(c) \leftarrow (d)$ 0100 0000 0000	$ \begin{array}{c} (c) \Rightarrow (d) \\ 0100 \\ 0000 \\ 1010 \end{array} $	(c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d
Adjazenz- $liste$	$ \begin{array}{c} 0 \ 0 \ 0 \ 0 \\ a \ : \ a, c \\ b \ : \ - \\ c \ : \ b, d \\ d \ : \ - \end{array} $	1010 $a:b$ $b:-c:-d:a,c$	$0\ 0\ 0\ 0$ $a:b$ $b: c:a,c$ $d:-$	$ \begin{array}{c} 1111 \\ a:-\\ b:-\\ c:-\\ d:a,b,c,d \end{array} $

Beobachtung: Das Beispiel zeigt, dass das Relationenprodukt nicht kommutativ ist, d.h. i.a. gilt nicht $R \circ S = S \circ R$.

 \triangleleft

Als nächstes zeigen wir, dass die Menge $\mathcal{R} = \mathsf{P}(A \times A)$ aller binären Relationen auf A mit dem Relationenprodukt \circ als binärer Operation und der Relation Id_A als neutralem Element eine Halbgruppe (oder Monoid) bildet.

Satz 30. Seien Q, R, S Relationen auf A. Dann gilt

- (i) $(Q \circ R) \circ S = Q \circ (R \circ S)$, d.h. \circ ist assoziativ,
- (ii) $Id \circ R = R \circ Id = R$, d.h. Id ist neutrales Element.

Beweis.

(i) Es gilt:

$$x (Q \circ R) \circ S y \iff \exists u \in A : x (Q \circ R) u \land u S y$$

$$\Leftrightarrow \exists u \in A : (\exists v \in A : x Q v R u) \land u S y$$

$$\Leftrightarrow \exists u, v \in A : x Q v R u S y$$

$$\Leftrightarrow \exists v \in A : x Q v \land (\exists u \in A : v R u \land u S y)$$

$$\Leftrightarrow \exists v \in A : x Q v (R \circ S) y$$

$$\Leftrightarrow x Q \circ (R \circ S) y$$

(ii) Wegen $x Id \circ R y \Leftrightarrow \exists z : x = z \land z R y \Leftrightarrow x R y$ folgt $Id \circ R = R$. Die Gleichheit $R \circ Id = R$ folgt analog.

Manchmal steht man vor der Aufgabe, eine gegebene Relation R durch eine möglichst kleine Modifikation in eine Relation R' mit vorgegebenen Eigenschaften zu überführen. Will man dabei alle in R enthaltenen Paare beibehalten, dann sollte R' aus R durch Hinzufügen möglichst weniger Paare hervorgehen.

Es lässt sich leicht nachprüfen, dass der Schnitt über eine Menge reflexiver (bzw. transitiver oder symmetrischer) Relationen wieder reflexiv (bzw. transitiv oder symmetrisch) ist. Folglich existiert zu jeder Relation R auf einer Menge A eine kleinste reflexive (bzw. transitive oder symmetrische) Relation R', die R enthält.

Definition 31. Sei R eine Relation auf A.

• Die reflexive Hülle von R ist

$$h_{refl}(R) = \bigcap \{ S \subseteq A \times A \mid S \text{ ist reflexiv und } R \subseteq S \}.$$

$$h_{sym}(R) = \bigcap \{ S \subseteq A \times A \mid S \text{ ist symmetrisch und } R \subseteq S \}.$$

• Die transitive Hülle von R ist

$$R^+ = \bigcap \{ S \subseteq A \times A \mid S \text{ ist transitiv und } R \subseteq S \}.$$

• Die reflexiv-transitive Hülle von R ist

$$R^* = \bigcap \{ S \subseteq A \times A \mid S \text{ ist reflexiv, transitiv und } R \subseteq S \}.$$

• Die Äquivalenzhülle von R ist

$$h_{\ddot{a}q}(R) = \bigcap \{S \mid S \text{ ist eine } \ddot{A}\text{quivalenz relation auf } A \text{ und } R \subseteq S\}.$$

Satz 32. Sei R eine Relation auf A.

- (i) $h_{refl}(R) = R \cup Id_A$,
- (ii) $h_{sym}(R) = R \cup R^T$,
- (iii) $R^+ = \bigcup_{n \ge 1} R^n$,
- (iv) $R^* = \bigcup_{n>0} R^n$,
- (v) $h_{\ddot{a}q}(R) = (R \cup R^T)^*$.

Beweis. Siehe Übungen.

Anschaulich besagt der vorhergehende Satz, dass ein Paar (a,b) genau dann in der reflexiv-transitiven Hülle R^* von R ist, wenn es ein $n \ge 0$ gibt mit aR^nb , d.h. es gibt Elemente $x_0, \ldots, x_n \in A$ mit $x_0 = a$, $x_n = b$ und

$$x_0Rx_1Rx_2\dots x_{n-1}Rx_n.$$

In der Graphentheorie nennt man x_0, \ldots, x_n einen **Weg** der Länge n von a nach b.

2.4.1 Ordnungs- und Äquivalenzrelationen

Wir betrachten zunächst **Ordnungsrelationen**, die durch die drei Eigenschaften reflexiv, antisymmetrisch und transitiv definiert sind.

Beispiel 33.

- $(P(M), \subseteq)$, (\mathbb{Z}, \leq) , (\mathbb{R}, \leq) und $(\mathbb{N}, |)$ sind Ordnungen. $(\mathbb{Z}, |)$ ist keine Ordnung, aber eine Quasiordnung.
- Für jede Menge M ist die relationale Struktur $(\mathcal{P}(M); \subseteq)$ eine Ordnung. Diese ist nur im Fall $||M|| \le 1$ linear.
- Ist R eine Relation auf A und $B \subseteq A$, so ist $R_B = R \cap (B \times B)$ die Einschränkung von R auf B.
- Einschränkungen von (linearen) Ordnungen sind ebenfalls (lineare) Ordnungen.

• Beispielsweise ist (ℚ,≤) die Einschränkung von (ℝ,≤) auf ℚ und (ℕ,|) die Einschränkung von (ℤ,|) auf ℕ.

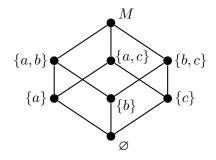
Ordnungen lassen sich sehr anschaulich durch Hasse-Diagramme darstellen. Sei \leq eine Ordnung auf A und sei < die Relation $\leq \cap \overline{Id}_A$. Um die Ordnung \leq in einem **Hasse-Diagramm** darzustellen, wird nur der Graph der Relation

$$\leq = < \le <^2$$
, d.h. $x \leq y \Leftrightarrow x \leq y \land \neg \exists z : x \leq z \leq y$

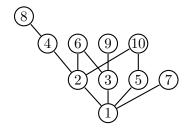
gezeichnet. Für $x \le y$ sagt man auch, y ist **oberer Nachbar** von x. Weiterhin wird im Fall $x \le y$ der Knoten y oberhalb vom Knoten x gezeichnet, so dass auf Pfeilspitzen verzichtet werden kann.

Beispiel 34.

Die Inklusionsrelation auf der Potenzmenge $\mathcal{P}(M)$ von $M = \{a, b, c\}$ lässt sich durch nebenstehendes Hasse-Diagramm darstellen.



Schränken wir die "teilt"-Relation auf die Menge $\{1,2,\ldots,10\}$ ein, so erhalten wir folgendes Hasse-Diagramm.



Definition 35. $Sei \leq eine \ Ordnung \ auf \ A \ und \ sei \ b \ ein \ Element \ in \ einer \ Teilmenge \ B \subseteq A.$

• b heißt kleinstes Element oder Minimum von B (kurz b = min B), falls gilt:

$$\forall b' \in B : b \leq b'$$
.

• b heißt größtes Element oder Maximum von B (kurz b = max B), falls qilt:

$$\forall b' \in B : b' < b$$
.

• b heißt minimal in B, falls es in B kein kleineres Element gibt:

$$\forall b' \in B : b' < b \Rightarrow b' = b.$$

• b heißt maximal in B, falls es in B kein größeres Element gibt:

$$\forall b' \in B : b \le b' \Rightarrow b = b'.$$

Bemerkung 36. Da Ordnungen antisymmetrisch sind, kann es in jeder Teilmenge B höchstens ein kleinstes und höchstens ein größtes Element geben. Die Anzahl der minimalen und maximalen Elemente in B kann dagegen beliebig groß sein.

Definition 37. $Sei \leq eine \ Ordnung \ auf \ A \ und \ sei \ B \subseteq A.$

- Jedes Element $u \in A$ mit $u \le b$ für alle $b \in B$ heißt **untere** und jedes $o \in A$ mit $b \le o$ für alle $b \in B$ heißt **obere Schranke** von B.
- B heißt nach oben beschränkt, wenn B eine obere Schranke hat, und nach unten beschränkt, wenn B eine untere Schranke hat.
- B heißt beschränkt, wenn B nach oben und nach unten beschränkt ist.
- Besitzt B eine größte untere Schranke i, d.h. besitzt die Menge U aller unteren Schranken von B ein größtes Element i, so heißt i das **Infimum** von B (kurz i = inf B):

$$(\forall b \in B : b \ge i) \land [\forall u \in A : (\forall b \in B : b \ge u) \Rightarrow u \le i].$$

• Besitzt B eine kleinste obere Schranke s, d.h. besitzt die Menge O aller oberen Schranken von B ein kleinstes Element s. so $hei\beta t \ s \ das \ Supremum \ von \ B \ (s = \sup B)$:

$$(\forall b \in B : b \le s) \land [\forall o \in A : (\forall b \in B : b \le o) \Rightarrow s \le o]$$

Bemerkung 38. B kann nicht mehr als ein Supremum und ein Infimum haben.

Beispiel 39. Betrachte nebenstehende Ordnung auf der Menge A = $\{a,b,c,d,e\}$. Die folgende Tabelle zeigt für verschiedene Teilmengen $B \subseteq A$ alle minimalen und maximalen Elemente in B Minimum und Maximum, alle unteren und oberen Schranken, sowie Infimum und Supremum von B (falls existent).

В	minimal	maximal	min	max	untere Schro		inf	sup
$\{a,b\}$	a, b	a, b	-	-	c, d, e	-	-	-
$\{c,d\}$	c, d	c, d	-	-	e	a, b	e	-
$\{a,b,c\}$	c	a, b	c	-	c, e	-	c	-
$\{a,b,c,e\}$	e	a, b	e	-	e	-	e	-
$\{a,c,d,e\}$	e	a	e	a	e	a	e	a

Bemerkung 40.

- Auch in linearen Ordnungen muss nicht jede beschränkte Teilmenge ein Supremum oder Infimum besitzen.
- So hat in der linear geordneten Menge (ℚ,≤) die Teilmenge

$$B = \{ x \in \mathbb{Q} \mid x^2 \le 2 \} = \{ x \in \mathbb{Q} \mid x^2 < 2 \}$$

weder ein Supremum noch ein Infimum.

• Dagegen hat in einer linearen Ordnung jede endliche Teilmenge ein kleinstes und ein größtes Element und somit erst recht ein Supremum und ein Infimum.

Als nächstes betrachten wir Äquivalenzrelationen, die durch die drei Eigenschaften reflexiv, symmetrisch und transitiv definiert sind.

Ist E eine Äquivalenzrelation, so nennt man die Nachbarschaft E[x]die von x repräsentierte Äquivalenzklasse und bezeichnet sie mit $[x]_E$ oder einfach mit [x]. Eine Menge $S \subseteq A$ heißt **Repräsen**tantensystem, falls sie genau ein Element aus jeder Äquivalenzklasse enthält.

Beispiel 41.

- Auf der Menge aller Geraden im \mathbb{R}^2 die Parallelität. Offenbar bilden alle Geraden mit derselben Richtung (oder Steigung) jeweils eine Äguivalenzklasse. Daher wird ein Repräsentantensystem beispielsweise durch die Menge aller Ursprungsgeraden qebildet.
- Auf der Menge aller Menschen "im gleichen Jahr geboren wie". Hier bildet jeder Jahrgang eine Äguivalenzklasse.
- Auf Z die Relation "gleicher Rest bei Division durch m". Die zugehörigen Äquivalenzklassen sind

$$[r] = \{a \in \mathbb{Z} \mid a \equiv r \mod m\}, \ r = 0, 1, \dots, m - 1.$$

Ein Repräsentantensystem wird beispielsweise durch die Reste $0,1,\ldots,m-1$ qebildet. \triangleleft

Definition 42. Eine Familie $\{B_i \mid i \in I\}$ von nichtleeren Teilmengen $B_i \subseteq A$ heißt **Partition** der Menge A, falls gilt:

- a) die Mengen B_i **überdecken** A, d.h. $A = \bigcup_{i \in I} B_i$ und
- b) die Mengen B_i sind **paarweise disjunkt**, d.h. für je zwei verschiedene Mengen $B_i \neq B_j$ qilt $B_i \cap B_j = \emptyset$.

 \triangleleft

Die Äquivalenzklassen einer Äquivalenzrelation E bilden eine Partition $\{[x] \mid x \in A\}$ von A (siehe Satz 43). Diese Partition wird auch **Quotienten-** oder **Faktormenge** genannt und mit A/E bezeichnet. Die Anzahl der Äquivalenzklassen von E wird auch als der **Index** von E bezeichnet. Wie der nächste Satz zeigt, beschreiben Äquivalenzrelationen auf E und Partitionen von E denselben Sachverhalt.

Satz 43. Sei E eine Relation auf A. Dann sind folgende Aussagen äquivalent.

- (i) E ist eine Äquivalenzrelation auf A.
- (ii) Für alle $x, y \in A$ gilt

$$xEy \Leftrightarrow E[x] = E[y] \quad (*)$$

(iii) Es gibt eine Partition $\{B_i \mid i \in I\}$ von A mit

$$xEy \Leftrightarrow \exists i \in I : x, y \in B_i.$$

Beweis.

 $(i) \Rightarrow (ii)$ Sei E eine Äquivalenzrelation auf A. Da E transitiv ist, impliziert xEy die Inklusion $E[y] \subseteq E[x]$:

$$z \in E[y] \Rightarrow yEz \Rightarrow xEz \Rightarrow z \in E[x]$$

Da E symmetrisch ist, folgt aus xEy aber auch $E[x] \subseteq E[y]$. Umgekehrt folgt aus E[x] = E[y] wegen der Reflexivität von E, dass $y \in E[y] = E[x]$ enthalten ist, und somit xEy. Dies zeigt, dass E die Äquivalenz (*) erfüllt.

 $(ii) \Rightarrow (iii)$ Wir zeigen, dass die Äquivalenzklassen $E[x], x \in A$, die Menge A partitionieren, falls E die Bedingung (*) erfüllt.

Wegen E[x] = E[x] folgt xEx und somit $x \in E[x]$. Folglich überdecken die Mengen E[x] die Menge A.

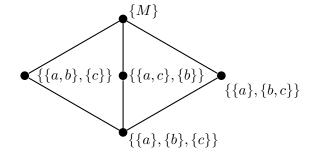
Ist $E[x] \cap E[y] \neq \emptyset$ und z ein Element in $E[x] \cap E[y]$, so gilt xEz und yEz und daher folgt E[x] = E[z] = E[y].

 $(iii) \Rightarrow (i)$ Existiert schließlich eine Partition $\{B_i \mid i \in I\}$ von A mit $xEy \Leftrightarrow \exists i \in I : x, y \in B_i$, so ist E reflexiv, da zu jedem $x \in A$ eine Menge B_i mit $x \in B_i$ existiert. Zudem ist E symmetrisch, da aus $x, y \in B_i$ auch $y, x \in B_i$ folgt. Und E ist transitiv, da aus $x, y \in B_i$ und $y, z \in B_j$ wegen $z \in B_i \cap B_j$ die Gleichheit $B_i = B_j$ und somit $x, z \in B_i$ folgt.

Die kleinste Äquivalenzrelation auf A ist die **Identität** Id_A , die größte die **Allrelation** $A \times A$. Die Äquivalenzklassen der Identität enthalten jeweils nur ein Element, d.h. $A/Id_A = \{\{x\} \mid x \in A\}$, und die Allrelation erzeugt nur eine Äquivalenzklasse, nämlich $A/(A \times A) = \{A\}$.

Für zwei Äquivalenzrelationen $E \subseteq E'$ sind auch die Äquivalenzklassen $[x]_E$ von E in den Klassen $[x]_{E'}$ von E' enthalten. Folglich ist jede Äquivalenzklasse von E' die Vereinigung von (evtl. mehreren) Äquivalenzklassen von E. E bewirkt also eine **feinere** Partitionierung als E'. Demnach ist die Identität die **feinste** und die Allrelation die **gröbste** Äquivalenzrelation.

Die feiner-Relation auf der Menge aller Partitionen von $M = \{a, b, c\}$ hat das folgende Hasse-Diagramm:



2.4.2 Abbildungen

Definition 44. Sei R eine binäre Relation auf einer Menge M.

• R heißt rechtseindeutig, falls für alle $x, y, z \in M$ gilt:

$$xRy \land xRz \Rightarrow y = z.$$

• R heißt linkseindeutig, falls für alle $x, y, z \in M$ gilt:

$$xRz \land yRz \Rightarrow x = y.$$

• Der Nachbereich N(R) und der Vorbereich V(R) von R sind

$$N(R) = \bigcup_{x \in M} R[x] \quad und \quad V(R) = \bigcup_{x \in M} R^{T}[x].$$

Eine rechtseindeutige Relation R mit V(R) = A und N(R) ⊆ B
heißt Abbildung oder Funktion von A nach B (kurz
R: A → B).

Bemerkung 45.

- Wie üblich werden wir Abbildungen meist mit kleinen Buchstaben f, g, h, ... bezeichnen und für $(x, y) \in f$ nicht xfy sondern f(x) = y oder $f: x \mapsto y$ schreiben.
- Ist f: A → B eine Abbildung, so wird der Vorbereich V(f) = A
 der Definitionsbereich und die Menge B der Wertebereich
 oder Wertevorrat von f genannt.
- Der Nachbereich N(f) wird als **Bild** von f bezeichnet.

Definition 46.

- Im Fall N(f) = B heißt f surjektiv.
- Ist f linkseindeutig, so heißt f **injektiv**. In diesem Fall impliziert f(x) = f(y) die Gleichheit x = y.
- Eine injektive und surjektive Abbildung heißt **bijektiv**.
- Ist f injektiv, so ist auch $f^{-1}: N(f) \to A$ eine Abbildung, die als die zu f inverse Abbildung bezeichnet wird.

Man beachte, dass der Definitionsbereich $V(f^{-1}) = N(f)$ von f^{-1} nur dann gleich B ist, wenn f auch surjektiv, also eine Bijektion ist.

2.4.3 Homo- und Isomorphismen

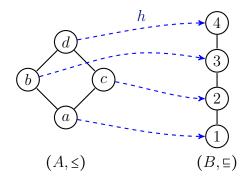
Definition 47. Seien (A_1, R_1) und (A_2, R_2) Relationalstrukturen.

• Eine Abbildung $h: A_1 \to A_2$ heißt **Homomorphismus**, falls für alle $a, b \in A_1$ qilt:

$$aR_1b \Rightarrow h(a)R_2h(b)$$
.

- Sind (A_1, R_1) und (A_2, R_2) Ordnungen, so spricht man von **Ordnungshomomorphismen** oder einfach von **monotonen** Abbildungen.
- Injektive Ordnungshomomorphismen werden auch streng monotone Abbildungen genannt.

Beispiel 48. Folgende Abbildung $h: A_1 \to A_2$ ist ein bijektiver Ordnungshomomorphismus.



Obwohl h ein bijektiver Homomorphismus ist, ist die Umkehrung h^{-1} kein Homomorphismus, da h^{-1} nicht monoton ist. Es gilt nämlich

$$2 \subseteq 3$$
, $aber h^{-1}(2) = b \nleq c = h^{-1}(3)$.

 \triangleleft

Definition 49. Ein bijektiver Homomorphismus $h: A_1 \rightarrow A_2$, bei dem auch h^{-1} ein Homomorphismus ist, d.h. es qilt

$$\forall a, b \in A_1 : aR_1b \Leftrightarrow h(a)R_2h(b).$$

heißt **Isomorphismus**. In diesem Fall heißen die Strukturen (A_1, R_1) und (A_2, R_2) **isomorph** $(kurz: (A_1, R_1) \cong (A_2, R_2))$.

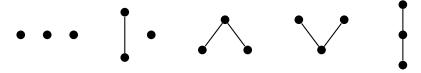
Beispiel 50.

• Die Abbildung $h: \mathbb{R} \to \mathbb{R}^+$ mit

$$h: x \mapsto e^x$$

ist ein Ordnungsisomorphismus zwischen (\mathbb{R}, \leq) und (\mathbb{R}^+, \leq) .

• Es existieren genau 5 nichtisomorphe Ordnungen mit 3 Elementen:



Anders ausgedrückt: Die Klasse aller dreielementigen Ordnungen zerfällt unter der Äquivalenzrelation \cong in fünf Äquivalenzklassen, die durch obige fünf Hasse-Diagramme repräsentiert werden.

• $F\ddot{u}r \ n \in \mathbb{N} \ sei$

$$T_n = \{k \in \mathbb{N} \mid k \text{ teilt } n\}$$

die Menge aller Teiler von n und

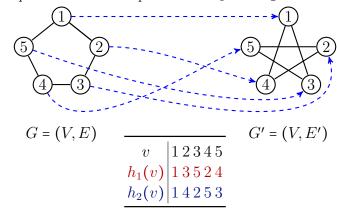
$$P_n = \{ p \in T_n \mid p \text{ ist } prim \}$$

die Menge aller Primteiler von n. Dann ist die Abbildung

$$h: k \mapsto P_k$$

ein (surjektiver) Ordnungshomomorphismus von $(T_n, |)$ auf $(\mathcal{P}(P_n), \subseteq)$. h ist sogar ein Isomorphismus, falls n quadratfrei ist (d.h. es gibt kein $k \ge 2$, so dass k^2 die Zahl n teilt).

• Die beiden folgenden Graphen G und G' sind isomorph. Zwei Isomorphismen sind beispielsweise h_1 und h_2 .



• Während auf der Knotenmenge V = [3] insgesamt 2³ = 8 verschiedene Graphen existieren, gibt es auf dieser Menge nur 4 verschiedene nichtisomorphe Graphen:

 \triangleleft

Bemerkung 51. Auf der Knotenmenge $V = \{1, ..., n\}$ existieren genau $2^{\binom{n}{2}}$ verschiedene Graphen. Sei a(n) die Anzahl aller nichtisomorphen Graphen auf V. Da jede Isomorphieklasse mindestens einen und höchstens n! verschiedene Graphen enthält, ist $2^{\binom{n}{2}}/n! \le a(n) \le 2^{\binom{n}{2}}$. Tatsächlich ist a(n) asymptotisch gleich $u(n) = 2^{\binom{n}{2}}/n!$ (in Zeichen: $a(n) \sim u(n)$), d.h.

$$\lim_{n\to\infty} a(n)/u(n) = 1.$$

Also gibt es auf $V = \{1, ..., n\}$ nicht wesentlich mehr als u(n) nicht-isomorphe Graphen.

2.5 Minimierung von DFAs

Wie können wir feststellen, ob ein DFA $M = (Z, \Sigma, \delta, q_0, E)$ unnötige Zustände enthält? Zunächst einmal können alle Zustände entfernt werden, die nicht vom Startzustand aus erreichbar sind. Im folgenden gehen wir daher davon aus, dass M keine unerreichbaren Zustände enthält. Offensichtlich können zwei Zustände q und p zu einem Zustand verschmolzen werden (kurz: $q \sim p$), wenn M von q und von p ausgehend jeweils dieselben Wörter akzeptiert. Bezeichnen wir den DFA $(Z, \Sigma, \delta, q, E)$ mit M_q und $L(M_q)$ mit L_q , so sind q und p genau dann verschmelzbar, wenn $L_q = L_p$ ist.

Fassen wir alle zu einem Zustand z äquivalenten Zustände in dem neuen Zustand

$$[z]_{\sim} = \{z' \in Z \mid L_{z'} = L_z\}$$

zusammen (wofür wir auch kurz [z] oder \tilde{z} schreiben) und ersetzen wir Z und E durch $\tilde{Z} = \{\tilde{z} \mid z \in Z\}$ und $\tilde{E} = \{\tilde{z} \mid z \in E\}$, so erhalten wir den DFA $M' = (\tilde{Z}, \Sigma, \delta', \tilde{q}_0, \tilde{E})$ mit

$$\delta'(\tilde{q},a) = \widetilde{\delta(q,a)}.$$

Hierbei bezeichnet \tilde{Q} für eine Teilmenge $Q \subseteq Z$ die Menge $\{\tilde{q} \mid q \in Q\}$ aller Äquivalenzklassen \tilde{q} , die mindestens ein Element $q \in Q$ enthalten. Der nächste Satz zeigt, dass M' tatsächlich der gesuchte Minimalautomat ist.

Satz 52. Sei $M = (Z, \Sigma, \delta, q_0, E)$ ein DFA, der nur Zustände enthält, die vom Startzustand q_0 aus erreichbar sind. Dann ist $M' = (\tilde{Z}, \Sigma, \delta', \tilde{q}_0, \tilde{E})$ mit

$$\delta'(\tilde{q}, a) = \widetilde{\delta(q, a)}$$

ein DFA für L(M) mit einer minimalen Anzahl von Zuständen.

Beweis. Wir zeigen zuerst, dass δ' wohldefiniert ist, also der Wert von $\delta'(\tilde{q}, a)$ nicht von der Wahl des Repräsentanten q abhängt. Hierzu

zeigen wir, dass im Fall $p \sim q$ auch $\delta(q, a)$ und $\delta(p, a)$ äquivalent sind:

$$L_{q} = L_{p} \implies \forall x \in \Sigma^{*} : x \in L_{q} \leftrightarrow x \in L_{p}$$

$$\Rightarrow \forall x \in \Sigma^{*} : ax \in L_{q} \leftrightarrow ax \in L_{p}$$

$$\Rightarrow \forall x \in \Sigma^{*} : x \in L_{\delta(q,a)} \leftrightarrow x \in L_{\delta(p,a)}$$

$$\Rightarrow L_{\delta(q,a)} = L_{\delta(p,a)}.$$

Als nächstes zeigen wir, dass L(M') = L(M) ist. Sei $x = x_1 \dots x_n$ eine Eingabe und seien

$$q_i = \hat{\delta}(q_0, x_1 \dots x_i), i = 0, \dots, n$$

die von M beim Abarbeiten von x durchlaufenen Zustände. Wegen

$$\delta'(\tilde{q}_{i-1}, x_i) = \delta(\widetilde{q}_{i-1}, x_i) = \tilde{q}_i$$

durchläuft M' dann die Zustände

$$\tilde{q}_0, \tilde{q}_1, \ldots, \tilde{q}_n.$$

Da aber q_n genau dann zu E gehört, wenn $\tilde{q}_n \in \tilde{E}$ ist, folgt L(M') = L(M) (man beachte, dass \tilde{q}_n entweder nur Endzustände oder nur Nicht-Endzustände enthält, vgl. Beobachtung 53).

Es bleibt zu zeigen, dass M' eine minimale Anzahl $\|\tilde{Z}\|$ von Zuständen hat. Dies ist sicher dann der Fall, wenn bereits M minimal ist. Es reicht also zu zeigen, dass die Anzahl $k = \|\tilde{Z}\| = \|\{L_q \mid q \in Z\}\|$ der Zustände von M' nicht von M, sondern nur von L = L(M) abhängt. Für $x \in \Sigma^*$ sei

$$L_x = \{ y \in \Sigma^* \mid xy \in L \}.$$

Dann gilt $\{L_x \mid x \in \Sigma^*\} \subseteq \{L_q \mid q \in Z\}$, da $L_x = L_{\hat{\delta}(q_0,x)}$ ist. Die umgekehrte Inklusion gilt ebenfalls, da nach Voraussetzung jeder Zustand $q \in Z$ über ein $x \in \Sigma^*$ erreichbar ist. Also hängt $k = \|\{L_q \mid q \in Z\}\| = \|\{L_x \mid x \in \Sigma^*\}\|$ nur von L ab.

Eine interessante Folgerung aus obigem Beweis ist, dass für eine reguläre Sprache $L \subseteq \Sigma^*$ die Menge $\{L_x \mid x \in \Sigma^*\}$ nur endlich viele verschiedene Sprachen enthält, und somit die durch

$$x R_L y \Leftrightarrow L_x = L_y$$

auf Σ^* definierte Äquivalenzrelation R_L endlichen Index hat.

Für die algorithmische Konstruktion von M' aus M ist es notwendig herauszufinden, ob zwei Zustände p und q von M äquivalent sind oder nicht.

Bezeichne $A\Delta B = (A \setminus B) \cup (B \setminus A)$ die *symmetrische Differenz* von zwei Mengen A und B. Dann ist die Inäquivalenz $p \not\vdash q$ zweier Zustände p und q gleichbedeutend mit $L_p\Delta L_q \neq \emptyset$. Wir nennen ein Wort $x \in L_p\Delta L_q$ einen *Unterscheider* zwischen p und q.

Beobachtung 53.

- Endzustände $p \in E$ sind nicht mit Zuständen $q \in Z \setminus E$ äquivalent (da sie durch ε unterschieden werden).
- Wenn $\delta(p,a)$ und $\delta(q,a)$ inäquivalent sind, dann auch p und q (da jeder Unterscheider x von $\delta(p,a)$ und $\delta(q,a)$ einen Unterscheider ax von p und q liefert).

Wenn also D nur Paare von inäquivalenten Zuständen enthält, dann trifft dies auch auf die Menge

$$D' = \{ \{p, q\} \mid \exists a \in \Sigma : \{\delta(p, a), \delta(q, a)\} \in D \}$$

zu. Wir können somit ausgehend von der Menge

$$D_0 = \{ \{p, q\} \mid p \in E, q \notin E \}$$

eine Folge von Mengen

$$D_0 \subseteq D_1 \subseteq \dots \subseteq \{\{z, z'\} \subseteq Z \mid z \neq z'\}$$

mittels der Vorschrift

$$D_{i+1} = D_i \cup \{ \{p, q\} \mid \exists a \in \Sigma : \{ \delta(p, a), \delta(q, a) \} \in D_i \}$$

berechnen, indem wir zu D_i alle Paare $\{p,q\}$ hinzufügen, für die eines der Paare $\{\delta(p,a),\delta(q,a)\}$, $a \in \Sigma$, bereits zu D_i gehört. Da Z endlich ist, muss es ein j mit $D_{j+1} = D_j$ geben. In diesem Fall gilt (siehe Übungen):

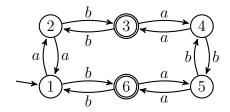
$$p \not\vdash q \Leftrightarrow \{p,q\} \in D_j$$
.

Folglich kann M' durch Verschmelzen aller Zustände p,q mit $\{p,q\} \notin D_j$ gebildet werden. Der folgende Algorithmus berechnet für einen beliebigen DFA M den zugehörigen Minimal-DFA M'.

Algorithmus min-DFA(M)

- 1 **Input**: DFA $M = (Z, \Sigma, \delta, q_0, E)$
- entferne alle nicht erreichbaren Zustaende
- $D' := \{ \{z, z'\} \mid z \in E, z' \notin E \}$
- 4 repeat
- D := D'
- $D' := D \cup \{\{p,q\} \mid \exists a \in \Sigma : \{\delta(p,a), \delta(q,a)\} \in D\}$
- 7 until $D' = \hat{D}$
- 8 **Output**: $M' = (\tilde{Z}, \Sigma, \delta', \tilde{q}_0, \tilde{E})$, wobei für jeden Zustand $z \in Z$ gilt: $\tilde{z} = \{z\} \cup \{z' \in Z \mid \{z, z'\} \notin D\}$

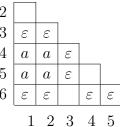
Beispiel 54. Betrachte den DFA M



Dann enthält D_0 die Paare

$$\{1,3\},\{1,6\},\{2,3\},\{2,6\},\{3,4\},\{3,5\},\{4,6\},\{5,6\}.$$

Die Paare in D_0 sind in der folgenden Matrix durch den Unterscheider ε markiert.



We gen

$$\begin{array}{c|cccc} \{p,q\} & \{1,4\} & \{1,5\} & \{2,4\} & \{2,5\} \\ \{\delta(q,a),\delta(p,a)\} & \{2,3\} & \{2,6\} & \{1,3\} & \{1,6\} \\ \end{array}$$

enthält D_1 zusätzlich die Paare $\{1,4\}$, $\{1,5\}$, $\{2,4\}$, $\{2,5\}$ (in obiger Matrix durch den Unterscheider a markiert). Da die verbliebenen Paare $\{1,2\}$, $\{3,6\}$, $\{4,5\}$ wegen

$\{p,q\}$	{1,2}	${3,6}$	$\{4, 5\}$
$\{\delta(p,a),\delta(q,a)\}$	$\{1, 2\}$	$\{4, 5\}$	${3,6}$
$ \begin{cases} \{p,q\} \\ \{\delta(p,a),\delta(q,a)\} \\ \{\delta(p,b),\delta(q,b)\} \end{cases} $	$ \{3,6\} $	$\{1, 2\}$	$\{4,5\}$

nicht zu D_1 hinzugefügt werden können, ist $D_2 = D_1$. Aus den unmarkierten Paaren $\{1,2\}$, $\{3,6\}$ und $\{4,5\}$ erhalten wir die Äquivalenzklassen

$$\tilde{1} = \{1, 2\}, \ \tilde{3} = \{3, 6\} \ und \ \tilde{4} = \{4, 5\},$$

die auf folgenden Minimal-DFA M' führen:

Es ist auch möglich, einen Minimalautomaten M_L direkt aus einer regulären Sprache L zu gewinnen (also ohne einen DFA M für L zu kennen). Da wegen

$$\widetilde{\hat{\delta}(q_0, x)} = \widetilde{\hat{\delta}(q_0, y)} \Leftrightarrow \widehat{\delta}(q_0, x) \sim \widehat{\delta}(q_0, y)
\Leftrightarrow L_{\widehat{\delta}(q_0, x)} = L_{\widehat{\delta}(q_0, y)} \Leftrightarrow L_x = L_y$$

zwei Eingaben x und y den DFA M' genau dann in denselben Zustand $\hat{\delta}(q_0, x) = \hat{\delta}(q_0, y)$ überführen, wenn $L_x = L_y$ ist, können wir den von M' bei Eingabe x erreichten Zustand $\hat{\delta}(q_0, x)$ auch mit der Sprache L_x bezeichnen. Dies führt auf den zu M' isomorphen (also bis auf die Benennung der Zustände mit M' identischen) DFA $M_L = (Z_L, \Sigma, \delta_L, L_\varepsilon, E_L)$ mit

$$Z_L = \{L_x \mid x \in \Sigma^*\},$$

$$E_L = \{L_x \mid x \in L\} \text{ und}$$

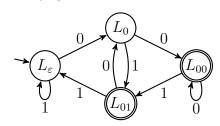
$$\delta_L(L_x, a) = L_{xa}.$$

Notwendig und hinreichend für die Existenz von M_L ist, dass R_L endlichen Index hat, also die Menge $\{L_x \mid x \in \Sigma^*\}$ endlich ist.

Beispiel 55. Für $L = \{x_1 \dots x_n \in \{0, 1\}^* \mid n \ge 2 \text{ und } x_{n-1} = 0\}$ ist

$$L_{x} = \begin{cases} L, & x \in \{\varepsilon, 1\} \text{ oder } x \text{ endet mit } 11, \\ L \cup \{0, 1\}, & x = 0 \text{ oder } x \text{ endet mit } 10, \\ L \cup \{\varepsilon, 0, 1\}, & x \text{ endet mit } 00, \\ L \cup \{\varepsilon\}, & x \text{ endet mit } 01. \end{cases}$$

Somit erhalten wir den folgenden Minimalautomaten M_L .



 \triangleleft

Im Fall, dass M bereits ein Minimalautomat ist, sind alle Zustände von M' von der Form $\tilde{q} = \{q\}$, so dass M isomorph zu M' und damit auch isomorph zu M_L ist. Dies zeigt, dass alle Minimalautomaten für eine Sprache L isomorph sind.

Satz 56 (Myhill und Nerode).

- 1. REG = $\{L \mid R_L \text{ hat endlichen Index}\}.$
- 2. Sei L regulär und sei $index(R_L)$ der Index von R_L . Dann gibt es für L bis auf Isomorphie genau einen Minimal-DFA. Dieser hat $index(R_L)$ Zustände.

Beispiel 57. Sei $L = \{a^ib^i \mid i \geq 0\}$. Wegen $b^i \in L_{a^i}\Delta L_{a^j}$ für $i \neq j$ hat R_L unendlichen Index, d.h. L ist nicht regulär.

Die Zustände von M_L können anstelle von L_x auch mit den Äquivalenzklassen $[x]_{R_L}$ (bzw. mit geeigneten Repräsentanten) benannt werden. Der resultierende Minimal-DFA $M_{R_L} = (Z, \Sigma, \delta, [\varepsilon], E)$ mit

$$Z = \{ [x]_{R_L} \mid x \in \Sigma^* \},$$

$$E = \{ [x]_{R_L} \mid x \in L \} \text{ und }$$

$$\delta([x]_{R_L}, a) = [xa]_{R_L}$$

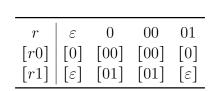
wird auch als **Äquivalenzklassenautomat** bezeichnet.

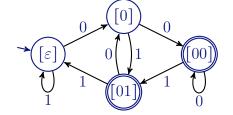
Die Konstruktion von M_{R_L} ist meist einfacher als die von M_L , da die Bestimmung der Sprachen L_x entfällt. Um die Überführungsfunktion von M_{R_L} aufzustellen, reicht es, ausgehend von $r_1 = \varepsilon$ eine Folge r_1, \ldots, r_k von paarweise bzgl. R_L inäquivalenten Wörtern zu bestimmen, so dass zu jedem Wort $r_i a, a \in \Sigma$, ein r_j mit $r_i a R_L r_j$ existiert. In diesem Fall ist $\delta([r_i], a) = [r_i a] = [r_j]$.

Beispiel 58. Für die Sprache $L = \{x_1 \dots x_n \in \{0,1\}^* \mid x_{n-1} = 0\}$ lässt sich M_{R_L} wie folgt konstruieren:

- 1. Wir beginnen mit $r_1 = \varepsilon$.
- 2. Da $r_10 = 0 \notin [\varepsilon]$ ist, wählen wir $r_2 = 0$ und setzen $\delta([\varepsilon], 0) = [0]$.
- 3. Da $r_1 1 = 1 \in [\varepsilon]$ ist, setzen wir $\delta([\varepsilon], 1) = [\varepsilon]$.
- 4. $Da \ r_2 0 = 00 \notin [\varepsilon] \cup [0] \ ist, \ ist \ r_3 = 00 \ und \ wir \ setzen \delta([0], 0) = [00].$
- 5. $Da \ r_2 1 = 01 \notin [\varepsilon] \cup [0] \cup [00]$ ist, wählen wir $r_4 = 01$ und setzen $\delta([0], 1) = [01]$.
- 6. Da die Wörter $r_30 = 000 \in [00]$, $r_31 = 001 \in [01]$, $r_40 = 010 \in [0]$ und $r_41 = 011 \in [\varepsilon]$ sind, setzen wir $\delta([00], 0) = [00]$, $\delta([00], 1) = [01]$, $\delta([01], 0) = [0]$ und $\delta([01], 1) = [\varepsilon]$.

Wir erhalten also folgenden Minimal-DFA M_{R_L} :





 \triangleleft

Wir fassen nochmals die wichtigsten Ergebnisse zusammen.

Korollar 59. Sei L eine Sprache. Dann sind folgende Aussagen äquivalent:

- L ist regulär,
- es qibt einen DFA M mit L = L(M),
- es gibt einen NFA N mit L = L(N),
- es gibt einen regulären Ausdruck γ mit $L = L(\gamma)$,
- die Äquivalenzrelation R_L hat endlichen Index.

Wir werden im nächsten Abschnitt noch eine weitere Methode kennenlernen, mit der man beweisen kann, dass eine Sprache nicht regulär ist, nämlich das Pumping-Lemma.

2.6 Das Pumping-Lemma

Wie kann man von einer Sprache nachweisen, dass sie nicht regulär ist? Eine Möglichkeit besteht darin, die Kontraposition folgender Aussage anzuwenden.

Satz 60 (Pumping-Lemma für reguläre Sprachen).

Zu jeder regulären Sprache L gibt es eine Zahl l, so dass sich alle Wörter $x \in L$ mit $|x| \ge l$ in x = uvw zerlegen lassen mit

- 1. $v \neq \varepsilon$,
- 2. $|uv| \le l \ und$
- 3. $uv^iw \in L$ für alle $i \ge 0$.

Falls eine Zahl l mit diesen Eigenschaften existiert, wird das kleinste solche l die **Pumping-Zahl** von L genannt.

Beweis. Sei $M = (Z, \Sigma, \delta, q_0, E)$ ein DFA für L und sei l = ||Z|| die Anzahl der Zustände von M. Setzen wir M auf eine Eingabe $x = x_1 \dots x_n \in L$ der Länge $n \ge l$ an, so muss M nach spätestens l Schritten einen Zustand $q \in Z$ zum zweiten Mal besuchen:

$$\exists j, k : 0 \le j < k \le l \land \hat{\delta}(q_0, x_1 \dots x_j) = \hat{\delta}(q_0, x_1 \dots x_k) = q.$$

Wählen wir nun $u = x_1 \dots x_j$, $v = x_{j+1} \dots x_k$ und $w = x_{k+1} \dots x_n$, so ist $|v| = k - j \ge 1$ und $|uv| = k \le l$. Ausserdem gilt $uv^i w \in L$ für $i \ge 0$, da wegen $\hat{\delta}(q, v) = q$

$$\hat{\delta}(q_0, uv^i w) = \hat{\delta}(\hat{\delta}(\underbrace{\hat{\delta}(q_0, u)}_q, v^i), w) = \hat{\delta}(\underbrace{\hat{\delta}(q, v^i)}_q, w) = \hat{\delta}(q_0, x) \in E$$

ist.

Beispiel 61. Die Sprache

$$L = \{x \in \{a, b\}^* \mid \#_a(x) - \#_b(x) \equiv_3 1\}$$

hat die Pumping-Zahl l=3. Sei nämlich $x \in L$ beliebig mit $|x| \ge 3$. Dann lässt sich innerhalb des Präfixes von x der Länge drei ein nichtleeres Teilwort v finden, das gepumpt werden kann:

- **1. Fall:** x hat das $Pr\ddot{a}fix$ ab (oder ba). Zerlege x = uvw mit $u = \varepsilon$ und v = ab (bzw. v = ba).
- **2. Fall:** x hat das Präfix aab (oder bba). Zerlege x = uvw mit u = a (bzw. u = b) und v = ab (bzw. v = ba).
- 3. Fall: x hat das Präfix aaa (oder bbb). $Zerlege \ x = uvw \ mit \ u = \varepsilon \ und \ v = aaa \ (bzw. \ v = bbb).$

Beispiel 62. Eine endliche Sprache L hat die Pumping-Zahl

$$l = \begin{cases} 0, & L = \emptyset, \\ \max\{|x| + 1 \mid x \in L\}, & sonst. \end{cases}$$

Tatsächlich lässt sich jedes Wort $x \in L$ der Länge $|x| \ge l$ "pumpen" (da solche Wörter gar nicht existieren), weshalb die Pumping-Zahl höchstens l ist. Zudem gibt es im Fall l > 0 ein Wort $x \in L$ der Länge |x| = l - 1, das sich nicht "pumpen" lässt, weshalb die Pumping-Zahl nicht kleiner als l sein kann.

Wollen wir mit Hilfe des Pumping-Lemmas von einer Sprache L zeigen, dass sie nicht regulär ist, so genügt es, für jede Zahl l ein Wort $x \in L$ der Länge $|x| \ge l$ anzugeben, so dass für jede Zerlegung von x in drei Teilwörter u, v, w mindestens eine der drei in Satz 60 aufgeführten Eigenschaften verletzt ist.

Beispiel 63. Die Sprache

$$L = \{a^j b^j \mid j \ge 0\}$$

ist nicht regulär, da sich für jede Zahl $l \ge 0$ das Wort $x = a^l b^l$ der Länge $|x| = 2l \ge l$ in der Sprache L befindet, welches offensichtlich nicht in Teilwörter u, v, w mit $v \ne \varepsilon$ und $uv^2w \in L$ zerlegbar ist.

2 Reguläre Sprachen
2.7 Grammatiken

 \triangleleft

Beispiel 64. Die Sprache

$$L = \{a^{n^2} \mid n \ge 0\}$$

ist ebenfalls nicht regulär. Andernfalls müsste es nämlich eine Zahl l geben, so dass jede Quadratzahl $n^2 \ge l$ als Summe von natürlichen Zahlen u+v+w darstellbar ist mit der Eigenschaft, dass $v \ge 1$ und $u+v \le l$ ist, und für jedes $i \ge 0$ auch u+iv+w eine Quadratzahl ist. Insbesondere müsste also $u+2v+w=n^2+v$ eine Quadratzahl sein, was wegen

$$n^2 < n^2 + v \le n^2 + l < n^2 + 2l + 1 = (n+1)^2$$

ausgeschlossen ist.

Beispiel 65. Auch die Sprache

$$L = \{a^p \mid p \ prim \ \}$$

ist nicht regulär, da sich sonst jede Primzahl p einer bestimmten Mindestgröße l als Summe von natürlichen Zahlen u+v+w darstellen ließe, so dass $v \ge 1$ und für alle $i \ge 0$ auch u+iv+w=p+(i-1)v prim ist. Dies ist jedoch für i=p+1 wegen

$$p + (p+1-1)v = p(1+v)$$

nicht der Fall.

Bemerkung 66. Mit Hilfe des Pumping-Lemmas kann nicht für jede Sprache $L \notin \mathsf{REG}$ gezeigt werden, dass L nicht regulär ist, da seine Umkehrung falsch ist. So hat beispielsweise die Sprache

$$L = \{a^i b^j c^k \mid i = 0 \text{ oder } j = k\}$$

die Pumping-Zahl 1 (d.h. jedes Wort $x \in L$ mit Ausnahme von ε kann "gepumpt" werden). Dennoch ist L nicht regulär (siehe Übungen).

2.7 Grammatiken

Eine beliebte Methode, Sprachen zu beschreiben, sind Grammatiken. Implizit haben wir hiervon bei der Definition der regulären Ausdrücke bereits Gebrauch gemacht.

Beispiel 67. Die Sprache RA aller regulären Ausdrücke über einem Alphabet $\Sigma = \{a_1, \ldots, a_k\}$ lässt sich aus dem Symbol R durch wiederholte Anwendung folgender Regeln erzeugen:

$$R \to \emptyset,$$
 $R \to RR,$
 $R \to \epsilon,$ $R \to (R|R),$
 $R \to a_i, i = 1, ..., k,$ $R \to (R)^*.$

Definition 68. Eine **Grammatik** ist ein 4-Tupel $G = (V, \Sigma, P, S)$, wobei

- V eine endliche Menge von Variablen (auch Nichtterminalsymbole genannt),
- Σ das **Terminalalphabet**,
- $P \subseteq (V \cup \Sigma)^+ \times (V \cup \Sigma)^*$ eine endliche Menge von **Regeln** (oder **Produktionen**) und
- $S \in V$ die **Startvariable** ist.

Für $(u, v) \in P$ schreiben wir auch kurz $u \to_G v$ bzw. $u \to v$, wenn die benutzte Grammatik aus dem Kontext ersichtlich ist.

Definition 69. Seien $\alpha, \beta \in (V \cup \Sigma)^*$.

a) Wir sagen, β ist aus α in einem Schritt ableitbar (kurz: $\alpha \Rightarrow_G \beta$), falls eine Regel $u \rightarrow_G v$ und Wörter $l, r \in (V \cup \Sigma)^*$ existieren mit

$$\alpha$$
 = lur und β = lvr .

Hierfür schreiben wir auch $l\underline{u}r \Rightarrow_G lvr$. (Man beachte, dass durch Unterstreichen von u in α sowohl die benutzte Regel als

2 Reguläre Sprachen 2.7 Grammatiken

auch die Stelle in α , an der u durch v ersetzt wird, eindeutig erkennbar sind.)

- b) Eine Folge $\sigma = (l_0, u_0, r_0), \dots, (l_m, u_m, r_m)$ von Tripeln (l_i, u_i, r_i) heißt **Ableitung** von β aus α , falls qilt:
 - $l_0u_0r_0 = \alpha$, $l_mu_mr_m = \beta$ und
 - $l_i u_i r_i \Rightarrow l_{i+1} u_{i+1} r_{i+1} \text{ für } i = 0, \dots, m-1.$

Die Länge von σ ist m und wir notieren σ auch in der Form

$$l_0\underline{u_0}r_0 \Rightarrow l_1\underline{u_1}r_1 \Rightarrow \cdots \Rightarrow l_{m-1}\underline{u_{m-1}}r_{m-1} \Rightarrow l_mu_mr_m.$$

c) Die durch G erzeugte Sprache ist

$$L(G) = \{ x \in \Sigma^* \mid S \Rightarrow_G^* x \}.$$

d) Ein Wort $\alpha \in (V \cup \Sigma)^*$ mit $S \Rightarrow_G^* \alpha$ heißt **Satzform** von G.

Zur Erinnerung: Die Relation \Rightarrow^* bezeichnet die reflexive, transitive Hülle der Relation \Rightarrow , d.h. $\alpha \Rightarrow^* \beta$ bedeutet, dass es ein $n \ge 0$ gibt mit $\alpha \Rightarrow^n \beta$. Hierzu sagen wir auch, β ist aus α (in n Schritten) **ableitbar**. Die Relation \Rightarrow^n bezeichnet das n-fache Produkt der Relation \Rightarrow , d.h. es gilt $\alpha \Rightarrow^n \beta$, falls Wörter $\alpha_0, \ldots, \alpha_n$ existieren mit

- $\alpha_0 = \alpha$, $\alpha_n = \beta$ und
- $\alpha_i \Rightarrow \alpha_{i+1}$ für $i = 0, \ldots, n-1$.

Beispiel 70. Wir betrachten nochmals die Grammatik $G = (\{R\}, \Sigma \cup \{\emptyset, \epsilon, (,), *, |\}, P, R)$, die die Menge der regulären Ausdrücke über dem Alphabet Σ erzeugt, wobei P die oben angegebenen Regeln enthält. Ist $\Sigma = \{0, 1\}$, so lässt sich der reguläre Ausdruck $(01)^*(\epsilon | \emptyset)$ beispielsweise wie folgt ableiten:

$$\underline{R} \Rightarrow \underline{R}R \Rightarrow (\underline{R})^*R \Rightarrow (RR)^*R \Rightarrow (\underline{R}R)^*(R|R)$$
$$\Rightarrow (0\underline{R})^*(R|R) \Rightarrow (01)^*(\underline{R}|R) \Rightarrow (01)^*(\epsilon|\underline{R}) \Rightarrow (01)^*(\epsilon|\underline{R})$$

Man unterscheidet vier verschiedene Typen von Grammatiken.

Definition 71. Sei $G = (V, \Sigma, P, S)$ eine Grammatik.

- 1. G heißt vom **Typ** 3 oder **regulär**, falls für alle Regeln $u \to v$ gilt: $u \in V$ und $v \in \Sigma V \cup \Sigma \cup \{\epsilon\}$.
- 2. G heißt vom **Typ 2** oder **kontextfrei**, falls für alle Regeln $u \rightarrow v$ gilt: $u \in V$.
- 3. G heißt vom **Typ 1** oder **kontextsensitiv**, falls für alle Regeln $u \to v$ gilt: $|v| \ge |u|$ (mit Ausnahme der ε -Sonderregel, siehe unten).
- 4. Jede Grammatik ist automatisch vom Typ 0.

 ε -Sonderregel: In einer kontextsensitiven Grammatik $G = (V, \Sigma, P, S)$ kann auch die verkürzende Regel $S \to \varepsilon$ benutzt werden. Aber nur, wenn das Startsymbol S nicht auf der rechten Seite einer Regel in P vorkommt.

Die Sprechweisen "vom Typ i" bzw. "regulär", "kontextfrei" und "kontextsensitiv" werden auch auf die durch solche Grammatiken erzeugte Sprachen angewandt. (Der folgende Satz rechtfertigt dies für die regulären Sprachen, die wir bereits mit Hilfe von DFAs definiert haben.) Die zugehörigen neuen Sprachklassen sind

$$CFL = \{L(G) \mid G \text{ ist eine kontextfreie Grammatik}\},$$

(context free languages) und

$$CSL = \{L(G) \mid G \text{ ist eine kontextsensitive Grammatik}\}$$

(context sensitive languages). Da die Klasse der Typ 0 Sprachen mit der Klasse der rekursiv aufzählbaren (recursively enumerable) Sprachen übereinstimmt, bezeichnen wir diese Sprachklasse mit

$$RE = \{L(G) \mid G \text{ ist eine Grammatik}\}.$$

<1

2 Reguläre Sprachen

2.7 Grammatiken

Die Sprachklassen

$$REG \subset CFL \subset CSL \subset RE$$

bilden eine Hierarchie (d.h. alle Inklusionen sind echt), die so genannte Chomsky-Hierarchie.

Als nächstes zeigen wir, dass sich mit regulären Grammatiken gerade die regulären Sprachen erzeugen lassen. Hierbei erweist sich folgende Beobachtung als nützlich.

Lemma 72. Zu jeder regulären Grammatik $G = (V, \Sigma, P, S)$ gibt es eine äquivalente reguläre Grammatik G', die keine Produktionen der Form $A \rightarrow a$ hat.

Beweis. Betrachte die Grammatik $G' = (V', \Sigma, P', S)$ mit

$$V' = V \cup \{X_{neu}\},$$

$$P' = \{A \to aX_{neu} \mid A \to_G a\} \cup \{X_{neu} \to \varepsilon\} \cup P \setminus (V \times \Sigma).$$

Es ist leicht zu sehen, dass G' die gleiche Sprache wie G erzeugt.

Satz 73. REG = $\{L(G) \mid G \text{ ist eine reguläre } Grammatik\}.$

Beweis. Sei $L \in \mathsf{REG}$ und sei $M = (Z, \Sigma, \delta, q_0, E)$ ein DFA mit L(M) = L. Wir konstruieren eine reguläre Grammatik $G = (V, \Sigma, P, S)$ mit L(G) = L. Setzen wir

$$\begin{array}{lll} V &=& Z, \\ S &=& q_0 \text{ und} \\ P &=& \{q \rightarrow ap \mid \delta(q,a) = p\} \cup \{q \rightarrow \varepsilon \mid q \in E\}, \end{array}$$

so gilt für alle Wörter $x = x_1 \dots x_n \in \Sigma^*$:

$$x \in L(M) \iff \exists q_1, \dots, q_{n-1} \in Z \ \exists q_n \in E :$$

$$\delta(q_{i-1}, x_i) = q_i \text{ für } i = 1, \dots, n$$

$$\Leftrightarrow \exists q_1, \dots, q_n \in V :$$

$$q_{i-1} \to_G x_i q_i \text{ für } i = 1, \dots, n \text{ und } q_n \to_G \varepsilon$$

$$\Leftrightarrow \exists q_1, \dots, q_n \in V :$$

$$q_0 \Rightarrow_G^i x_1 \dots x_i q_i \text{ für } i = 1, \dots, n \text{ und } q_n \to_G \varepsilon$$

$$\Leftrightarrow x \in L(G)$$

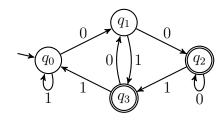
Für die entgegengesetzte Inklusion sei nun $G=(V,\Sigma,P,S)$ eine reguläre Grammatik, die keine Produktionen der Form $A\to a$ enthält. Dann können wir die gerade beschriebene Konstruktion einer Grammatik aus einem DFA "umdrehen", um ausgehend von G einen NFA $M=(Z,\Sigma,\delta,\{S\},E)$ mit

$$Z = V,$$

 $E = \{A \mid A \rightarrow_G \varepsilon\} \text{ und }$
 $\delta(A, a) = \{B \mid A \rightarrow_G aB\}$

zu erhalten. Genau wie oben folgt nun L(M) = L(G).

Beispiel 74. Der DFA



3 Kontextfreie Sprachen

führt auf die Grammatik ($\{q_0, q_1, q_2, q_3\}, \{0, 1\}, P, q_0$) mit

$$\begin{split} P: & q_0 \to 1q_0, 0q_1, \\ & q_1 \to 0q_2, 1q_3, \\ & q_2 \to 0q_2, 1q_3, \varepsilon, \\ & q_3 \to 0q_1, 1q_0, \varepsilon. \end{split}$$

Umgekehrt führt die Grammatik $G = (\{A, B, C\}, \{a, b\}, P, A)$ mit

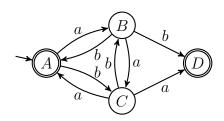
$$P: A \to aB, bC, \varepsilon,$$

 $B \to aC, bA, b,$
 $C \to aA, bB, a$

über die Grammatik $G' = (\{A, B, C, D\}, \{a, b\}, P', A)$ mit

$$P': \quad A \rightarrow aB, bC, \varepsilon, \\ B \rightarrow aC, bA, bD, \\ C \rightarrow aA, bB, aD, \\ D \rightarrow \varepsilon$$

auf den NFA



3 Kontextfreie Sprachen

Wie wir gesehen haben, ist die Sprache $L = \{a^nb^n \mid n \ge 0\}$ nicht regulär. Es ist aber leicht, eine kontextfreie Grammatik für L zu finden:

$$G = (\{S\}, \{a, b\}, \{S \to aSb, S \to \varepsilon\}, S).$$

Damit ist klar, dass die Klasse der regulären Sprachen echt in der Klasse der kontextfreien Sprachen enthalten ist. Als nächstes wollen wir zeigen, dass die Klasse der kontextfreien Sprachen wiederum echt in der Klasse der kontextsensitiven Sprachen enthalten ist:

$$REG \nsubseteq CFL \nsubseteq CSL$$
.

Kontextfreie Grammatiken sind dadurch charakterisiert, dass sie nur Regeln der Form $A \to \alpha$ haben. Dies lässt die Verwendung von beliebigen ε -Regeln der Form $A \to \varepsilon$ zu. Eine kontextsensitive Grammatik darf dagegen höchstens die ε -Regel $S \to \varepsilon$ haben. Voraussetzung hierfür ist, dass S das Startsymbol ist und dieses nicht auf der rechten Seite einer Regel vorkommt. Daher sind nicht alle kontextfreien Grammatiken kontextsensitiv. Beispielsweise ist die Grammatik $G = (\{S\}, \{a,b\}, \{S \to aSb, S \to \varepsilon\}, S)$ nicht kontextsensitiv, da sie die Regel $S \to \varepsilon$ enthält, obwohl S auf der rechten Seite der Regel $S \to aSb$ vorkommt.

Es lässt sich jedoch zu jeder kontextfreien Grammatik eine äquivalente kontextfreie Grammatik G' konstruieren, die auch kontextsensitiv ist. Hierzu zeigen wir zuerst, dass sich zu jeder kontextfreien Grammatik G, in der nicht das leere Wort ableitbar ist, eine äquivalente kontextfreie Grammatik G' ohne ε -Regeln konstruieren lässt.

Satz 75. Zu jeder kontextfreien Grammatik G gibt es eine kontextfreie Grammatik G' ohne ε -Produktionen mit $L(G') = L(G) \setminus \{\varepsilon\}$.

 \triangleleft

Beweis. Zuerst sammeln wir mit folgendem Algorithmus alle Variablen A, aus denen das leere Wort ableitbar ist. Diese werden auch als ε -ableitbar bezeichnet.

$$1 \quad E' \coloneqq \{A \in V \mid A \to \varepsilon\}$$

$$2 \quad \textbf{repeat}$$

$$3 \quad E \coloneqq E'$$

$$4 \quad E' \coloneqq E \cup \{A \in V \mid \exists B_1, \dots, B_k \in E : A \to B_1 \dots B_k\}$$

$$5 \quad \textbf{until} \quad E = E'$$

Nun konstruieren wir $G' = (V, \Sigma, P', S)$ wie folgt:

Nehme zu P' alle Regeln $A \to \alpha'$ mit $\alpha' \neq \varepsilon$ hinzu, für die P eine Regel $A \to \alpha$ enthält, so dass α' aus α durch Entfernen von beliebig vielen Variablen $A \in E$ hervorgeht.

Beispiel 76. Betrachte die Grammatik $G = (V, \Sigma, P, S)$ mit $V = \{S, T, U, X, Y, Z\}, \Sigma = \{a, b, c\}$ und den Regeln

$$P: S \to aY, bX, Z; Y \to bS, aYY; T \to U;$$

 $X \to aS, bXX; Z \to \varepsilon, S, T, cZ; U \to abc.$

Bei der Berechnung von $E = \{A \in V \mid A \Rightarrow^* \varepsilon\}$ ergeben sich der Reihe nach folgende Belegungen für die Mengenvariablen E und E':

$$\begin{array}{c|c} E' & \{Z\} & \{Z,S\} \\ E & \{Z,S\} & \{Z,S\} \end{array}$$

Um nun die Regelmenge P' zu bilden, entfernen wir aus P die einzige ε -Regel $Z \to \varepsilon$ und fügen die Regeln $X \to a$ (wegen $X \to aS$), $Y \to b$ (wegen $Y \to bS$) und $Z \to c$ (wegen $Z \to cZ$) hinzu:

$$P': S \to aY, bX, Z; Y \to b, bS, aYY; T \to U; X \to a, aS, bXX; Z \to c, S, T, cZ; U \to abc.$$

Als direkte Anwendung des obigen Satzes können wir die Inklusion der Klasse der Typ 2 Sprachen in der Klasse der Typ 1 Sprachen zeigen.

Korollar 77. REG \subsetneq CFL \subseteq CSL \subseteq RE.

Beweis. Die Inklusionen REG \subseteq CFL und CSL \subseteq RE sind klar. Wegen $\{a^nb^n|n\geq 0\}$ \in CFL – REG ist die Inklusion REG \subseteq CFL auch echt. Also ist nur noch die Inklusion CFL \subseteq CSL zu zeigen. Nach obigem Satz ex. zu $L\in$ CFL eine kontextfreie Grammatik $G=(V,\Sigma,P,S)$ ohne ε -Produktionen mit $L(G)=L\smallsetminus\{\varepsilon\}$. Da G dann auch kontextsensitiv ist, folgt hieraus im Fall $\varepsilon\notin L$ unmittelbar $L(G)=L\in$ CSL. Im Fall $\varepsilon\in L$ erzeugt die kontextsensitive Grammatik

$$G' = (V \cup \{S'\}, \Sigma, P \cup \{S' \rightarrow S, \varepsilon\}, S')$$

die Sprache L(G') = L, d.h. $L \in CSL$.

Als nächstes zeigen wir folgende Abschlusseigenschaften der kontextfreien Sprachen.

Satz 78. Die Klasse CFL ist abgeschlossen unter Vereinigung, Produkt und Sternhülle.

Beweis. Seien $G_i = (V_i, \Sigma, P_i, S_i)$, i = 1, 2, kontextfreie Grammatiken für die Sprachen $L(G_i) = L_i$ mit $V_1 \cap V_2 = \emptyset$ und sei S eine neue Variable. Dann erzeugt die kontextfreie Grammatik

$$G_3 = (V_1 \cup V_2 \cup \{S\}, \Sigma, P_1 \cup P_2 \cup \{S \to S_1, S_2\}, S)$$

die Vereinigung $L(G_3) = L_1 \cup L_2$. Die Grammatik

$$G_4 = (V_1 \cup V_2 \cup \{S\}, \Sigma, P_1 \cup P_2 \cup \{S \to S_1 S_2\}, S)$$

erzeugt das Produkt $L(G_4) = L_1L_2$ und die Sternhülle $(L_1)^*$ wird von der Grammatik

$$G_5 = (V_1 \cup \{S\}, \Sigma, P_1 \cup \{S \rightarrow S_1 S, \varepsilon\}, S)$$

erzeugt.

Offen bleibt zunächst, ob die kontextfreien Sprachen auch unter Durchschnitt und Komplement abgeschlossen sind. Hierzu müssen wir für bestimmte Sprachen nachweisen, dass sie nicht kontextfrei sind. Dies gelingt mit einem Pumping-Lemma für kontextfreie Sprachen, für dessen Beweis wir Grammatiken in Chomsky-Normalform benötigen.

Satz (Pumping-Lemma für kontextfreie Sprachen).

Zu jeder kontextfreien Sprache L gibt es eine Zahl l, so dass sich alle Wörter $z \in L$ mit $|z| \ge l$ in z = uvwxy zerlegen lassen mit

- 1. $vx \neq \varepsilon$,
- 2. $|vwx| \le l$ und
- 3. $uv^iwx^iy \in L$ für alle $i \ge 0$.

Beispiel 79. Betrachte die Sprache $L = \{a^nb^n | n \ge 0\}$. Dann lässt sich jedes Wort $z = a^nb^n$ mit $|z| \ge 2$ pumpen: Zerlege z = uvwxy mit $u = a^{n-1}$, v = a, $w = \varepsilon$, x = b und $y = b^{n-1}$.

Beispiel 80. Die Sprache $\{a^nb^nc^n\mid n\geq 0\}$ ist nicht kontextfrei. Für eine vorgegebene Zahl $l\geq 0$ hat nämlich $z=a^lb^lc^l$ die Länge $|z|=3l\geq l$. Dieses Wort lässt sich aber nicht pumpen, da für jede Zerlegung z=uvwxy mit $vx\neq \varepsilon$ und $|vwx|\leq l$ das Wort $z'=uv^2wx^2y$ nicht zu L gehört:

- Wegen $vx \neq \varepsilon$ ist |z| < |z'|.
- Wegen $|vwx| \le l$ kann in vx nicht jedes der drei Zeichen a, b, c vorkommen.
- Kommt aber in vx beispielsweise kein a vor, so ist

$$\#_a(z') = \#_a(z) = l = |z|/3 < |z'|/3,$$

also kann z' nicht zu L gehören.

Die Chomsky-Normalform ist auch Grundlage für einen effizienten Algorithmus zur Lösung des Wortproblems für kontextfreie Grammatiken, das wie folgt definiert ist.

Wortproblem für kontextfreie Grammatiken:

Gegeben: Eine kontextfreie Grammatik G und ein Wort x.

Gefragt: Ist $x \in L(G)$?

Satz. Das Wortproblem für kontextfreie Grammatiken ist effizient entscheidbar.

3.1 Chomsky-Normalform

Definition 81. Eine Grammatik (V, Σ, P, S) ist in **Chomsky-Normalform** (**CNF**), falls $P \subseteq V \times (V^2 \cup \Sigma)$ ist, also alle Regeln die Form $A \to BC$ oder $A \to a$ haben.

Um eine kontextfreie Grammatik in Chomsky-Normalform zu bringen, müssen wir neben den ε -Regeln $A \to \varepsilon$ auch sämtliche Variablenumbenennungen $A \to B$ loswerden.

Definition 82. Regeln der Form $A \rightarrow B$ heißen Variablenumbenennungen.

Satz 83. Zu jeder kontextfreien Grammatik G ex. eine kontextfreie Grammatik G' ohne Variablenumbenennungen mit L(G') = L(G).

Beweis. Zuerst entfernen wir sukzessive alle Zyklen

$$A_1 \to A_2 \to \cdots \to A_k \to A_1$$
,

indem wir diese Regeln aus P entfernen und alle übrigen Vorkommen der Variablen A_2, \ldots, A_k durch A_1 ersetzen. Falls sich unter den entfernten Variablen A_2, \ldots, A_k die Startvariable S befindet, sei A_1 die neue Startvariable.

Nun entfernen wir sukzessive die restlichen Variablenumbenennungen, indem wir

• eine Regel $A \to B$ wählen, so dass in P keine Variablenumbenennung $B \to C$ mit B auf der rechten Seite existiert,

 \triangleleft

 \triangleleft

- diese Regel $A \to B$ aus P entfernen und
- für jede Regel $B \to \alpha$ in P die Regel $A \to \alpha$ zu P hinzunehmen.

Beispiel 84. Ausgehend von den Produktionen

$$P: S \to aY, bX, Z;$$
 $Y \to b, bS, aYY;$ $T \to U;$ $X \to a, aS, bXX;$ $Z \to c, S, T, cZ;$ $U \to abc$

entfernen wir den Zyklus $S \to Z \to S$, indem wir die Regeln $S \to Z$ und $Z \to S$ entfernen und dafür die Produktionen $S \to c, T, cS$ (wegen $Z \to c, T, cZ$) hinzunehmen:

$$S \to aY, bX, c, T, cS; Y \to b, bS, aYY; T \to U;$$

 $X \to a, aS, bXX; U \to abc.$

Nun entfernen wir die Regel $T \to U$ und fügen die Regel $T \to abc$ (wegen $U \to abc$) hinzu:

$$S \to aY, bX, c, T, cS; Y \to b, bS, aYY; T \to abc;$$

 $X \to a, aS, bXX; U \to abc.$

Als nächstes entfernen wir dann auch die Regel $S \to T$ und fügen die Regel $S \to abc$ (wegen $T \to abc$) hinzu:

$$S \to abc, aY, bX, c, cS; Y \to b, bS, aYY; T \to abc;$$

 $X \to a, aS, bXX; U \to abc.$

Da T und U nun nirgends mehr auf der rechten Seite vorkommen, können wir die Regeln $T \to abc$ und $U \to abc$ weglassen:

$$S \to abc, aY, bX, c, cS; Y \to b, bS, aYY; X \to a, aS, bXX.$$

Nach diesen Vorarbeiten ist es nun leicht, eine gegebene kontextfreie Grammatik in Chomsky-Normalform umzuwandeln.

Satz 85. Zu jeder kontextfreien Sprache $L \in \mathsf{CFL}$ gibt es eine CNF-Grammatik G' mit $L(G') = L \setminus \{\varepsilon\}$.

Beweis. Aufgrund der beiden vorigen Sätze hat $L \setminus \{\varepsilon\}$ eine kontextfreie Grammatik $G = (V, \Sigma, P, S)$ ohne ε -Produktionen und ohne Variablenumbenennungen. Wir transformieren G wie folgt in eine CNF-Grammatik.

- Füge für jedes Terminalsymbol $a \in \Sigma$ eine neue Variable X_a zu V und eine neue Regel $X_a \to a$ zu P hinzu.
- Ersetze alle Vorkommen von a durch X_a , außer wenn a alleine auf der rechten Seite einer Regel steht.
- Ersetze jede Regel $A \to B_1 \dots B_k, k \ge 3$, durch die k-1 Regeln

$$A \to B_1 A_1, A_1 \to B_2 A_2, \dots, A_{k-3} \to B_{k-2} A_{k-2}, A_{k-2} \to B_{k-1} B_k,$$

wobei A_1, \ldots, A_{k-2} neue Variablen sind.

Beispiel 86. In der Produktionenmenge

$$P \colon S \to abc, aY, bX, c, cS; X \to a, aS, bXX; Y \to b, bS, aYY$$

ersetzen wir die Terminalsymbole a, b und c durch die Variablen A, B und C (außer wenn sie alleine auf der rechten Seite einer Regel vorkommen) und fügen die Regeln $A \rightarrow a$, $B \rightarrow b$, $C \rightarrow c$ hinzu:

$$S \rightarrow c, ABC, AY, BX, CS; X \rightarrow a, AS, BXX;$$

 $Y \rightarrow b, BS, AYY; A \rightarrow a; B \rightarrow b; C \rightarrow c.$

Ersetze nun die Regeln $S \to ABC$, $X \to BXX$ und $Y \to AYY$ durch die Regeln $S \to AS'$, $S' \to BC$, $X \to BX'$, $X' \to XX$ und $Y \to AY'$, $Y' \to YY$:

$$S \rightarrow c, AS', AY, BX, CS; S' \rightarrow BC;$$

$$X \rightarrow a, AS, BX'; X' \rightarrow XX; Y \rightarrow b, BS, AY'; Y' \rightarrow YY;$$

$$A \rightarrow a; B \rightarrow b; C \rightarrow c.$$

Eine interessante Frage ist, ob in einer kontextfreien Grammatik G jedes Wort $x \in L(G)$ "eindeutig" ableitbar ist. Es ist klar, dass in diesem Kontext Ableitungen, die sich nur in der Reihenfolge der Regelanwendungen unterscheiden, nicht als verschieden betrachtet werden sollten. Dies erreichen wir dadurch, dass wir die Reihenfolge der Regelanwendungen festlegen.

Definition 87. Sei $G = (V, \Sigma, P, S)$ eine kontextfreie Grammatik.

a) Eine Ableitung

$$\alpha_0 = l_0 \underline{A_0} r_0 \Rightarrow l_1 \underline{A_1} r_1 \Rightarrow \dots \Rightarrow l_{m-1} \underline{A_{m-1}} r_{m-1} \Rightarrow \alpha_m.$$

heißt **Linksableitung** von α (kurz $\alpha_0 \Rightarrow_L^* \alpha_m$), falls in jedem Ableitungsschritt die am weitesten links stehende Variable ersetzt wird, d.h. es gilt $l_i \in \Sigma^*$ für $i = 0, \ldots, m-1$.

- b) Rechtsableitungen $\alpha_0 \Rightarrow_R^* \alpha_m$ sind analog definiert.
- c) G heißt **mehrdeutig**, wenn es ein Wort $x \in L(G)$ gibt, das zwei verschiedene Linksableitungen $S \Rightarrow_L^* x$ hat. Andernfalls heißt G eindeutig.

Offenbar gelten für alle Wörter $x \in \Sigma^*$ folgende Äquivalenzen:

$$x \in L(G) \Leftrightarrow S \Rightarrow^* x \Leftrightarrow S \Rightarrow^*_L x \Leftrightarrow S \Rightarrow^*_R x.$$

Beispiel 88. Wir betrachten die Grammatik $G = (\{S\}, \{a,b\}, \{S \rightarrow aSbS, \varepsilon\}, S)$. Offenbar hat das Wort aabb in G zehn verschiedene Ableitungen, die sich allerdings nur in der Reihenfolge der Regelanwendungen unterscheiden:

$$\underline{S} \Rightarrow a\underline{S}bS \Rightarrow aaSb\underline{S}bS \Rightarrow aa\underline{S}bbS \Rightarrow aabb\underline{S} \Rightarrow aabb$$

$$\underline{S} \Rightarrow a\underline{S}bS \Rightarrow aaSb\underline{S}bS \Rightarrow aaSbb\underline{S} \Rightarrow aa\underline{S}bb \Rightarrow aabb$$

$$\underline{S} \Rightarrow a\underline{S}bS \Rightarrow aa\underline{S}bSbS \Rightarrow aab\underline{S}bS \Rightarrow aabb\underline{S} \Rightarrow aabb$$

$$\underline{S} \Rightarrow a\underline{S}bS \Rightarrow aa\underline{S}bSbS \Rightarrow aab\underline{S}bS \Rightarrow aab\underline{S}b \Rightarrow aabb$$

$$\underline{S} \Rightarrow a\underline{S}bS \Rightarrow aa\underline{S}bSbS \Rightarrow aa\underline{S}bSb \Rightarrow aab\underline{S}b \Rightarrow aabb$$

$$\underline{S} \Rightarrow a\underline{S}bS \Rightarrow aaSbSb\underline{S} \Rightarrow aa\underline{S}bSb \Rightarrow aa\underline{S}bb \Rightarrow aabb$$

$$\underline{S} \Rightarrow a\underline{S}bS \Rightarrow aa\underline{S}bSb \Rightarrow aa\underline{S}bS \Rightarrow aab\underline{S}b \Rightarrow aabb$$

$$\underline{S} \Rightarrow aSbS \Rightarrow a\underline{S}b \Rightarrow aa\underline{S}bSb \Rightarrow aabb$$

$$\underline{S} \Rightarrow aSbS \Rightarrow a\underline{S}b \Rightarrow aa\underline{S}bSb \Rightarrow aabb$$

$$\underline{S} \Rightarrow aSbS \Rightarrow a\underline{S}b \Rightarrow aa\underline{S}bSb \Rightarrow aabb$$

Darunter sind genau eine Links- und genau eine Rechtsableitung:

$$\underline{S} \Rightarrow a\underline{S}bS \Rightarrow aa\underline{S}bSbS \Rightarrow aab\underline{S}bS \Rightarrow aabb\underline{S} \Rightarrow aabb$$

und

$$\underline{S} \Rightarrow aSb\underline{S} \Rightarrow a\underline{S}b \Rightarrow aaSb\underline{S}b \Rightarrow aaSbb \Rightarrow aabb.$$

Die Grammatik G ist eindeutig. Dies liegt daran, dass in keiner Satzform von G die Variable S von einem a gefolgt wird. Daher muss jede Linksableitung eines Wortes $x \in L(G)$ die am weitesten links stehende Variable der aktuellen Satzform $\alpha S\beta$ genau dann nach aSbS expandieren, falls das Präfix α in x von einem a gefolgt wird.

Dagegen ist die Grammatik $G' = (\{S\}, \{a,b\}, \{S \rightarrow aSbS, ab, \varepsilon\}, S)$ mehrdeutig, da das Wort x = ab zwei verschiedene Linksableitungen hat:

$$S \Rightarrow ab \ und \ S \Rightarrow aSbS \Rightarrow abS \Rightarrow ab.$$

Wir gehen an dieser Stelle kurz der Frage nach, welche Sprache von der Grammatik $G = (\{S\}, \{a,b\}, \{S \to aSbS, \varepsilon\}, S)$ erzeugt wird. Zunächst einmal ist klar, dass L(G) nur Wörter $x \in \{a,b\}^*$ mit der Eigenschaft $\#_a(x) = \#_b(x)$ (*) enthält. Allerdings sind nicht alle Wörter mit dieser Eigenschaft in L(G) enthalten, da beispielsweise $ba \notin L(G)$ ist. Damit ein Wort x in G ableitbar ist, muss zudem für jedes Präfix u von x gelten, dass $\#_a(u) \geq \#_b(u)$ (**) ist.

Wir zeigen durch Induktion über die Ableitungslänge l, dass jede in G ableitbare Satzform $\alpha \in \{a, b, S\}^*$ die Bedingungen (*, **) erfüllt.

l=0: Klar, da $\alpha=S$ beide Bedingungen erfüllt.

$$l \sim l + 1$$
: Gelte $S \Rightarrow^l \alpha \Rightarrow \beta$.

- Falls β aus α durch Anwendung der Regel $S \to \varepsilon$ entsteht, ist dies ebenfalls klar.
- Entsteht β aus α durch die Regel $S \to aSbS$, so folgt $\#_a(\beta) = \#_a(\alpha) + 1 = \#_b(\alpha) + 1 = \#_b(\beta)$, also (*). Zudem entspricht jedem Präfix u von β ein Präfix u' von α mit $\#_a(u) \#_b(u) \ge \#_a(u') \#_b(u')$, wodurch sich (**) von α auf β überträgt.

Tatsächlich sind in G alle Wörter x ableitbar, die die Bedingungen (*,**) erfüllen. Dazu zeigen wir durch Induktion über n folgende Behauptung.

Behauptung 89. Alle Wörter $x \in \{a,b\}^*$ der Länge $\leq n$, die die Bedingungen (*,**) erfüllen, sind in G ableitbar.

n = 0: Klar, da $x = \varepsilon$ aus S ableithar ist.

 $n \sim n+1$: Sei x ein Wort der Länge n+1, das die Bedingungen (*,**) erfüllt und sei u das kürzeste Präfix von x mit $\#_a(u) = \#_b(u) > 1$.

- Dann muss u die Form u = avb haben, wobei v die Bedingungen (*, **) erfüllt. Nach IV gilt daher $S \Rightarrow^* v$.
- Zudem hat x die Form x = uw, wobei auch w die Bedingungen (*, **) erfüllt. Nach IV gilt daher $S \Rightarrow^* w$.
- Nun ist x aus S wie folgt ableitbar: $S \Rightarrow aSbS \Rightarrow^* avbS = uS \Rightarrow^* uw = x$.

Ableitungen in einer kontextfreien Grammatik lassen sich graphisch sehr gut durch einen Syntaxbaum (auch **Ableitungsbaum** genannt, engl. parse tree) veranschaulichen.

Definition 90. Sei G = (V, E) ein Digraph.

- Ein v_0 - v_k -Weg in G ist eine Folge von Knoten v_0, \ldots, v_k mit $(v_i, v_{i+1}) \in E$ für $i = 0, \ldots, k-1$. Seine Länge ist k.
- Ein Weg heißt einfach oder Pfad, falls alle seine Knoten paarweise verschieden sind.
- Ein u-v-Weg der Länge ≥ 1 mit u = v heißt **Zyklus**.
- G heißt azyklisch, wenn es in G keinen Zyklus gibt.
- G heißt gerichteter Wald, wenn G azyklisch ist und jeder Knoten $v \in V$ Eingangsgrad $\deg^-(v) \le 1$ hat.
- Ein Knoten $u \in V$ vom Ausgangsgrad $\deg^+(u) = 0$ heißt **Blatt**.
- Ein Knoten $w \in V$ heißt Wurzel von G, falls alle Knoten $v \in V$ von w aus erreichbar sind (d.h. es gibt einen w-v-Weg in G).

- Ein gerichteter Wald, der eine Wurzel hat, heißt gerichteter Baum.
- Da die Kantenrichtungen durch die Wahl der Wurzel eindeutig bestimmt sind, kann auf ihre Angabe verzichtet werden. Man spricht dann auch von einem Wurzelbaum.

Definition 91. Wir ordnen einer Ableitung

$$\underline{A_0} \Rightarrow l_1 \underline{A_1} r_1 \Rightarrow \dots \Rightarrow l_{m-1} \underline{A_{m-1}} r_{m-1} \Rightarrow \alpha_m.$$

den Syntaxbaum T_m zu, wobei die Bäume T_0, \ldots, T_m induktiv wie folgt definiert sind:

- T_0 besteht aus einem einzigen Knoten, der mit A_0 markiert ist.
- Wird im (i + 1)-ten Ableitungsschritt die Regel $A_i \rightarrow v_1 \dots v_k$ mit $v_j \in \Sigma \cup V$ für $j = 1, \dots, k$ angewandt, so ensteht T_{i+1} aus T_i , indem wir das Blatt A_i in T_i durch folgenden Unterbaum ersetzen:

$$k > 0: A_i \qquad k = 0: A_i$$

$$v_1 \cdots v_k \qquad \varepsilon$$

• Hierbei stellen wir uns die Kanten von oben nach unten gerichtet und die Kinder $v_1 \dots v_k$ von links nach rechts geordnet vor.

Beispiel 92. Betrachte die Grammatik $G = (\{S\}, \{a, b\}, \{S \rightarrow aSbS, \varepsilon\}, S)$ und die Ableitung

$$S \Rightarrow aSbS \Rightarrow aaSbSbS \Rightarrow aaSbS \Rightarrow aabbS \Rightarrow aabb.$$

Die zugehörigen Syntaxbäume sind dann

Die Satzform α_i ergibt sich aus T_i , indem wir die Blätter von T_i von links nach rechts zu einem Wort zusammensetzen.

Bemerkung 93.

- Aus einem Syntaxbaum ist die zugehörige Linksableitung eindeutig rekonstruierbar. Daher führen unterschiedliche Linksableitungen auch auf unterschiedliche Syntaxbäume. Linksableitungen und Syntaxbäume entsprechen sich also eineindeutig. Ebenso Rechtsableitungen und Syntaxbäume.
- Ist T Syntaxbaum einer CNF-Grammatik, so hat jeder Knoten in T höchstens zwei Kinder (d.h. T ist ein Binärbaum).

3.2 Das Pumping-Lemma für kontextfreie Sprachen

In diesem Abschnitt beweisen wir das Pumping-Lemma für kontextfreie Sprachen. Dabei nutzen wir die Tatsache aus, dass die Syntaxbäume einer CNF-Grammatik Binärbäume sind.

Definition 94. Die **Tiefe** eines Baumes mit Wurzel w ist die maximale Pfadlänge von w zu einem Blatt.

Lemma 95. Ein Binärbaum B der Tiefe k hat höchstens 2^k Blätter.

Beweis. Wir führen den Beweis durch Induktion über k. k = 0: Ein Baum der Tiefe 0 kann nur einen Knoten haben.

 $k \sim k+1$: Sei B ein Binärbaum der Tiefe k+1. Dann hängen an B's Wurzel maximal zwei Teilbäume. Da deren Tiefe $\leq k$ ist, haben sie nach IV höchstens 2^k Blätter. Also hat $B \leq 2^{k+1}$ Blätter.

Korollar 96. Ein Binärbaum B mit mehr als 2^{k-1} Blättern hat mindestens Tiefe k.

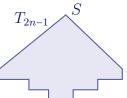
Beweis. Würde B mehr als 2^{k-1} Blätter und eine Tiefe $\leq k-1$ besitzen, so würde dies im Widerspruch zu Lemma 95 stehen.

Satz 97 (Pumping-Lemma für kontextfreie Sprachen).

Zu jeder kontextfreien Sprache L gibt es eine Zahl l, so dass sich alle Wörter $z \in L$ mit $|z| \ge l$ in z = uvwxy zerlegen lassen mit

- 1. $vx \neq \varepsilon$,
- 2. $|vwx| \le l \ und$
- 3. $uv^iwx^iy \in L$ für alle $i \ge 0$.

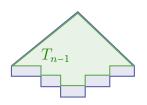
Beweis. Sei $G = (V, \Sigma, P, S)$ eine CNF-Grammatik für $L \setminus \{\varepsilon\}$. Dann gibt es in G für jedes Wort $z = z_1 \dots z_n \in L$ mit $n \ge 1$, eine Ablei-

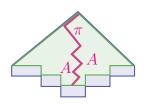


 $S = \alpha_0 \Rightarrow \alpha_1 \cdots \Rightarrow \alpha_m = z.$

Da G in CNF ist, werden hierbei n-1 Regeln der Form $A \to BC$ und n Regeln der Form $A \to a$ angewandt, d.h. m = 2n - 1 und z hat den Syntaxbaum T_{2n-1} . Wir können annehmen,

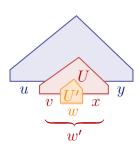
dass zuerst alle Regeln der Form $A \to BC$ und danach die Regeln der Form $A \to a$ zur Anwendung kommen. Dann besteht die Satzform α_{n-1} aus n Variablen und der Syntaxbaum T_{n-1} hat ebenfalls n Blätter. Setzen wir $l=2^k$, wobei $k=\|V\|$ ist, so hat T_{n-1} im Fall $n \ge l$ mindestens



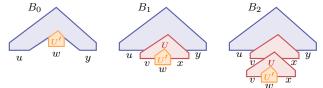


 $l=2^k>2^{k-1}$ Blätter und daher mindestens die Tiefe k. Sei π ein von der Wurzel ausgehender Pfad maximaler Länge in T_{n-1} . Dann hat π die Länge $\geq k$ und unter den letzten k+1 Knoten von π müssen zwei mit derselben Variablen A markiert sein.

Seien U und U' die von diesen Knoten ausgehenden Unterbäume des vollständigen Syntaxbaums T_{2n-1} . Nun zerlegen wir z wie folgt. w' ist das Teilwort von z = uw'y, das von U erzeugt wird und w ist das Teilwort von w' = vwx, das von U' erzeugt wird. Jetzt bleibt nur noch zu zeigen, dass diese Zerlegung die geforderten 3 Eigenschaften erfüllt.



- Da U mehr Blätter hat als U', ist $vx \neq \varepsilon$ (Bedingung 1).
- Da der Baum $U^* = U \cap T_{n-1}$ die Tiefe $\leq k$ hat (andernfalls wäre π nicht maximal), hat U^* höchstens $2^k = l$ Blätter. Da U^* genau |vwx| Blätter hat, folgt $|vwx| \leq l$ (Bedingung 2).
- Für den Nachweis von Bedingung 3 lassen sich schließlich Syntaxbäume B^i für die Wörter uv^iwx^iy , $i \ge 0$, wie folgt konstruieren:



 B^0 entsteht also aus $B^1 = T_{2n-1}$, indem wir U durch U' ersetzen, und B^{i+1} entsteht aus B^i , indem wir U' durch U ersetzen.

Satz 98. Die Klasse CFL ist nicht abgeschlossen unter Durchschnitt und Komplement.

Beweis. Die beiden Sprachen

$$L_1 = \{a^n b^m c^m \mid n, m \ge 0\} \text{ und } L_2 = \{a^n b^n c^m \mid n, m \ge 0\}$$

sind kontextfrei. Nicht jedoch $L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}$. Also ist CFL nicht unter Durchschnitt abgeschlossen.

Da CFL zwar unter Vereinigung aber nicht unter Schnitt abgeschlossen ist, kann CFL wegen de Morgan nicht unter Komplementbildung abgeschlossen sein.

3.3 Der CYK-Algorithmus

In diesem Abschnitt stellen wir den bereits angekündigten effizienten Algorithmus zur Lösung des Wortproblems für kontextfreie Grammatiken vor.

Wortproblem für kontextfreie Grammatiken:

Gegeben: Eine kontextfreie Grammatik G und ein Wort x.

Gefragt: Ist $x \in L(G)$?

Wir lösen das Wortproblem, indem wir G zunächst in Chomsky-Normalform bringen und dann den nach seinen Autoren Cocke, Younger und Kasami benannten CYK-Algorithmus anwenden, welcher auf dem Prinzip der Dynamischen Programmierung beruht.

Satz 99. Das Wortproblem für kontextfreie Grammatiken ist effizient entscheidbar.

Beweis. Seien eine Grammatik $G = (V, \Sigma, P, S)$ und ein Wort $x = x_1 \dots x_n$ gegeben. Falls $x = \varepsilon$ ist, können wir effizient prüfen, ob $S \Rightarrow^* \varepsilon$ gilt. Andernfalls transformieren wir G in eine CNF-Grammatik G' für die Sprache $L(G) \setminus \{\varepsilon\}$. Chomsky-Normalform. Es lässt sich leicht verifizieren, dass die nötigen Umformungsschritte effizient ausführbar sind. Nun setzen wir den CYK-Algorithmus auf das Paar (G', x) an, der die Zugehörigkeit von x zu L(G') wie folgt entscheidet.

Bestimme für l = 1, ..., n und k = 1, ..., n - l + 1 die Menge

$$V_{l,k}(x) = \{ A \in V \mid A \Rightarrow^* x_k \dots x_{k+l-1} \}$$

aller Variablen, aus denen das mit x_k beginnende Teilwort $x_k ldots x_{k+l-1}$ von x der Länge l ableitbar ist. Dann gilt offensichtlich $x \in L(G') \Leftrightarrow S \in V_{n,1}(x)$.

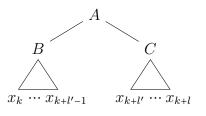
Für l = 1 ist

$$V_{1,k}(x) = \{ A \in V \mid A \to x_k \}$$

und für l = 2, ..., n ist

$$V_{l,k}(x) = \{ A \in V \mid \exists l' < l \ \exists B \in V_{l',k}(x) \ \exists C \in V_{l-l',k+l'}(x) : A \to BC \}.$$

Eine Variable A gehört also genau dann zu $V_{l,k}(x)$, $l \ge 2$, falls eine Zahl $l' \in \{1, ..., l-1\}$ und eine Regel $A \to BC$ existieren, so dass $B \in V_{l',k}(x)$ und $C \in V_{l-l',k+l'}(x)$ sind.



Algorithmus CYK(G, x)

```
Input: CNF-Grammatik G=(V,\Sigma,P,S) und ein Wort x=x_1\dots x_n for k:=1 to n do V_{1,k}:=\{A\in V\mid A\to x_k\in P\} for l:=2 to n do V_{l,k}:=\emptyset for l:=1 to l-1 do V_{l,k}:=\emptyset for all A\to BC\in P do V_{l,k}:=\emptyset if S\in V_{l,k} and C\in V_{l-l',k+l'} then V_{l,k}:=V_{l,k}\cup\{A\} if S\in V_{n,1} then accept else reject
```

Der CYK-Algorithmus lässt sich leicht dahingehend modifizieren, dass er im Fall $x \in L(G)$ auch einen Syntaxbaum T von x ausgibt. Hierzu genügt es, zu jeder Variablen A in $V_{l,k}$ den Wert von l' und die Regel $A \to BC$ zu speichern, die zur Aufnahme von A in $V_{l,k}$ geführt haben.

Im Fall $S \in V_{n,1}(x)$ lässt sich dann mithilfe dieser Information leicht ein Syntaxbaum T von x konstruieren.

Beispiel 100. Betrachte die CNF-Grammatik mit den Produktionen

$$S \rightarrow AS', AY, BX, CS, c; S' \rightarrow BC; X \rightarrow AS, BX', a; X' \rightarrow XX;$$

 $Y \rightarrow BS, AY', b; Y' \rightarrow YY; A \rightarrow a; B \rightarrow b; C \rightarrow c.$

Dann erhalten wir für das Wort x = abb folgende Mengen $V_{l,k}$:

x_k :	a	b	b
$l\!:\!1$	$\{X,A\}$	$\{Y,B\}$	$\{Y,B\}$
2	$\{S\}$	$\{Y'\}$	
3	$\{Y\}$		

Wegen $S \notin V_{3,1}(abb)$ ist $x \notin L(G)$. Dagegen gehört das Wort y = aababb wegen $S \in V_{6,1}(aababb)$ zu L(G):

a	a	b	a	b	b
$\{X,A\}$	$\{X,A\}$	$\{Y,B\}$	$\{X,A\}$	$\{Y,B\}$	$\{Y,B\}$
$\{X'\}$	$\{S\}$	$\{S\}$	$\{S\}$	$\{Y'\}$	
$\{X\}$	$\{X\}$	$\{Y\}$	$\{Y\}$		
$\{X'\}$	$\{S\}$	$\{Y'\}$			
$\{X\}$	$\{Y\}$				
$\{S\}$					

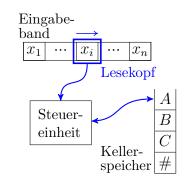
 \triangleleft

3.4 Kellerautomaten

Wie müssen wir das Maschinenmodell des DFA erweitern, damit die Sprache $L = \{a^nb^n \mid n \geq 0\}$ und alle anderen kontextfreien Sprachen erkannt werden können? Dass ein DFA die Sprache $L = \{a^nb^n \mid n \geq 0\}$ nicht erkennen kann, liegt an seinem beschränkten Speichervermögen, das zwar von L aber nicht von der Eingabe abhängen darf.

Um L erkennen zu können, reicht bereits ein so genannter Kellerspeicher (Stapel, engl. stack, pushdown memory) aus. Dieser erlaubt nur den Zugriff auf die höchste belegte Speicheradresse. Ein Kellerautomat

- verfügt über einen Kellerspeicher,
- kann ε -Übergänge machen,
- liest in jedem Schritt das aktuelle Eingabezeichen und das oberste Kellersymbol,
- kann das oberste Kellersymbol entfernen (durch eine **pop-Ope-ration**) und



• durch beliebig viele Symbole ersetzen (durch eine **push-Operation**).

Für eine Menge M bezeichne $\mathcal{P}_e(M)$ die Menge aller endlichen Teilmengen von M, d.h.

$$\mathcal{P}_e(M) = \{ A \subseteq M \mid A \text{ ist endlich} \}.$$

Definition 101. Ein **Kellerautomat** (kurz: PDA; pushdown automaton) wird durch ein 6-Tupel $M = (Z, \Sigma, \Gamma, \delta, q_0, \#)$ beschrieben, wobei

- $Z \neq \emptyset$ eine endliche Menge von **Zuständen**,
- Σ das Eingabealphabet,
- Γ das Kelleralphabet,
- $\delta: Z \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \to \mathcal{P}_e(Z \times \Gamma^*)$ die **Überführungsfunktion**,
- $q_0 \in Z$ der **Startzustand** und
- $\# \in \Gamma$ das Kelleranfangszeichen ist.

Wenn q der momentane Zustand, A das oberste Kellerzeichen und $u \in \Sigma$ das nächste Eingabezeichen (bzw. $u = \varepsilon$) ist, so kann M im Fall $(p, B_1 \dots B_k) \in \delta(q, u, A)$

- in den Zustand p wechseln,
- den Lesekopf auf dem Eingabeband um $|\boldsymbol{u}|$ Positionen vorrücken und
- das Zeichen A im Keller durch die Zeichenfolge $B_1 \dots B_k$ ersetzen.

Hierfür sagen wir auch, M führt die **Anweisung** $quA \rightarrow pB_1 \dots B_k$ aus. Da im Fall $u = \varepsilon$ kein Eingabezeichen gelesen wird, spricht man auch von einem **spontanen** Übergang (oder ε -Übergang). Eine **Konfiguration** wird durch ein Tripel

$$K = (q, x_i \dots x_n, A_1 \dots A_l) \in Z \times \Sigma^* \times \Gamma^*$$

beschrieben und besagt, dass

- q der momentane Zustand,
- $x_i \dots x_n$ der ungelesene Rest der Eingabe und
- $A_1 \dots A_l$ der aktuelle Kellerinhalt ist $(A_1 \text{ steht oben})$.

Eine Anweisung $quA_1 \to pB_1 \dots B_k$ (mit $u \in \{\varepsilon, x_i\}$) überführt die Konfiguration K in die **Folgekonfiguration**

$$K' = (p, x_1 \dots x_n, B_1 \dots B_k A_2 \dots A_l) \text{ mit } j = i + |u|.$$

Hierfür schreiben wir auch kurz $K \vdash K'$. Eine **Rechnung** von M bei Eingabe x ist eine Folge von Konfigurationen $K_0, K_1, K_2 \ldots$ mit $K_0 = (q_0, x, \#)$ und $K_0 \vdash K_1 \vdash K_2 \cdots K_0$ heißt **Startkonfiguration** von M bei Eingabe x. Die reflexive, transitive Hülle von \vdash bezeichnen wir wie üblich mit \vdash^* . Die von M akzeptierte oder erkannte **Sprache** ist

$$L(M) = \{x \in \Sigma^* \mid \exists p \in Z : (q_0, x, \#) \vdash^* (p, \varepsilon, \varepsilon)\}.$$

Ein Wort x wird also genau dann von M akzeptiert, wenn es eine Rechnung gibt, bei der M das gesamte Eingabewort bis zum Ende liest und den Keller leert. Man beachte, dass bei leerem Keller kein weiterer Übergang mehr möglich ist.

Beispiel 102. Sei $M = (Z, \Sigma, \Gamma, \delta, q, \#)$ ein PDA mit $Z = \{q, p\}$, $\Sigma = \{a, b\}$, $\Gamma = \{A, \#\}$ und den Anweisungen

$$\delta: q\varepsilon\# \to q \qquad (1) \quad qa\# \to qA \quad (2)$$

$$qaA \to qAA \quad (3) \quad qbA \to p \quad (4)$$

$$pbA \to p \qquad (5)$$

 $\begin{array}{ccc}
\varepsilon \#, \varepsilon & (1) \\
a \#, A & (2) \\
a A, A A & (3) & b A, \varepsilon & (5)
\end{array}$ $\begin{array}{ccc}
b A, \varepsilon & (4) & p \\
\end{array}$

Dann akzeptiert M die Eingabe aabb:

$$(q, aabb, \#) \vdash_{(2)} (q, abb, A) \vdash_{(3)} (q, bb, AA) \vdash_{(4)} (p, b, A) \vdash_{(5)} (p, \varepsilon, \varepsilon).$$

Allgemeiner akzeptiert M das Wort $x = a^n b^n$ mit folgender Rechnung: n = 0: $(q, \varepsilon, \#) \vdash (p, \varepsilon, \varepsilon)$.

$$n \ge 1$$
: $(q, a^n b^n, \#) \vdash_{(2)} (q, a^{n-1} b^n, A) \vdash_{(3)}^{n-1} (q, b^n, A^n)$

$$\vdash_{(4)} (p, b^{n-1}, A^{n-1}) \vdash_{(5)}^{n-1} (p, \varepsilon, \varepsilon).$$

Dies zeigt $\{a^nb^n \mid n \geq 0\} \subseteq L(M)$. Als nächstes zeigen wir, dass jede von M akzeptierte Eingabe $x = x_1 \dots x_n$ die Form $x = a^mb^m$ hat.

Ausgehend von der Startkonfiguration (q, x, #) sind nur die Anweisungen (1) oder (2) ausführbar. Falls M Anweisung (1) wählt, wird der Keller geleert. Daher kann M in diesem Fall nur das leere Wort $x = \varepsilon = a^0b^0$ akzeptieren.

Falls die akzeptierende Rechnung mit Anweisung (2) beginnt, muss $x_1 = a$ sein. Danach ist nur Anweisung (3) ausführbar, bis M das erste b liest:

$$(q, x_1 \dots x_n, \#) \vdash_{(2)} (q, x_2 \dots x_n, A) \vdash_{(3)}^{m-1} (q, x_{m+1} \dots x_n, A^m)$$

$$\vdash_{(4)} (p, x_{m+2} \dots x_n, A^{m-1})$$

 $mit \ x_1 = x_2 = \dots = x_m = a \ und \ x_{m+1} = b$. Damit M den Keller leeren kann, müssen jetzt noch genau m-1 b's kommen, weshalb x auch in diesem Fall die Form $a^m b^m$ hat.

Als nächstes zeigen wir, dass PDAs genau die kontextfreien Sprachen erkennen.

Satz 103. CFL =
$$\{L(M) \mid M \text{ ist } ein PDA\}.$$

Beweis. Wir zeigen zuerst die Inklusion von links nach rechts.

Idee: Konstruiere zu einer kontextfreien Grammatik $G = (V, \Sigma, P, S)$ einen PDA $M = (\{q\}, \Sigma, \Gamma, \delta, q_0, S)$ mit $\Gamma = V \cup \Sigma$, so dass gilt:

$$S \Rightarrow_L^* x_1 \dots x_n \text{ gdw. } (q, x_1 \dots x_n, S) \vdash^* (q, \varepsilon, \varepsilon).$$

Hierzu fügen wir für jede Regel $A \to_G \alpha$ in P die Anweisung $q \varepsilon A \to q \alpha$ und für jedes $a \in \Sigma$ die Anweisung $qaa \to q\varepsilon$ zu δ hinzu.

M berechnet also nichtdeterministisch eine Linksableitung für die Eingabe x. Da M hierbei den Syntaxbaum von oben nach unten aufbaut, wird M als $Top\text{-}Down\ Parser$ bezeichnet. Nun ist leicht zu sehen, dass sogar folgende Äquivalenz gilt:

$$S \Rightarrow_L^l x_1 \dots x_n \text{ gdw. } (q, x_1 \dots x_n, S) \vdash^{l+n} (q, \varepsilon, \varepsilon).$$

Daher folgt

$$x \in L(G) \Leftrightarrow S \Rightarrow_L^* x \Leftrightarrow (q, x, S) \vdash^* (q, \varepsilon, \varepsilon) \Leftrightarrow x \in L(M).$$

Als nächstes zeigen wir die Inklusion von rechts nach links.

Idee: Konstruiere zu einem PDA $M = (Z, \Sigma, \Gamma, \delta, q_0, \#)$ eine kontextfreie Grammatik $G = (V, \Sigma, P, S)$ mit Variablen $X_{pAp'}, A \in \Gamma, p, p' \in Z$, so dass folgende Äquivalenz gilt:

$$(p, x, A) \vdash^* (p', \varepsilon, \varepsilon) \text{ gdw. } X_{pAp'} \Rightarrow^* x.$$
 (*)

Ein Wort x soll also genau dann in G aus $X_{pAp'}$ ableitbar sein, wenn M ausgehend vom Zustand p bei Lesen von x in den Zustand p' gelangen kann und dabei das Zeichen A aus dem Keller entfernt. Um

dies zu erreichen, fügen wir für jede Anweisung $puA \rightarrow p_0A_1 \dots A_k$, $k \geq 0$, die folgenden $||Z||^k$ Regeln zu P hinzu:

Für jede Zustandsfolge $p_1, \ldots, p_k : X_{pAp_k} \to uX_{p_0A_1p_1} \ldots X_{p_{k-1}A_kp_k}$.

Um damit alle Wörter $x \in L(M)$ aus S ableiten zu können, benötigen wir jetzt nur noch für jeden Zustand $p \in Z$ die Regel $S \to X_{q_0 \# p}$. Die Variablenmenge von G ist also

$$V = \{S\} \cup \{X_{pAp'} \mid p, p' \in Z, A \in \Gamma\}$$

und P enthält neben den Regeln $S \to X_{q_0 \# p}$, $p \in Z$, für jede Anweisung $puA \to p_0 A_1 \dots A_k$, $k \ge 0$, von M und jede Zustandsfolge p_1, \dots, p_k die Regel $X_{pAp_k} \to uX_{p_0 A_1 p_1} \dots X_{p_{k-1} A_k p_k}$.

Unter der Voraussetzung, dass die Äquivalenz (*) gilt, lässt sich nun leicht die Korrektheit von G zeigen. Es gilt

$$x \in L(M) \iff (q_0, x, \#) \vdash^* (p', \varepsilon, \varepsilon) \text{ für ein } p' \in Z$$

$$\Leftrightarrow S \Rightarrow X_{q_0 \# p'} \Rightarrow^* x \text{ für ein } p' \in Z$$

$$\Leftrightarrow x \in L(G).$$

Wir müssen also nur noch die Gültigkeit von (*) zeigen. Hierzu zeigen wir durch Induktion über m für alle $p, p' \in Z$, $A \in \Gamma$ und $x \in \Sigma^*$ folgende stärkere Behauptung:

$$(p, x, A) \vdash^m (p', \varepsilon, \varepsilon) \text{ gdw. } X_{pAp'} \Rightarrow^m x. \quad (**)$$

m = 0: Da sowohl $(p, x, A) \vdash^0 (p', \varepsilon, \varepsilon)$ als auch $X_{pAp'} \Rightarrow^0 x$ falsch sind, ist die Äquivalenz (**) für m = 0 erfüllt.

 $m \sim m + 1$: Wir zeigen zuerst die Implikation von links nach rechts. Für eine gegebene Rechnung

$$(p, x, A) \vdash (p_0, x', A_1 \dots A_k) \vdash^m (p', \varepsilon, \varepsilon)$$

der Länge m+1 sei $puA \to p_0A_1 \dots A_k$, $k \ge 0$, die im ersten Rechenschritt ausgeführte Anweisung (d.h. x = ux'). Zudem sei p_i für $i = 1, \dots, k$ der Zustand, in den M mit Kellerinhalt $A_{i+1} \dots A_k$ gelangt (d.h. $p_k = p'$). Dann enthält P die Regel $X_{pAp_k} \to uX_{p_0A_1p_1} \dots X_{p_{k-1}A_kp_k}$. Weiter sei u_i für $i = 1, \dots, k$ das Teilwort von x', das M zwischen den Besuchen von p_{i-1} und p_i liest.

Dann gibt es Zahlen $m_i \ge 1$ mit $m_1 + \cdots + m_k = m$ und

$$(p_{i-1}, u_i, A_i) \vdash^{m_i} (p_i, \varepsilon, \varepsilon)$$

für i = 1, ..., k. Nach IV gibt es daher Ableitungen

$$X_{p_{i-1}A_ip_i} \Rightarrow^{m_i} u_i, i = 1, \dots, k,$$

die wir zu der gesuchten Ableitung zusammensetzen können:

$$\begin{array}{cccc} X_{pAp_{k}} & \Rightarrow & uX_{p_{0}A_{1}p_{1}} \dots X_{p_{k-2}A_{k-1}p_{k-1}} X_{p_{k-1}A_{k}p_{k}} \\ & \Rightarrow^{m_{1}} & uu_{1}X_{p_{1}A_{2}p_{2}} \dots X_{p_{k-2}A_{k-1}p_{k-1}} X_{p_{k-1}A_{k}p_{k}} \\ & \vdots & \\ & \Rightarrow^{m_{k-1}} & uu_{1} \dots u_{k-1}X_{p_{k-1}A_{k}p_{k}} \\ & \Rightarrow^{m_{k}} & uu_{1} \dots u_{k} = x. \end{array}$$

Zuletzt zeigen wir den Induktionsschritt für die Implikation von rechts nach links von (**). Gelte also umgekehrt $X_{pAp'} \Rightarrow^{m+1} x$ und sei α die im ersten Schritt abgeleitete Satzform, d.h.

$$X_{pAp'} \Rightarrow \alpha \Rightarrow^m x.$$

Wegen $X_{pAp'} \to_G \alpha$ gibt es eine Anweisung $puA \to p_0A_1 \dots A_k$, $k \ge 0$, und Zustände $p_1, \dots, p_k \in Z$ mit

$$\alpha = u X_{p_0 A_1 p_1} \dots X_{p_{k-1} A_k p_k},$$

wobei $p_k = p'$ ist. Wegen $\alpha \Rightarrow^m x$ ex. eine Zerlegung $x = uu_1 \dots u_k$ und Zahlen $m_i \ge 1$ mit $m_1 + \dots + m_k = m$ und

$$X_{p_{i-1}A_ip_i} \Rightarrow^{m_i} u_i \ (i=1,\ldots,k).$$

Nach IV gibt es somit Rechnungen

$$(p_{i-1}, u_i, A_i) \vdash^{m_i} (p_i, \varepsilon, \varepsilon), i = 1, \ldots, k,$$

aus denen sich die gesuchte Rechnung der Länge m+1 zusammensetzen lässt:

$$(p, uu_1 \dots u_k, A) \vdash (p_0, u_1 \dots u_k, A_1 \dots A_k)$$

$$\vdash^{m_1} (p_1, u_2 \dots u_k, A_2 \dots A_k)$$

$$\vdots$$

$$\vdash^{m_{k-1}} (p_{k-1}, u_k, A_k)$$

$$\vdash^{m_k} (p_k, \varepsilon, \varepsilon).$$

Beispiel 104. Sei $G = (\{S\}, \{a, b\}, P, S)$ mit

$$P: S \to aSbS$$
, (1) $S \to a$. (2)

Der zugehörige PDA besitzt dann die Anweisungen

$$\delta: qaa \rightarrow q\varepsilon,$$
 (0) $qbb \rightarrow q\varepsilon,$ (0') $q\varepsilon S \rightarrow qaSbS,$ (1') $q\varepsilon S \rightarrow qa.$ (2')

Der Linksableitung

$$\underline{S} \Rightarrow a\underline{S}bS \Rightarrow aab\underline{S} \Rightarrow aaba$$

in G entspricht beispielsweise die akzeptierende Rechnung

$$(q, aaba, S) \underset{(1')}{\vdash} (q, aaba, aSbS) \underset{(0)}{\vdash} (q, aba, SbS)$$

$$\underset{(2')}{\vdash} (q, aba, abS) \underset{(0)}{\vdash} (q, ba, bS)$$

$$\underset{(0')}{\vdash} (q, a, S) \underset{(2')}{\vdash} (q, a, a) \underset{(0)}{\vdash} (q, \varepsilon, \varepsilon)$$

von M und umgekehrt.

Beispiel 105. Sei M der PDA $(\{p,q\},\{a,b\},\{A,\#\},\delta,p,\#)$ mit

$$\delta: p\varepsilon\# \to q\varepsilon$$
, (1) $paA \to pAA$, (3) $qbA \to q\varepsilon$. (5) $pa\# \to pA$, (2) $pbA \to q\varepsilon$, (4)

Dann erhalten wir die Grammatik $G = (V, \Sigma, P, S)$ mit der Variablenmenge

$$V = \{S, X_{p\#p}, X_{p\#q}, X_{q\#p}, X_{q\#q}, X_{pAp}, X_{pAq}, X_{qAp}, X_{qAq}\}.$$

Die Regelmenge P enthält neben den beiden Startregeln

$$S \to X_{p\#p}, X_{p\#q} (0,0')$$

die folgenden Produktionen:

$Anweisun \\ puA \to p_0A_1.$	-	k	p_1,\ldots,p_k	$zugeh \"{o}rige \ Re$ $X_{pAp_k} \rightarrow uX_{p_0A_1p_1} \dots$	-
$p\varepsilon\#\to q\varepsilon$	(1)	0	-	$X_{p\#q} \to \varepsilon$	(1')
$pa\# \to pA$	(2)	1	p	$X_{p\#p} \to aX_{pAp}$	(2')
			q	$X_{p\#\mathbf{q}} \to aX_{\mathbf{p}A\mathbf{q}}$	(2'')
$paA \rightarrow pAA$	(3)	2	p, p	$X_{pAp} \to aX_{pAp}X_{pAp}$	(3')
			p, q	$X_{pAq} \to aX_{pAp}X_{pAq}$	(3'')
			q, p	$X_{pAp} \to aX_{pAq}X_{qAp}$	(3''')
			q, q	$X_{pAq} \to aX_{pAq}X_{qAq}$	(3'''')
$pbA \to q\varepsilon$	(4)	0	-	$X_{pAq} \rightarrow b$	(4')
$qbA \to q\varepsilon$	(5)	0	-	$X_{qAq} \rightarrow b$	(5')

Der akzeptierenden Rechnung

$$(p, aabb, \#) \underset{(2)}{\vdash} (p, abb, A) \underset{(3)}{\vdash} (p, bb, AA) \underset{(4)}{\vdash} (q, b, A) \underset{(5)}{\vdash} (q, \varepsilon, \varepsilon)$$

von M entspricht dann die Ableitung

$$S \underset{(0')}{\Rightarrow} X_{p \# q} \underset{(2'')}{\Rightarrow} a X_{pAq} \underset{(3'''')}{\Rightarrow} a a X_{pAq} X_{qAq} \underset{(4')}{\Rightarrow} a a b X_{qAq} \underset{(5')}{\Rightarrow} a a b b$$

 \triangleleft

in G und umgekehrt.

 \triangleleft

3.5 Deterministisch kontextfreie Sprachen

Von besonderem Interesse sind kontextfreie Sprachen, die von einem deterministischen Kellerautomaten erkannt werden können.

Definition 106. Ein Kellerautomat heißt **deterministisch**, falls \vdash eine rechtseindeutige Relation ist:

$$K \vdash K_1 \land K \vdash K_2 \Rightarrow K_1 = K_2$$
.

Äquivalent hierzu ist, dass die Überführungsfunktion δ für alle $(q, a, A) \in Z \times \Sigma \times \Gamma$ folgende Bedingung erfüllt (siehe Übungen):

$$\|\delta(q, a, A)\| + \|\delta(q, \varepsilon, A)\| \le 1.$$

Beispiel 107. Der PDA $M = (\{q_0, q_1, q_2\}, \{a, b, c\}, \{A, B, \#\}, \delta, q_0, \#)$ mit der Überführungsfunktion

$$\delta: q_0 a \# \to q_0 A \# \quad q_0 b \# \to q_0 B \# \quad q_0 a A \to q_0 A A \quad q_0 b A \to q_0 B A$$

$$q_0 a B \to q_0 A B \quad q_0 b B \to q_0 B B \quad q_0 c A \to q_1 A \quad q_0 c B \to q_1 B$$

$$q_1 a A \to q_1 \quad q_1 b B \to q_1 \quad q_1 \varepsilon \# \to q_2$$

erkennt die Sprache $L(M) = \{xcx^R \mid x \in \{a,b\}^+\}$. Um auf einen Blick erkennen zu können, ob M deterministisch ist, empfiehlt es sich, δ in Form einer Tabelle darzustellen:

δ	$q_0, \#$	q_0, A	q_0, B	$ q_1, \#$	q_1, A	q_1, B	$ q_2, \#$	q_2, A	q_2, B
ε	$q_0A\#$	_	_	q_2	_	_	-	_	_
a	$q_0A\#$	q_0AA	q_0AB	_	q_1	_	_	_	_
b	$q_0B\#$	q_0BA	q_0BB	_	_	q_1	_	_	_
c	_	q_1A	q_1B	_	-	_	_	_	_

Man beachte, dass jedes Tabellenfeld höchstens eine Anweisung enthält und jede Spalte, die einen ε -Eintrag in der ersten Zeile hat, sonst keine weiteren Einträge enthält. Daher ist für alle $(q, a, A) \in Z \times \Sigma \times \Gamma$ die Bedingung

$$\|\delta(q, a, A)\| + \|\delta(q, \varepsilon, A)\| \le 1$$

 $erf\ddot{u}lt.$

Verlangen wir von einem deterministischen Kellerautomaten, dass er seine Eingabe durch Leeren des Kellers akzeptiert, so können nicht alle regulären Sprachen von deterministischen Kellerautomaten erkannt werden. Um beispielsweise die Sprache $L = \{a, aa\}$ zu erkennen, muss der Keller von M nach Lesen von a geleert werden. Daher ist es M nicht mehr möglich, die Eingabe aa zu akzeptieren. Deterministische Kellerautomaten können also durch Leeren des Kellers nur **präfixfreie** Sprachen L akzeptieren (d.h. kein Wort $x \in L$ ist Präfix eines anderen Wortes in L).

Wir können das Problem aber einfach dadurch lösen, dass wir deterministischen Kellerautomaten erlauben, ihre Eingabe durch Erreichen eines Endzustands zu akzeptieren.

Definition 108.

- Ein Kellerautomat mit Endzuständen wird durch ein 7-Tupel $M = (Z, \Sigma, \Gamma, \delta, q_0, \#, E)$ beschrieben. Dabei sind die Komponenten $Z, \Sigma, \Gamma, \delta, q_0, \#$ dieselben wie bei einem PDA und zusätzlich ist $E \subseteq Z$ eine Menge von Endzuständen.
- Die von M akzeptierte oder erkannte Sprache ist

$$L(M) = \{ x \in \Sigma^* \mid \exists p \in E, \alpha \in \Gamma^* : (q_0, x, \#) \vdash^* (p, \varepsilon, \alpha) \}.$$

• M ist ein deterministischer Kellerautomat mit Endzuständen (kurz: DPDA), falls M zusätzlich für alle (q, a, A) ∈ Z × ∑ × Γ folgende Bedingung erfüllt:

$$\|\delta(q, a, A)\| + \|\delta(q, \varepsilon, A)\| \le 1.$$

• Die Klasse der deterministisch kontextfreien Sprachen ist definiert durch

DCFL =
$$\{L(M)|M \text{ ist ein } DPDA\}.$$

Die Klasse der deterministisch kontextfreien Sprachen lässt sich auch mit Hilfe von speziellen kontextfreien Grammatiken charakterisieren, den so genannten LR(k)-Grammatiken.

Der erste Buchstabe L steht für die Leserichtung bei der Syntaxanalyse, d.h. das Eingabewort x wird von links (nach rechts) gelesen. Der zweite Buchstabe R bedeutet, dass bei der Syntaxanalyse eine Rechtsableitung entsteht. Schließlich gibt der Parameter k an, wieviele Zeichen man über das aktuelle Eingabezeichen hinauslesen muss, damit der nächste Schritt eindeutig feststeht (k wird auch als Lookahead bezeichnet).

Durch LR(0)-Grammatiken lassen sich nur die präfixfreien Sprachen in DCFL erzeugen. Dagegen erzeugen die LR(k)-Grammatiken für jedes $k \ge 1$ genau die Sprachen in DCFL.

Daneben gibt es noch LL(k)-Grammatiken, die für wachsendes k immer mehr deterministisch kontextfreie Sprachen erzeugen.

Als nächstes zeigen wir, dass DCFL unter Komplementbildung abgeschlossen ist. Versuchen wir, die End- und Nichtendzustände eines DPDA M einfach zu vertauschen, um einen DPDA \overline{M} für $\overline{L(M)}$ zu erhalten, so ergeben sich folgende Schwierigkeiten:

- 1. Falls M eine Eingabe x nicht zu Ende liest, wird x weder von M noch von \overline{M} akzeptiert.
- 2. Falls M nach dem Lesen von x noch ε -Übergänge ausführt und dabei End- und Nichtendzustände besucht, wird x von M und von \overline{M} akzeptiert.

Der nächste Satz zeigt, wie sich Problem 1 beheben lässt.

Satz 109. Jede Sprache $L \in \mathsf{DCFL}$ wird von einem DPDA M' erkannt, der alle Eingaben zu Ende liest.

Beweis. Sei $M = (Z, \Sigma, \Gamma, \delta, q_0, \#, E)$ ein DPDA mit L(M) = L. Falls M eine Eingabe $x = x_1 \dots x_n$ nicht zu Ende liest, muss einer der folgenden drei Gründe vorliegen:

- 1. M gerät in eine Konfiguration $(q, x_i \dots x_n, \varepsilon)$, $i \leq n$, mit leerem Keller.
- 2. M gerät in eine Konfiguration $(q, x_i ... x_n, A\gamma)$, $i \le n$, in der wegen $\delta(q, x_i, A) = \delta(q, \varepsilon, A) = \emptyset$ keine Anweisung ausführbar ist.
- 3. M gerät in eine Konfiguration $(q, x_i \dots x_n, A\gamma)$, $i \leq n$, so dass M ausgehend von der Konfiguration (q, ε, A) eine unendliche Folge von ε -Anweisungen ausführt.

Die erste Ursache schließen wir aus, indem wir ein neues Zeichen \square auf dem Kellerboden platzieren:

(a) $s\varepsilon\# \to q_0\#\Box$ (dabei sei s der neue Startzustand).

Die zweite Ursache schließen wir durch Hinzunahme eines Fehlerzustands r sowie folgender Anweisungen aus (hierbei ist $\Gamma' = \Gamma \cup \{\Box\}$):

- (b) $qaA \rightarrow rA$, für alle $(q, a, A) \in Z \times \Sigma \times \Gamma'$ mit $A = \square$ oder $\delta(q, a, A) = \delta(q, \varepsilon, A) = \emptyset$,
- (c) $raA \rightarrow rA$, für alle $a \in \Sigma$ und $A \in \Gamma'$.

Als nächstes verhindern wir die Ausführung einer unendlichen Folge von ε -Übergängen. Dabei unterscheiden wir die beiden Fälle, ob M hierbei auch Endzustände besucht oder nicht. Falls ja, sehen wir einen Umweg über den neuen Endzustand t vor.

(d) $q \in A \to rA$, für alle $q \in Z$ und $A \in \Gamma$, so dass M ausgehend von der Konfiguration (q, ε, A) unendlich viele ε -Übergänge ausführt ohne dabei einen Endzustand zu besuchen.

(e) $q \in A \to tA$ für alle $q \in Z$ und $A \in \Gamma$, so dass M ausge $t \in A \to rA$, hend von der Konfiguration $(q, \in A)$ unendlich viele \in -Übergänge ausführt und dabei auch Endzustände besucht.

Schließlich übernehmen wir von M die folgenden Anweisungen:

(f) alle Anweisungen aus δ , soweit sie nicht durch Anweisungen vom Typ (d) oder (e) überschrieben wurden.

Zusammenfassend transformieren wir M in den DPDA

$$M' = (Z \cup \{r, s, t\}, \Sigma, \Gamma', \delta', s, \#, E \cup \{t\})$$

mit $\Gamma' = \Gamma \cup \{\Box\}$, wobei δ' die unter (a) bis (f) genannten Anweisungen enthält.

Beispiel 110. Wenden wir diese Konstruktion auf den DPDA

$$M = (\{q_0, q_1, q_2\}, \{a, b, c\}, \{A, B, \#\}, \delta, q_0, \#, \{q_2\})$$

mit der Überführungsfunktion

δ	$q_0, \#$	q_0, A	q_0, B	$q_1, \#$	q_1, A	q_1, B	$ q_2, \#$	q_2, A	q_2, B
ε	$q_0A\#$	_	_	q_2	_	_	$q_2\#$	_	_
a	$q_0A\#$	q_0AA	q_0AB	_	q_1	_	_	_	_
b	$q_0B\#$	q_0BA	q_0BB	_	_	q_1	_	_	_
c	_	q_1A	q_1B	_	-	_	_	_	_

an, so erhalten wir den DPDA

$$M' = (\{q_0, q_1, q_2, r, s, t\}, \{a, b, c\}, \{A, B, \#, \square\}, \delta', s, \#, \{q_2, t\})$$

mit folgender Überführungsfunktion δ' :

Satz 111. Die Klasse DCFL ist unter Komplement abgeschlossen, d.h. es gilt DCFL = co-DCFL.

Beweis. Sei $M = (Z, \Sigma, \Gamma, \delta, q_0, \#, E)$ ein DPDA, der alle Eingaben zu Ende liest, und sei L(M) = L. Wir konstruieren einen DPDA \overline{M} für \overline{L} .

Die Idee dabei ist, dass sich \overline{M} in seinem Zustand (q,i) neben dem aktuellen Zustand q von M in der Komponente i merkt, ob M nach Lesen des letzten Zeichens (bzw. seit Rechnungsbeginn) einen Endzustand besucht hat (i=2) oder nicht (i=1). Möchte M das nächste Zeichen lesen und befindet sich \overline{M} im Zustand (q,1), so macht \overline{M} noch einen Umweg über den Endzustand (q,3).

Konkret erhalten wir $\overline{M} = (Z \times \{1, 2, 3\}, \Sigma, \Gamma, \delta', s, \#, Z \times \{3\})$ mit

$$s = \begin{cases} (q_0, 1), & q_0 \notin E, \\ (q_0, 2), & \text{sonst,} \end{cases}$$

indem wir zu δ' für jede Anweisung $q\varepsilon A\to_M p\gamma$ die Anweisungen

$$(q,1)\varepsilon A \to (p,1)\gamma$$
, falls $p \notin E$,

$$(q,1)\varepsilon A \to (p,2)\gamma$$
, falls $p \in E$ und

$$(q,2)\varepsilon A \to (p,2)\gamma$$
,

sowie für jede Anweisung $qaA \rightarrow_M p\gamma$ die Anweisungen

$$(q,1)\varepsilon A \to (q,3)A$$
,

 $(q,2)aA \rightarrow (p,1)\gamma$, falls $p \notin E$,

 $(q,2)aA \to (p,2)\gamma$, falls $p \in E$,

 $(q,3)aA \rightarrow (p,1)\gamma$, falls $p \notin E$ und

 $(q,3)aA \rightarrow (p,2)\gamma$, falls $p \in E$.

hinzufügen.

Eine nützliche Eigenschaft von \overline{M} ist, dass \overline{M} in einem Endzustand keine ε -Übergänge macht.

Beispiel 112. Angenommen, ein DPDA $M = (Z, \Sigma, \Gamma, \delta, q_0, \#, E)$ führt bei der Eingabe x = a folgende Rechnung aus:

$$(q_0, a, \#) \vdash (q_1, \varepsilon, \gamma_1) \vdash (q_2, \varepsilon, \gamma_2).$$

Dann würde \overline{M} im Fall $E = \{q_0, q_2\}$ (d.h. $x \in L(M)$) die Rechnung

$$((q_0, 2), a, \#) \vdash ((q_1, 1), \varepsilon, \gamma_1) \vdash ((q_2, 2), \varepsilon, \gamma_2)$$

ausführen. Da $(q_1, \underline{1}), (q_2, 2) \notin Z \times \{3\}$ sind, verwirft also \overline{M} das Wort a. Dagegen würde \overline{M} im Fall $E = \{q_0\}$ (d.h. $x \notin L(M)$) die Rechnung

$$((q_0, 2), a, \#) \vdash ((q_1, 1), \varepsilon, \gamma_1) \vdash ((q_2, 1), \varepsilon, \gamma_2) \vdash ((q_2, 3), \varepsilon, \gamma_2)$$

ausführen. Da $(q_2,3) \in Z \times \{3\}$ ein Endzustand von \overline{M} ist, würde \overline{M} nun also das Wort a akzeptieren.

Satz 113. Die Klasse DCFL ist nicht abgeschlossen unter Durchschnitt, Vereinigung, Produkt und Sternhülle.

Beweis. Die beiden Sprachen

$$L_1 = \{a^n b^m c^m \mid n, m \ge 0\} \text{ und } L_2 = \{a^n b^n c^m \mid n, m \ge 0\}$$

sind deterministisch kontextfrei (siehe Übungen). Da der Schnitt $L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}$ nicht kontextfrei ist, liegt er auch nicht in DCFL, also ist DCFL nicht unter Durchschnitt abgeschlossen.

Da DCFL unter Komplementbildung abgeschlossen ist, kann DCFL wegen de Morgan dann auch nicht unter Vereinigung abgeschlossen sein. Beispielsweise sind folgende Sprachen deterministisch kontextfrei:

$$L_3 = \{a^i b^j c^k \mid i \neq j\} \text{ und } L_4 = \{a^i b^j c^k \mid j \neq k\}.$$

Ihre Vereinigung $L_3 \cup L_4 = \{a^ib^jc^k \mid i \neq j \text{ oder } j \neq k\}$ gehört aber nicht zu DCFL, d.h. $L_3 \cup L_4 \in \mathsf{CFL} \setminus \mathsf{DCFL}$. DCFL ist nämlich unter Schnitt mit regulären Sprachen abgeschlossen (siehe Übungen). Daher wäre mit $L_3 \cup L_4$ auch die Sprache

$$(\overline{L_3 \cup L_4}) \cap L(a^*b^*c^*) = \{a^nb^nc^n \mid n \ge 0\}$$

(deterministisch) kontextfrei.