Algorithms and Data Structures

All Pairs Shortest Paths
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Content of this Lecture

e All-Pairs Shortest Paths

— Transitive closure: Warshall’'s algorithm
— Shortest paths: Floyd’s algorithm

e Reachability in Trees
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Shortest Path Problems

e Given a weighted digraph G

e Dijkstra finds the shortest path between a given start node
and all other nodes for the case that all edge weights are
positive

e All-pairs shortest paths: Given a digraph G with positive or
negative edge weights, find the distance between all pairs
of nodes
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All-Pairs Shortest Paths: General Case

e Transitive closure with distances
e Result is O(]V|?) space, so don’t try this for large graphs

na na na na na na na na na

-3 na -2 na na na na na na

na na na na na na na na na

<[x|o|m|m|o|lo|w|>|]
N
=

UIf Leser: Algorithms and Data Structures, Summer Semester 2017



Why Negative Edge Weights?

e One application: Transportation company

— Every route incurs cost (for fuel, salary, etc.)

— Every route creates income (for carrying the freight)
e |f cost>Income, edge weights become negative

— But still important to find the best route
— Example: Best tour from X to C
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No Dijkstra

e Dijkstra’s algorithm does not work
— Recall that Dijkstra enumerates nodes by their shortest paths

— Now: Adding a subpath to a so-far shortest path may make it
“shorter” (by negative edge weights)
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No Dijkstra

e Dijkstra’s algorithm does not work
— Recall that Dijkstra enumerates nodes by their shortest paths

— Now: Adding a subpath to a so-far shortest path may make it
“shorter” (by negative edge weights)
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Negative Cycles

e Shortest path
between X and K5?
— X-K3-K4-K5: 5
— X-K3-K4-K5-X-K3-K4-K5: 4
—  X-K3-K4-K5-X-K3-K4-K5-X-K3-K4-K5: 3

e SP-Problem undefined if G contains a negative cycle
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All-Pairs: First Approach

e \We start with a simpler problem: Computing the transitive
closure of a digraph G without edge weights

e First idea
— Reachability is transitive: x>y A y—>zZ = X—>Z
— We use this idea to iteratively build longer and longer paths
— First extend edges with edges — path of length 2
— Extend paths of length 2 with edges — paths of length 3

— No necessary path can be longer then |V|
e Or it would contain a cycle
e In each step, we store “reachable by a path of length <k”
In a matrix
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1,2,3,4

Example — After z

A|B|C|D|E

All11(1|1|1

Bl1{1|1|1|1

Cl1{1|1|1|1

DI1{1|1|1|1

ElI1{1|1|1|1

A|B|C|D|E

Al1]1{1(1|1

B{1(1|1|1(1

Cl1(1|1|1|1

Dl1(1|1|1(1

E{1(1|1|1|1

1
1
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1
1

1(111|1

AIB|C|D|E

A

D{1|1]|1

E{1(1|1|1

1

1

A|B|C|D|E

1

E{1|1(1

A|B|C|D|E
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Naive Algorithm

G = (v, B);

M -= adjacency_ rix( G);
VEE

n

M? = M>~
for 1 = 1..n do
for J = 1..n do
ifT M’[1,jJ]=1 then
for k=1 to n do
1T M[J.k]=1 then
M>7[1,k] = 1;
end 1T;
end for;
end if;
end for;
end for;
end for;

Z appears nowhere; it is
there to ensure that we
stop when the longest
possible shortest paths has
been found

e M is the adjacency matrix of G,
M eventually the TC of G

e M’ Represents paths <z

e Loops i and j look at all pairs
reachable by a path of length
<z+1

e Loop k extends path of length
<z by all outgoing edges

e Obviously O(n%)
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Observation

A|B|C|D|E A|B|C|D|E A|B|C|D|E
A 1 A 1 A 111(1
B 1 B 1 B 111
C 1 *c 1 » C 111
D 1 D 1 D| 1 1
El1 El1 El1]1]1

e In the first step, we actually compute M*M, and then
replace each value >1 with 1
— We only state that there is a path; not how many and not how long

e Computing TC can be described as matrix operations
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Paths in the Naive Algorithm

A|B|C|D|E A|B|C|D|E A|IB|C|D|E A[B|C|D|E A|B[{C|D|E
A 1 A 1(1]1 A 1 1|1(|A{L1|2]2(1|2||A|2|2|1(1|1
B 1 B 111 |B|1 1|11(|B{1|1]2(1{1||B|1]1|1f1|1
C 1 C 111 |C|1 111||Cl1j2j2)2(1{(C|1|1(1|1|1
D 1(|D|1 1(|Df1|11|1 1||Dj1{1{1)2(1||Df1f{1(1|1|1
E|ll E{1|1(1 E{1(1|1|1 E(1{1|2|1{1||E[1|1|{1|1|1

e The naive algorithm always extends paths by one edge
— Computes M*M, M2*M, M3*M, ... Mn-1*M
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Idea for Improvement

e Why not extend paths by all paths found so-far?
— We compute
M2=M*M: Path of length <2
M3=M2*MUM?*M?": Path of length <2+1 and <2+2
M4=M3*M UM3*M2 UM3*M3, lengths <4+1, <4+2, <4+3/4

II\./in’:__ U Mn-l’*mn-l’
— [We will implement it differently]

e Trick: We can stop much earlier

— The longest shortest path can have length at most n
— Thus, it suffices to compute M'es('=_ ) Mlogn)*\flog(ny
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Algorithm Improved

G = (v, B); _
M := adjacency matrix( G): e We use only one matrix M
n == |VI; 7 7 . 2’ 3
for z = 0..ceil(log(my do | © We “add” to M matrices M=, M* ...
for t=1.-ndo  In the extension, we see if a path
J = - . .
i M[i.j]=1 then of length <27 (stored in M) can be
for k=1 to n do extended by a path of length <22
if M[j,k]=1 then .
ML LK] := 1: (stored in M)
end if; — Computes all paths <22+22=27+1
end for; ]
end if; e Analysis: O(n3*log(n))
d for;
ond fors e But ... we can be even faster
end for;
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Example — After z=1, 2, 3

A|B|C|D|E A|B|C|D|E A|B|C|D|E
Al |1 Al [1]1]1 All11|1]1|1
B 1 B 1laf|B|1f1|1|1]1
C 1 C 1laf|c|1f1|1|1]|1
D 1|/|D|1 1| |Dl1]|1|1]1]1
E|1 El1[1]1 El1]1(1]|1]1
Path length: <2 <4 Done
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Further Improvement

G alslc|ple|| |a|B|c|D|E
A Al |1 NEEIEE
° e a B ARIE 1|1
we C 1| ||c 1]1

D 1|[p|1 1
El 1 El1]1]1

e Note: The path A—D is found twice: A>B—»D / A—>C—D
e Can we stop “searching” A—D once we found A—>B—D?

e Can we enumerate paths such that redundant paths are
discovered less often (i.e., less paths are tested)?
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Warshall, S. (1962). A theorem on Boolean
Warshall’s Algorithm matrices. Journal of the ACM 9(1): 11-12.

e Preparations
— Fix an arbitrary order on nodes and assign each node its rank as ID
— Let P, be the set of all paths that contain only nodes with ID<t+1

e ldea: Compute P, inductively
— We start with P,
— We compute P,, t>1, based on the assumption that P,_; is known
— We are done once t=n

e [nduction
— Suppose we know P, ,
— If we increase t by one, we admit one additional node, i.e., t

— Now, every new path must have the form x—>t—y
e Paths with all IDs <t are already known
e Node t is the only new player, must be in all new paths
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Algorithm

e Enumerate paths by the
IDs of the nodes they are

: 1. G = (V, B);
allowed to contain 2. M := adjacency matrix( G):
. ] 3. n = |V];
e tgives th_e hlghest allowed n for t o= 1.1 do
node ID inside a path 5.  for i = 1..n do
6 if M[i,t]=1 then
e Thus, node t musisae 7> for kel to n do
any new path ———> if M[t,k]=1 then
. . . 9. MLi K] := 1
e We find all pairs 1,k with 10. end if;
i—>t and t—k 11 end Tor:
_ 12. end 1f;
e For every such pair, we set 13. end for;
the path i—k to 1 14-end Tor:
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Example — Warshall's Algorithm

AN,
maxID=A ° a Q

A|B|C|D|E A|B|C|D|E we
Al |1 Al |1
B 1 B 1
C 1 C 1
D 1 D 1
El1 E[1|1]1
A allowed
Connect
E-A with
A-B, A-C
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Example — After t=A,B,C,D,E

t=, A" t=,B" t=,C"

A|B|[C|D|E A|B|C|D|E A|B|C|D|E A|B|C|D|E A|B|C|D|E
Al [1]1 Al [1]1]1 Al [1]1]1 Al [1|1]1|2] [A]l1|1]|1]1|1
B 1 B 1 B 1 B 1(1] [B|1|1|1]|1]|1
C 1 C 1 C 1 C 1(1] [c|1|af1]|1|1
D 1| |D 1||D 1| |D 1| |Df1]1|1]1]1
E111/E1111 51111/511111 El1{1]|1|1]1

B allowed C allowed D allowed E allowed

Connect Connect Connect Connect

A-B/E-B A-C/E-C A-D, B-D, everything

with B-D with C-D C-D,E-D with

NO news with D-E everything
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Little change — Notable Consequences

G = (v, B);
M := adjacency matrix( G);

for z = 1..n do
for 1 = 1..n do
for J = 1..n do
if M[i,j]=1 then
for k=1 to n do
iIT M[jJ,k]=1 then
MET,K] = 1;
end i1f;
end for;
end 1f;
end for;
end for;
end for;

O(n%)

)

Drop z-
Loop
Swap i and
J loop
Rephrase j
into t
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11.
12.
13.
14.

= (v, B);

G
. M = adjacency_matrix( G);
n

= |VI;

. for t :=1..n do

for 1 = 1..n do
iIT M[i,t]=1 then
for k=1 to n do
iT M[t,k]=1 then
MEI,K] = 1;
end 1f;
end for;
end 1f;
end for;
end for;

O(n3)




Content of this Lecture

e All-Pairs Shortest Paths

— Transitive closure: Warshall’'s algorithm
— Shortest paths: Floyd’s algorithm

e Reachability in Trees
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Floyd, R. W. (1963). Algorithm 97: Shortest
Shorte St Paths Path. Communications of the ACM 5(6). 345.

e Shortest paths: We need to compute the distance between
all pairs of reachable nodes

e We use the same idea as Warshall: Enumerate paths using
only nodes smaller than t

— Invariant: Before step t, M[i,j] contains the length of the shortest
path that uses no node with ID higher than t

— When increasing t, we find new paths i—>t—k and look at their
lengths

_ Thus: M[i,k]:=min( M[i,k] U { M[i,t]+M[t,k] | it A t—>k} )
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Example

A D F

A 1

B -2

C

D

E 4

F 1

G 6 -1

\ 4

D F
1

B -2 -1

C

D

E 4

F 1 2

G -1

A = D F
A 1
= -2 -1
C
D 1 3 2
E 4
F 0 2 1
G -1




Summary (n=|V|, m=|E|)

e Warshall's algorithm computes the transitive closure of any
unweighted digraph G in O(n3)

e Floyd's algorithm computes the distances between any pair
of nodes in a digraph without negative cycles in O(n3)

e Johnson’s alg. solves the problem in O(n?*log(n)+n*m)
— Which is faster for sparce graphs

e Storing both information requires O(n?)

e Problem is easier for ...
— Undirected graphs: Connected components
— Graphs with only positive edge weights: All-pairs Dijkstra
— Trees: Test for reachability in O(1) after O(n) preprocessing
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Content of this Lecture

e All-Pairs Shortest Paths

— Transitive closure: Warshall’'s algorithm
— Shortest paths: Floyd’s algorithm

e Reachability in Trees
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Gene Ontology — Describing Gene Function

(Gene Ontology]

T

[Molecular Function [Biological Process]

,/’///)' //////( [Physiological Process}

[Catalytic Activity]
Cellular Process]

f Binding

Metabollsm]
[Transferase Activity] \ //f
r [Nucleotlde B|nd|ngw Protein Metabollsm]

[Kinase Activity] Cell Communlcatlon

Protein MOdIfIC&tiOﬂ]

[Slgnal Transductlon][
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Database Annotation InterPro

Reszet I View I IrterProk rtng -1
This entry is from: I Glucose-methanol-choline oxidoreductase
INTERPEO TPROOOL 72; (GIAC_nwmred) matches 174 proteins
E Slucose-methanol-choline oxidoreductase
Link Farmoily
Frinter Friendly PROSITE: PE006A23 GSASCT OXRED 7

PEOSITE: PE00624 FASD O RED 2
PFANT PEOO7 i

ansport (SO0006A11 8%

electsd

electron transfer flavorigtein (GOO000824 6%

The glucose-methanol-choline (GIAC) oxidoreductase oxidoreductases are FAD flavoproteins
oxidoreductases [1, 5], These enzymes include a variety of proteins; choline dehydrogenase (CHD ),
methanol oxidase (WVOZD and cellobiose dehydrogenase [EC:1.1.5.1] [6] which share a munber of

the FATY ATP- binding dornain. The function of the other conserved domains is not wet lonown,

= P2RIGET Cholesterol oxidase (CHODY (O from Brevibacteriam sterolicurm and Streptormsrces strain
SA-C00.

P130068 Glucose oxidase (0 (GO0 from Aspergillus niger.

050045 (Fo-rmandelonitrile Iyase (O (hydrozgynitrile yase) from plants [PUB00004524].

P354335 Choline dehydrogenase () (CHD) from bacteria

P12173 Glucose dehvydrogenase (LY () from Drosophila.

regions of sequence sitnilarities. One of these regions, located in the M-terrminal section, corresponds to

| I»

= |

e £l n# EX] @ | Document: Done (2,794 secs)

| ==

=

e Used by many databases
e Allows cross-database search

e Provides fixed meaning of terms
e As informal textual description, not as formal definitions
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A Large Ontology

A
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e Depth: =30

e Today: More than 40000 terms
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UIf Leser: Algorithms and Data Structures, Summer Semester 2017

L]




roblem

Homaolog Annotations T

Search GO ] @ terms O geres or proteins  [exact match

Tree Browser

¥ Filter tree view B
Filter by ontology Filter Gene Product Count:

Wiew Option:
ontalogy Data source Species ’}ree view @ Full OCompact
biclogical process SAP rabidapsis thaliana
cellular component spGD Bacillus anthraci...
malecular function CGD | Bacilus subtiis ]
[ all @ all [463884 gene products] Actions...
B c0:0003674 : molecular_function [380430 gene products] L:St oEliEmy o
the tree
B co:ono03ez4 catalytic activity [150131 gene products] Graphical View
B co:00185491 : oxidoreductase activity [29474 gene products] pe'mla“”dk
Download..,
B co:0018651 : oxidoreductase activity, acting on NADH or MADPH [1876 gene products] OBO
B Go:0016657 : oxidoreductase activity, acting on NADH or MADPH, nitrogenous group as acceptor [73 gene RBF=EIL
products]

Graphviz dot

B B 50:0033729 @ preQl synthase activity [2 gene products]

B co:0018645 : oxidoreductase activity, acting on the CH-MH group of donors [1104 gene products]

B Go:0016646 : oxidoreductase activity, acting on the CH-MH group of donars, MAD or NADP as acceptor [791 gene products]
Bl B 50:0033739 @ preQl synthase activity [2 gene products]

AmiGO version: 1.8

G0 datzbase release 2011-06-11
Cite this data + Termns of uze + GO helpdesk
Ty AMIGO Labs ”

Copyright @ 1999-2010 the Gene Ontalogy

e To0 see whether a term X ISA term Y, we need to check
whether Y lies on the path from root to X

e Reachability problem
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Reachabllity in Trees

e Let T be a directed tree. A node v Is reachable from a node
w Iff there Is a path from w to v

e Testing reachability requires finding paths
— Which is simple in trees

e Path length is bound by the length of the longest path, i.e.,
the depth of the tree

e This means O(n) in worst-case
e |Let's see whether we can do this in constant time
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Pre-/Postorder Numbers

e Assume a DFS-traversal

e Build an array assigning each
node two numbers

e Preorder numbers

— Keep a counter pre

— Whenever a node is entered the
first time, assign it the current
value of pre and increment pre

e Postorder numbers

[3,0] [4,1] [7 4] [8 ,5]
— Keep a counter post
— Whenever a node is left the last
time, assign it the current value
of post and increment post Examples from S. Trissl, 2007
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Ancestry and Pre-/Postorder Numbers

e Trick: A node v iIs reachable from a node w Iff
pre(v)>pre(w) A post(v)<post(w)
e Explanation

— Vv can only be reached from w, if w is “higher” in the tree, i.e.,
v was traversed after w and hence
has a higher preorder number

— Vv can only be reached from w,
If v is “lower” in the tree, I.e.,
v was left before w and hence
has a lower postorder number

e Analysis: Test is O(1)

[3,0] [4,1] [7 ,4] [8 ,5]
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