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Abstract. Ontologies are tools for describing and structuring know-
ledge, with many applications in searching and analyzing complex know-
ledge bases. Since building them manually is a costly process, there are
various approaches for bootstrapping ontologies automatically through
the analysis of appropriate documents. Such an analysis needs to find the
concepts and the relationships that should form the ontology. However,
since relationship extraction methods are imprecise and cannot homo-
geneously cover all concepts, the initial set of relationships is usually
inconsistent and rather imbalanced - a problem which, to the best of our
knowledge, was mostly ignored so far. In this paper, we define the prob-
lem of extracting a consistent as well as properly structured ontology
from a set of inconsistent and heterogeneous relationships. Moreover, we
propose and compare three graph-based methods for solving the ontol-
ogy extraction problem. We extract relationships from a large-scale data
set of more than 325K documents and evaluate our methods against a
gold standard ontology comprising more than 12K relationships. Our
study shows that an algorithm based on a modified formulation of the
dominating set problem outperforms greedy methods.

1 Introduction

A primary use of ontologies in information systems is the description and struc-
turing of shared knowledge [11]. For instance, ontologies are used extensively
in Life Science databases to describe properties of biomedical objects, such as
the function of a gene [6] or properties of a biological sequence [4]. The most
prominent such ontology, the Gene Ontology [6], consists of more than 28,000
terms describing the molecular function, biological processes, and cellular lo-
cations of genes. It is used by dozens of databases throughout the world, is
constantly extended and revised, and has established itself as a major research
tool in functional genomics.

Building and maintaining a high-quality ontology is costly. Creating the first
version of the GO has taken more than two years and involved several people
from various research groups. Its maintenance and further development since
then requires a constant funding of 10-20 researchers. Due to these high costs,



there have been various proposals to automatically learn ontologies from a set
of domain-specific documents (ontology induction, e.g., [15]). Results of such
an endeavor may either be used directly, e.g., to support semantic search in
documents [12], or may serve as a basis for a subsequent manual verification
and extension process (ontology bootstrapping). However, ontology induction
is complex and involves a series of subproblems. First, the set of terms (con-
cepts) that are to be included in the ontology must be determined. Second, all
occurrences of those concepts in the available corpus must be found. This is not
trivial, because concepts may consist of several tokens, which may or may not
appear in different orders. Furthermore, morphological variations, abbreviations,
and usage of synonymous words are common. Next, evidences for the semantic
relationships between concepts must be found (relationship extraction), for in-
stance by searching for specific grammatical patterns involving two concepts.
Finally, the ontology itself must be constructed from the set of all extracted
relationships, a step we call ontology extraction.

Our work focusses on ontology extraction. This is an important step in onto-
logy induction, because in large-scale projects extracted relationships are often
redundant, contradicting, or circular. Such cases destroy the semantic consis-
tency of an ontology and need to be resolved. More precisely, we study the
following problem: Given a set S of ISA-relationships between concepts, find a
subset S’ C S such that S’ is cycle-free and also fulfills certain other criteria.
A natural first choice for additional criteria might be that S’ has maximal size,
i.e., that it is computed from S by removing the least number of edges. But
this is not necessarily the best choice in ontology extraction. It is common-sense
that an ontology should exhibit certain topological properties to make it better
accessible to humans (see, for instance, [1, 23, 24]). These properties include:

1. the topology should roughly resemble a tree, i.e., the number of nodes with
more than one parent should be low (trees are easier to grasp),

2. nodes should not also be parents of their siblings (this is often perceived as
semantic nonsense),

3. nodes with only one child should be avoided (merging them would be appro-
priate),

4. leaves should have a comparable depth (to avoid imbalanced subparts and
varying semantic granularity of leaves),

5. grossly imbalanced numbers of children should be avoided (to prevent vary-
ing semantic granularity in inner nodes),

6. nodes should not have (additional) parents that are more than one level away
(which goes beyond property 2 to avoid links completely inconsistent with
the tree-like ontology backbone), and

7. the ontology should have a single root node.

Consider Fig. 1 as an example. The left part shows a set of ISA-relationships
between concepts a, b, ¢, d, and e as it could emerge from a relationship extraction
phase (edges are not weighted to keep the example simple). The set contains
cycles and is thus inconsistent. There are various ways to break the cycles by
removing one or more edges. Some resulting (consistent) ontologies are shown



in the second to fifth part of the figure. Option 1 requires only one edge to
be removed, while Options 2, 3, and 4 require two edge removals. Most of the
options have some property that might be considered unfortunate for a ’clean’
ontology. For instance, in Option 1, node b is sibling and parent of node d, in
Option 3, the depth of the leaves varies greatly, and Options 3 and 4 contain
many nodes with only one child.

Option 1 Option 2 Option 3 Option 4

i a<—° a ®

Fig. 1. Extracting a consistent ontology from a set of inconsistent relationships. The
left part shows concepts and extracted (cyclic) relationships. The second to fifth part
depict different ontologies, which can be derived. Option 1: removal of edge d — ¢; 2:
c—d,b—d;3:c—d,d—c; 4:c—d,c—b.

Certainly one should take into account that extracted relationships often are
simply false. The probably most important, yet also most difficult to evaluate,
criterium for S’ is whether it contains a maximal number of true relationships
and a minimal number of false relationships. Finally, it is important that rela-
tionship evidences usually carry method-specific confidence values. These values
must be considered when choosing the relationships to form the ontology.

In this work, we study the problem of constructing a semantically consistent,
correct and well-formed ontology from a given set of heterogeneous, weighted,
and possibly inconsistent evidences. For this, we use two different methods for
extracting ISA-relationships among concepts from a domain-specific corpus re-
sulting in a set of > 29K relationships. We propose three graph-based algorithms
for selecting a semantically consistent subset of relationships from this set. We
evaluate our methods by trying to (re-)construct a phenotype ontology (a phe-
notype is, broadly speaking, an observable property of an organism attributed
to the (mal-)function of a gene [8]), using as corpus a set of 327,200 phenotype
descriptions downloaded from PhenomicDB [7] as of 02/2008. We converted the
texts to lower case, removed URIs, punctuation, and tokens consisting only of
numbers. For evaluation we leverage as our gold standard the Mammalian Phe-
notype Ontology (MPO) [22], consisting of 11,700 concepts (plus synonyms) and
6,830 direct ISA-relationships (03/2008). For the evaluation we use all transitive
relationships from the MPO; we consider two concepts a and b to be in transitive
relationship if there is a path from a to b or a and b are synonyms. MPO contains
172.134 transitive relationships.



2 Related Work

Ontology induction in general is well studied (e.g. [25]). Systems covering the
entire process are, e.g., OntoEdit [15] or OntoLearn [16]. However, to the best of
our knowledge, the problem of ontology extraction with inconsistent evidences
has achieved little attention in the scientific literature so far, probably due to
the fact that most studies in ontology construction are rather small-scale and
therefore do not face this problem on a notable scale (e.g., [3, 9]).

We are aware of only few papers that explicitly deal with this problem.
Schmitz reported on a study for creating term hierarchies from flickr tags [21].
He used subsumption for relationship extraction (see below) and suggested fil-
tering techniques for the resulting relationships, such as a required minimum
occurrence of tags. The paper also proposed a pruning strategy that eliminates
all relationships that would form relations within the same hierarchy level. This
approach is not comparable to ours, because no global consistency of the resulting
ontology is targeted or guaranteed and structural properties are not considered.
Krishna and Krishnapuram presented a clustering-based approach to hierarchy
construction in [13]. However, this algorithm is used to cluster documents for
improved browsing and works on entire documents, not extracted relations. This
paper also mentions desirable properties for concept hierarchies, which are more
usage-oriented than ours. We refrained from reusing these properties, because
their formulations is vague and an evaluation is only possible through usage ob-
servation. [14] described a method for constructing a concept hierarchy based on
a probabilistic language model derived from term co-occurrences. The authors
acknowledge the existence of inconsistent relationships and describe a pruning
strategy based on the Dominating Set Problem (DSP). This paper largely in-
fluenced our work; however, we go beyond their proposal by refining the DSP
approach and by comparing it to two other strategies; furthermore, we provide a
thorough, large-scale evaluation of both methods, which is lacking in [14] where
only 500 texts were used as input (compared to 327,200 in this work).

In sharp contrast to ontology extraction, relationship extraction has been
researched extensively over the last decades. In this work, we use Hearst-style
POS pattern [10] and subsumption [20], because of their simplicity and expected
coverage. Furthermore, we wanted to evaluate how our methods for ontology ex-
traction deal with heterogeneous sources of evidences. Using multiple sources of
evidence for relationship extraction is not a new idea; for instance, [3] combined
Hearst-style patterns, WordNet relations, head-modifier properties, and term co-
occurrence. Note that this work has a much smaller scale than our study and
does not cover ontology extraction.

3 Concept Occurrences and Relationship Extraction

In this work, we consider the set of concepts predefined by the gold standard
ontology, i.e., MPO, to allow a comparative evaluation. However, we still need
to spot occurrences of such concepts in the corpus, which we discuss first. We
then show how we extract weighted relationships between those concepts.



3.1 Concept Occurrences

We need to locate all occurrences of all concepts in our corpus. Note that this step
is non-trivial for biomedical ontologies, especially because concepts often consist
of multiple tokens, which only rarely appear as such in a text. For instance, in
the MPO the average number of tokens per concept is 3.5 and only 5.5% of the
concepts consist of only one token. Thus, exact matching of concepts would yield
a low recall.

We apply approximative concept matching using various meanings of ’appro-
ximative’. We investigated the following options to determine whether a set of
tokens in a text should be considered as a match with a concept: (1) tokens
of a concept appear in a window of w consecutive tokens (integer parameter
w > 0) in the text; (2) tokens of the concept must or need not appear in the
same order in the text (boolean parameter order); (3) concepts and corpus are
stemmed before matching (boolean parameter stemming); (4) stop words are
removed from the concepts before matching (boolean parameter stopwords).
Stemming is accomplished using Porter Stemmer [17]. The list of stop words
was taken from [18] (320 terms). In the following, we describe the actual setting
of parameters using a vector p = (order, stemming, stopwords). We searched all
occurrences of 11,700 MPO concepts (incl. synonyms) using different parameter
settings over a range of values for w. We do evaluate our methods only by
counting the number of distinct concepts matched, because checking whether
matches are actually true would be extremely time-consuming and is not in the
focus of our work. We are not aware of any MPO-annotated corpus, which we
could use to compute classical IR metrics.

For w = 2...6 we find 4,500-6,500 concepts, which is ~50% of all MPO con-
cepts. The highest number of different concepts is matched when token order
is ignored, stemming is used, and no stop words are removed (p = (0,1,0)).
Although, we expect p = (1,0,0) to produce the least number of false positives,
manual reviews have shown that p = (0, 1,0) performs comparably. Considering
the number of transitive MPO relations, which only use matched concepts, we
find 35,000-61,500 MPO relations, which amounts to at most 35.5% of all tran-
sitive MPO relationships. Note that these numbers form an upper bound to all
subsequent steps, since a relationship including a concept that is never found in
the corpus cannot be inferred by any method.

3.2 Relationship Extraction

We use two methods for extracting relationships between concepts spotted in
the previous step: subsumption [20] and Hearst-style POS-patterns [10]. Both are
explained and evaluated on our corpus in the following subsections. Evaluation is
carried out in terms of precision and coverage. We omit figures for recall for the
following reason: Imagine a gold standard like a; — as — ... — a19. These nine
direct relationships induce 45 transitive relationships. If a method would recover
all direct relationships but a5 — ag, it would miss 25 transitive relationships and
its recall would already drop down to 45%. Therefore, we consider recall values



under our evaluation scheme as somewhat misleading and instead give absolute
numbers of correctly extracted relationships (coverage).

Subsumption. The underlying hypothesis for subsumption is that if a con-
cept a always occurs close to a concept b, then a is related to b. If furthermore a
occurs more often than b, then a is considered to be more general than b. This
intuition is formalized as follows: Let a and b be two concepts and let p(a|b) de-
note the relative frequency with which a occurs in a window of tokens of length
v that also contains b. We say that b ISA «a if p(alb) > ¢t and p(bla) < 1, where ¢
is a threshold. Such a relationship is assigned the score sgyp(a,b) = p(alb).

For evaluating subsumption, we took six parameters into account: v, t and the
four parameters from the concept matching (w, order, stemming, stopwords).
The impact of varying ¢ is generally as expected: the higher ¢, the higher precision
and the lower coverage. We found ¢t = 0.9 to be a good compromise; results
for varying ¢ are omitted for brevity. Also, changing w between 2...6 has no
significant influence on precision and coverage; we show data for w = 5.

Results for various other parameter settings are shown in Fig. 2. The main
tendency is that increasing v causes a decrease in precision but an increase in
coverage. p = (1,0, 0) reaches the best precision (0.75—0.6) at average coverage,
while p = (0,1, 0) yields a precision which is only 0.05 less but has a much better
coverage. To keep precision high, we fixed this setting (p = (0,1,0), t = 0.9,
w =5) at v = 10 for all subsequent experiments.
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Fig. 2. Performance of subsumption for different parameter settings and w = 5,¢t = 0.9:
precision (left axis, solid lines) and coverage (right axis, dashed lines).

POS-patterns. Hearst-style patterns are fixed patterns of word forms or
word types that hint to a certain relationship. Consider the following sentence:
” The occurrence of cleft lip and palate in association with skeletal changes such
as absent radius suggests Roberts syndrome.” From the key phrase ”such as”
one can conclude that absent radius is a skeletal change. In this work, we used



the following patterns: [a such as b], [a includes b], [a especially b], [a like b]
and [a for example b]. However, we have to pay special attention to determining
meaningful borders of those a and b. We therefore perform a series of preprocess-
ing steps on the corpus before searching the patterns. First, we run a sentence
splitter [2] to exclude matches across sentences boundaries. We discard sentences
that do not contain a key phrase. Finally, we used a chunker [2] to divide each
sentence into syntactically correlated phrases, especially noun phrases. Chunk-
ing is important, because the concepts connected in a pattern are not always the
ones that are immediately before or after the key phrase.

We considered x noun phrases before and x noun phrases after a key phrase
as being connected. The precision obviously decreases for increasing = since a
relation discovered by z; is also discovered by any x; > z; but not vice versa
(of course, recall increases). We use these precision values to score extracted
relationships in the following way: Let p;...p; be the precision values (in de-
scending order) the process achieves for z;...z; (z1 < ... < ;). We assign scores
sp(a,b) = g—i if a — b was discovered using z; (1 < j < i) to all generated
relationships.

We ran experiments with different values for p and = (at w = 5); see Fig. 3.
Generally, precision decreases and coverage increases with increasing z. p =
(1,0,0) achieves the highest precision followed by p = (0, 1,0). Coverage ranges
greatly, from 30 (p = (1,0,0),z = 1) to 1,900 (p = (0,1,0),z = 5). p=(0,1,0)
reaches the highest number of true positives at a precision that does not differ
significantly from the other settings for values x > 2. Accordingly, we used
p=1(0,1,0) and = = 1...5 for subsequent experiments.
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Fig. 3. Performance of POS pattern discovery for different parameter settings and
w = 5: precision (left axis, solid lines) and coverage (right axis, dashed lines).

4 Graph-Based Ontology Extraction

The result of the previous phase are lists of relationships with a score, either
resulting from subsumption or from Hearst-style patterns. This set of weighted



relationships does not yet form a consistent and well-formed ontology. First,
relationships often are found by both methods, which leads to redundant links;
those should be merged in a way that the weights of the original links are properly
considered. Second, relationships may be directly contradicting, even when we
look at only one source of evidence. Third, relationships may form cycles. Both,
cycles and contradicting relationships (essentially cycles of length two), destroy
the semantic consistency of an ontology.

Removing these inconsistencies requires choices onto which relationships to
exclude and which to include. These choices should be guided by the confidence
in the respective relationships, their influence on topological properties of the
resulting ontology (as discussed in the introduction), and their semantic correct-
ness. In this section, we devise graph-based algorithms for solving this problem.
All operate on a so-called concept graph, which unifies matched concepts and
all extracted relationships into a single graph. Note that a nice property of this
approach is that adding new sources of relationship evidence is trivial.

Definition 1. A concept graph is a directed graph G = (V, E), where V' (nodes)
is the set of concepts and E (edges) is constructed from the extracted, weighted
evidences (see sgup, Sp from Sec. 3.2). Let a,b € V and 0 < wg,wp < 1 be
weighting factors. We define edges E, edge weights s(a,b), and node weights
s(a) as follows:

E = {(a,b)|ssup(a,b) >0V sp(a,b) >0}

s(a,b) = wg * sgup(a,b) + wp * sp(a,b)

s(a) = Z s(a,b)

(a,b)eEE

4.1 The Problem

As previously described, the concept graph itself cannot be used as an ontology
(in most cases), because it is semantically inconsistent. However, any cycle-
free subgraph of the concept graph could in principle be used as an ontology.
Therefore, we define the problem of ontology extraction as follows.

Definition 2. Let G = (V,E) be a concept graph. We call a subgraph G' =
(V',E") of G with V! =V and E' C E consistent if G’ is cycle-free. The
problem of ontology extraction is to choose a consistent subgraph of a given
concept graph.

Consider again Fig. 1 and assume this concept graph would have edge weights
as given in Fig. 4. One way to further specify the ontology extraction problem
is to require the extracted subgraph to be consistent and mazimal, i.e., that the
sum of the weights of extracted edges is maximal under all consistent subgraphs
(by definition V' = V’). This would result in option 4 with a total weight of
2.6. Using such a formulation would disregard many other criteria to judge good



from bad ontologies. Furthermore, the corresponding optimization problem is
too complex to be solved for concept graphs of non-trivial size. Actually it is
already NP-hard to solve the -DAG problem, which is to find, given a weighted
digraph G and a parameter f, the heaviest DAG in G with out-degree < f (by
reduction to Minimum Feedback Arc Set [5]).

Fig. 4. Weighted Concept Graph with inconsistent relationships from Fig. 1.

In the following, we propose and compare three algorithms to solve the ontol-
ogy extraction problem. The first, which we call Greedy Edge Inclusion (GEI),
adds edges to an empty graph in the order of their weights. It is a heuristic
for finding cycle-free graphs that disregards the specific nature of the ontology
extraction problem. In contrast, the second and third solution, which we call
Hierarchical Greedy Expansion (HGE) and Weighted Dominating Set Problem
(wDSP), build balanced tree-like structures by iteratively adding strong nodes
to an empty graph, i.e, nodes that have strong evidences to be a super-concept of
many other nodes. They differ in the exact definition of strong. In the following,
we explain each of these algorithms in more depth.

4.2 Greedy Edge Inclusion (GEI)

The GEI algorithm works as follows: It first copies all nodes from the concept
graph into the emerging ontology graph. It then adds edges from the concept
graph to the ontology graph sorted by their weights. Every edge that introduces
a cycle is omitted.

The main advantage of this method is its simplicity. However, it has many
disadvantages. First, it completely disregards topological properties of the re-
sulting structure, which leads to DAGs with many nodes with many parents,
grossly imbalanced numbers of children, and many edges spanning large dis-
tances (see Sec. 5). Furthermore, due to its many cycle-checks it is rather costly
to be computed. Finally, it does not produce a rooted DAG (and therefore has no
distinct leaves). Rooting such a structure could be approached by a topological
sort , which would open further choices since a topological sort is not unique.
Therefore, we evaluate the GEI algorithm only in its unrooted form.

4.3 Strong Node Sets

The following two algorithms share a common idea captured by the notion of
strong node sets. We first explain this idea in more depth before we discuss the
HGE and wDSP algorithms.
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Both algorithms iteratively build an ontology. They start from an artificial
root node and add, level by level, strong nodes from the concept graph. Therein,
they frequently need to solve the following problem: Given a node from the
concept graph, choose a subset of its children such that (a) the resulting ontology
is consistent, (b) that the overall sum of evidences added to the graph is high,
and (c) that it obeys the requirements formulated in the introduction as much
as possible. We approximate these requirements by the notion of a strong node
set. Intuitively, a strong node set is a set of nodes that have strong evidences to
be a super-concept for many other concepts. This idea leads to the algorithmic
framework shown in Listing 1.1. We use the following notations (let G = (V, E)):

— strong(G, f) computes a strong node set from G with maximally f members,
ie,aset V  CV, |V'| < f and all v € V' have high evidence to be super-
concepts of many other nodes. The concrete definition of strong is different
in HGE (Sec. 4.4) and wDSP (Sec. 4.5).

— subgraph(G, S) is the subgraph of G induced by S C V.

— (n,1, D) is a triple of a node n, a level I (an integer), and a (strong) set D
of nodes.

Listing 1.1. Ontology extraction from a concept graph

last_level =0
to_be_removed = {}
V' ={root} // resulting nodes
E’'={} // resulting edges
strong-set = strong(G, f)
V' =V’ U strong_set
for each child € strong_set

E’' = E’ U {(root, child)}

add (child, 1, strong_set) to queue
while ( queue not empty )

(n, current_level, S) = next from queue
if ( current.level >d )
break

if ( lastlevel < current_level )
last_level = current_level
G = subgraph(G,V — to_be_removed)
to_be_removed = {}
to_be_removed = to_be_removed U {n}
subgraph_nodes = {c|(n,c) € E} =S // n’s children without S
strong_set = strong(subgraph(G, subgraph_nodes), f)
V' =V’ U strong_set
for each child € strong_set
E' = E' U {(n, child)}
add (child,l + 1, strong-set) to queue
return G’ = (V' E’)

The first run of strong determines nodes for the first level of abstraction
(line 6). To obtain a hierarchy-like structure with a root the algorithm creates
edges from an artificial root node to the first-level-nodes (line 9). In a next step,
it inserts the first-level-nodes, the current level (here 1), and the current strong
set into a queue (line 10). The queue allows for a breadth-first processing of
the nodes. The current strong set is stored to avoid that nodes in the set are
part of following strong sets and thereby cause a cycle. The while loop (line
11) successively processes the nodes in the queue. The algorithm exits the loop



if the maximum number d of levels is extracted from the concept graph (line
13-14). The following steps in the while loop determine the descendants (in the
hierarchy) of the nodes in the queue. This is achieved by applying strong to
the children of the nodes in the queue (line 20-21). There is a set of candidate
nodes that may be direct descendants of a node n in the resulting hierarchy,
i.e., subgraph_nodes = {c|(n,c) € E}—S (line 20). The application of strong to
subgraph(G, subgraph_nodes) chooses a subset to form a part of the next level
of abstraction (line 21). A level [ is complete when all nodes from level  —1 have
been processed and are thus removed from the queue. When a level has been
completely processed (line 15) the algorithm removes the nodes from the input
graph (line 16-18). To connect levels the process creates only edges from a node
n to nodes in the strong (sub)set of its children (line 24).

Regarding the requirements stated above, this algorithm has the following
properties. (a) It is consistent, because edges that cause cycles are removed
actively. (b) It tries to maximize the global sum of edges by maximizing the
local sum of edges emerging from each node. (c¢) The properties stated in Sec. 1
are considered as follows:

1. By repeating the strong node set computation in a breadth-first manner we
inherently extract a hierarchy-like structure.

2. We actively remove edges between members of a chosen strong node set and
neighboring strong node sets on each level.

3. Avoidance of nodes with only one child is not embedded in the algorithm;
however, we shall see that both algorithms create such cases rather rarely
(compared to the gold standard; see Sec. 5, Tab. 1).

4. We restrict the number of iterations and thus avoid leaves of grossly different
depths.

5. We fix a global upper bound for the size of a strong node set, which leads
to a relatively evenly distributed fanout.

6. We only add edges from nodes to strong (sub)set of its children and therefore
remain consistent with the tree-like ontology backbone across multiple levels
of abstraction.

7. The ontology has a single root by construction.

4.4 Hierarchical Greedy Expansion (HGE)

As stated above, strong node sets V' C V' (V'] < f) contain nodes that have a
strong evidence to be super-concepts for many other nodes. Therefore, a strong
node set wants to maximize ) . s(v) to gather as much evidence as possible;
however, it also needs to consider the sheer number of children added to the
graph, i.e., |U,cy {w|v — w € E}|, because many children likely lead to many
grand-children and so forth.

We implemented two ways of identifying such strong node sets from a con-
cept (sub)graph. Our first approach is called Hierarchical Greedy Expansion and
works as follows: For a given concept graph G = (V, E) and an upper bound f
it adds nodes n to a strong node set R in the order of their scores s(n) (from



Def. 1) until |R| = f. After adding a node, it removes the added node and all
its edges from G and adjusts the scores of the remaining nodes in V. Recall that
the score s(n) of a node n is the sum of the weights of its outgoing edges.

4.5 Weighted Dominating Set Problem (wDSP)

Our second approach models strong(G, f) as a slightly modified instance of the
Dominating Set Problem (DSP). Formally, the DSP is the following: Given a
graph G = (V, E), find a subset D C V (the superconcepts), such that for each
node v € V—D anode d € D exists, where (d,v) € E, and |D| is minimal. Thus,
the DSP is quite similar to the problem of selecting a set of strong nodes in every
iteration of our framework. This was first observed by Lawrie et al. in [14]. We
reuse and refine their method in this section. Note that we need to modify the
original proposal to consider weights of nodes.

Definition 3. Let G = (V, E) be a concept graph and f be an upper bound. Let
d(D) := {v|lv € V—DA3d € D|(d,v) € E} denote the subset of V—D dominated
by D C V. The weighted Dominating Set Problem (wDSP) is to find a set
of nodes D C V', which satisfies the following requirements:

1. |D[ < f,
2. Y 4ep 8(d) is mazimal,
8. 3D such that D satisfies (1) and (2) as well as |d(D)| > |d(D)|.

However, solving DSP is NP-hard [5], and so is solving wDSP. Therefore, we
use an approximation called GreedyVote (adapted to wDSP), which was shown
to be the best performing heuristic for solving DSP in [19]. GreedyVote takes
the neighborhood of a node n into account when it decides whether n should be
added to a dominating set or not. It uses a score gv(n) that captures for every
node how ’difficult’ or ’easy’ it can be dominated; for details, we refer the reader

o [19]. We modified the algorithm to take node weights into account. For each
node, we compute a new score score(n) = gv(n) + s(a) and thus include both
maximization criteria, | J, oy {wlv — w € E}| as well as ) i, s(v).

5 Evaluation

We run all three algorithms on the set of relationships extracted from the phe-
notype corpus using the methods explained in Sec. 3.2. For the HGE and wDSP
algorithm, we show results for varying values of f (max. size of strong node sets)
and d (max. depth of ontology); all other parameters were fixed as described
in Sec. 3.2. We compare all resulting ontologies to the MPO. In the following,
we first concentrate on precision and coverage and then discuss differences in
topological properties. Remember that we consider a relationship a — b to be
true if concepts a and b are in transitive relationship in MPO, i.e., there is a
path from a to b or a and b are synonyms.



We also ran experiments with different weights wg, wp for subsumption and
pattern discovery (see Definition 1). For brevity, we do not show results here.
In general, coverage and precision is better when both weights are set equally
compared to using only one evidence, but the increase is small (< 5% on cover-
age). All further results were produced with wg = wp = 0.5. Another interesting
information is the precision and coverage of the concept graph itself. Its coverage
serves as an upper bound to all algorithms. We considered all relationships with
ssub(a,b) > 0.5 or sp(a,b) > 0. Then, precision is 0.47 and coverage is 5,070.

We first compare precision and coverage of HGE and wDSP for varying
values of f and d. Fig. 5 gives coverage values for HGE and wDSP for increasing
values of f. Additionally, it shows the fraction of true positives that are direct
relations in MPO. The figure shows that wDSP produces 10-25% more true
positives than HGFE, both, for transitive and direct relations. At the same time,
precision (data not show) slightly decreases from 0.54 to 0.51 for wDSP and
remains almost constant ~ 0.5 for HGE. Though the increase of true positives
slows down for increasing f, it is not bounded, i.e., the number of true positives
grows monotonously. This monotony implies that better coverage values than
reported here are possible, but only at the expense of less readable ontologies
(many nodes with > 50 children).
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maximum strong set size f

——— wDSP, total —e— wDSP, direct  ------- HGE, total ---e--- HGE, direct

Fig. 5. Coverage of HGE and wDSP for different maximum strong set sizes f (d = 10).

Fig. 6 show coverage of HGE and wDSP for different values of d. wDSP has
a steep increase until d = 6 and then roughly levels out, since the fluctuation
for d = 7...20 probably can be contributed to the random factor in GreedyV ote.
In contrast, HGE’s number of true positives is considerable lower but increases
constantly. As in the previous experiment, precision of wDSP is better than for
HGE (e.g., = 0.54 versus =~ 0.50 at d = 2...20). The difference in coverage is
mostly due to the fact that wDSP manages to include more relationships into
the ontology than HGE without loosing precision.
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Fig. 6. Coverage of HGE and wDSP for different maximum hierarchy depths d (f =
50).

Compared to HGE and wDSP, the (parameter-free) GEI algorithm has a
much higher coverage (4,376 true positive relationships). However, this is at the
cost of a considerably lower precision (0.45) and a less well-formed topology (see
below). Fig. 5 and 6 indicate that the coverage of HGE and wDSP likely could
be increased by giving extremely high limits for f and d, but this would probably
lead to equally twisted structures as in the case of the GEI algorithm.

Table 1 compares the performance of the GEI, HGE, and wDSP algorithm
with regard to the topological properties stated in Sec. 1. We also computed
those number for the gold standard itself, i.e., the MPO. GEI clearly performs
the worst, since the standard deviation of both in- and out degree is much higher
than for the other two algorithms (recall the GEI produces an unrooted DAG and
therefore properties 4 and 6 are meaningless). The comparison between HGE and
wDSP is less clear. wDSP has a much more homogeneous out-degree distribution,
but a slightly worse in-degree distribution. Its ontology is deeper and has a much
lower fan-out on average; furthermore, its values overall are considerable closer to
the gold standard than those of the HGE algorithm. Interestingly, MPO does not
quite adhere to Prop.3, i.e., it has 661 concepts that have only one child (which
could therefore be merged). We attribute this to the still immature nature of
the MPO where many concepts might still be placeholders for further expansion;
however, this problem is also ”reconstructed” by wDSP.

Overall, the evaluation shows that wDSP outperforms both, GEI and HGE.
It has the highest precision of all methods and a better coverage than HGE.
The topology of its computed ontology is closest to what one would consider as
desirable for ontologies. However, it is also important to state that the simple
GEI algorithm produces by far the best coverage at a small expense of precision.
Possibly, this expense could be lowered when an evidence cut-off value for edges
in the concept graph is applied. Therefore, we believe that further research on



Table 1. Topological properties for resulting ontologies compared to MPO.

abs min max avg stdev

GEI 1) in degree - 1 53283 242
2) sibling/parent nodes 11,271 - - - -

3) single-child-nodes 1101 - - - -
4) depth - - - - -
5) out-degree - 11129 4.92 28.35
6) multiple-level-parents - - - - -
7) rooted hierarchy no - - - -
HGE 1) in degree -1 7 1.32 0.61
2) sibling/parent nodes 0 - - - -
3) single-child-nodes 163 - - - -
4) depth - 2 7263 0.81
5) out-degree - 1 507.17 11.70
6) multiple-level-parents 0 - - - -
7) rooted hierarchy yes - - - -
wDSP 1) in degree -1 71.45 0.83
2) sibling/parent nodes 0o - - = -
3) single-child-nodes 529 - - - -
4) depth - 2 8 3.09 0.92
5) out-degree - 1 50376 7.14
6) multiple-level-parents 0 - - -
7) rooted hierarchy yes - - - -
MPO 1) in degree - 1 41.18 041
2) sibling/parent nodes 0 - - - -
3) single-child-nodes 661 - - - -
4) depth - 1 13 5.53 1.41
5) out-degree - 1 383.15 3.18
6) multiple-level-parents 0 - - - -
7) rooted hierarchy yes - - - -

greedy methods is valuable, which would also need to include a method to root
the ontology.

6 Discussion

In this paper, we defined and studied the problem of constructing a consistent
and well-formed ontology from a set of inconsistent and heterogenous concept
relationships. We presented and analyzed three different strategies ranging from
a simple greedy algorithm to a sophisticated reformulation of the DSP. We eval-
uated our approaches on a large-scale real-world scenario from the Life Sciences.
Algorithms were judged based on the semantic correctness and certain topolog-
ical properties of the created ontologies. Our results indicate that the wDSP
approach outperforms greedy solutions in terms of precision and topology of the
ontology, but it also has a a considerably lower coverage.

In the future, we will look into ways to directly incorporate topological re-
quirements into the extraction algorithm. Additionally, we will work on increas-
ing coverage without scarifying precision. This can be achieved by either im-
proving the extraction algorithms or by refining the concept matching strategy
or by simply adding further sources of relationship evidences. Certainly, the first
of these options is the most interesting, but also most challenging one.
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