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Abstract
We describe a general approach to the task of
information extraction from free text and pro-
pose methods for learning syntax patterns auto-
matically from annotated corpora. We study the
application of our approach to the extraction of
protein-protein interactions from scientific texts.
Based on this evaluation, we find that learning
patterns outperforms techniques based on hand-
crafted patterns.

1 Introduction
Information Extraction (IE) in the life science domain
has become a big challenge for the textmining commu-
nity. The amount of research articles in this field is im-
mense and still exponentially growing. Today the cita-
tion index MEDLINE references more than 15 million ab-
stracts. Such large amount of text rises the need for auto-
matic text processing. This paper describes a general ap-
proach to the task of IE from free text. In this context we
think of information as named entities and their relations.
For a successful extraction of relations, many preliminary
steps, such as tokenization, part-of-speech (POS) tagging
and named-entity recognition (NER), have to be accom-
plished. We focus on the extraction of relations between
entities in general and introduce methods for learning pat-
terns from annotated training corpora. We evaluated our
approach by extracting protein-protein interactions (PPI)
from abstracts and full texts of research articles, a task
widely studied during the last years [Friedman et al., 2001;
Blaschke and Valencia, 2002; Daraselia et al., 2004]. We
applied our methods to a set of 1000 sentences, taken from
the BioCreAtIvE-Corpus [BioCreAtIvE, 2004], and to ar-
ticles describing PPI stored in DIP [Xenarios et al., 2001].

2 Methods
We followed two different approaches. The first was based
on algorithms for pairwise sequence alignment to gener-
ate patterns and match them against new text. Huang et
al. examined such methods to extract PPI from biomed-
ical texts annotated with POS-information [Huang et al.,
2004]. Patterns were sequences of anchor words and used
for alignment or as regular expressions, which can be fur-
ther refined. By applying additional properties, e.g. limited
wordgaps, a set of patterns was optimized using a genetic
algorithm [Plake et al., 2005].

In the second approach, we did not perform explicit pat-
tern generation, but rather tried to find patterns in anno-
tated texts. We modeled patterns as finite state automatons

(FSA), whose structures were learned from scratch by ge-
netic optimization. We distinguished between a determin-
istic and a probabilistic model. The first was a Mealy-FSA,
that can easily be used for regular grammar text parsing.
The second model was a Hidden Markov Model (HMM).
For an observation sequence, i.e. a sentence, the most prob-
able sequence of states was calculated with the Viterbi-
algorithm [Viterbi, 1967]. Task-specific entities and word
classes were each represented by a state – proteins, inter-
actors and different POS tags. All transition- and emis-
sion probabilities were derived from fully annotated train-
ing sentences. Figure 1 shows representations of a learned
pattern for each approach.

A training corpus of 1000 sentences has been manually
inspected for any kind of PPI and 253 interactions were
stored in a gold file to support automatic evaluation. We
performed a 10-fold crossvalidation and compared the ex-
traction accuracy of automatically learned patterns to a set
of hand-crafted patterns. In every fold a random selection
of two-thirds of the corpus was used for training and one-
third for testing. For learning multiple patterns, we fol-
lowed a separate-and-conquer strategy.

A second validation was performed on articles describ-
ing protein interactions stored in the DIP. The DIP contains
nodes for known PPI, each including references to a re-
search article describing the respective experimental find-
ings. We randomly selected 297 PPI for the yeast organism
and sought to find these interactions in the referenced liter-
ature. Again, we compared results of automatically learned
patterns to hand-crafted ones.

3 Results
In this paper, we present preliminary results of our work.
First we examined patterns, build by pairwise local align-
ment of example sequences. As a scoring scheme for sub-
stitution, we chose a modified Levenshtein measure. Align-
ing patterns to sentences resulted in 90% precision, or 60%
recall respectively. Balance between precision and recall
was adjusted by a threshold of the pattern generation algo-
rithm proposed by Huang et al., 2004. Patterns occurring
less often than a specified threshold were ignored. When
using the sequences as regular expressions, further opti-
mized with wordgap parameters, we achieved a precision
of 75%, and a recall of up to 60%. Both methods discov-
ered about 60% of all yeast interactions described in the
DIP-referenced articles. This task was slightly different
from the above, because the DIP nodes do not reference
the exact textual evidence, but the complete text only.

Next we learned FSA structures from our corpus using
genetic optimization. Setting the fitness function, which



Figure 1: A pattern as a sequence of anchor words aligned to
a text (A) and as a regular expression modeled by a Mealy-FSA
(B). The HMM on the bottom is a probabilistic Moore-FSA (C).
We distinguished between related entities (+) and not related en-
tities (-) in annotated corpora and represented both occurrences
for each type of entity by a different state. PN - protein name;
POS - any POS tag; VBINT - verb referring to an interaction;
IN - preposition.

directs the evolution process, to either precision or recall,
directly effects structures of emerging patterns. More than
65% of DIP interactions were found using only four recall-
optimized Mealy-FSAs. When optimizing patterns toward
precision, crossvalidation revealed an overfitting to training
corpora. After reducing model complexity, e.g. limiting the
number of transitions or allowing only forward-connected
models, performance improved.

A problem of time complexity arose from the Viterbi-
algorihm, that calculates the state sequence for an HMM
and a given sentence. This made evolution of HMM struc-
tures much slower than for Mealy structures. Restriction to
models with only a few states helped to save learning time.

4 Discussion
Our results indicate that automatically learned patterns
show good performance for the extraction of PPI from free
text and even outperform hand-crafted patterns [Plake et
al., 2005; Blaschke and Valencia, 2002]. Blaschke et al.
reported a recall of 25% on a set of 851 interactions de-
duced from the DIP. Huang et al. aligned patterns for the
extraction of PPI and reported a precision of about 80%
on a set of 1200 sentences. Building patterns for an IE-
system by hand is a time-consuming and thus expensive
step. Experts are needed for analyzing texts to find simi-
lar passages or phrases, that describe the desired informa-
tion. In this work we propose automatic pattern learning,
which can be tuned toward certain qualtity measures. Our
approach relies on annotated, representative text corpora,
which are unfortunately rarely available for most extraction
tasks. Here, manual annotation again becomes a bottle-
neck for automatic IE-systems. For IE-tasks in the domain
of life science, some corpora, e.g. GENIA [Ohta et al.,
2002], BioCreAtIvE, BioText [Rosario and Hearst, 2004],
and IEPA [Berleant et al., 2003], with annotated entities
such as genes, proteins, drugs, and diseases, are available.
The IEPA corpus even comes with annotated PPI, BioText
with disease-treatment relations.

We currently study the impact of different scoring
schemes and gap penalties, as well as word class tags on

extraction performance. Incorporating information from
chunkers and shallow parsers can help to capture the rele-
vant parts of a sentence. For learning HMM structures, we
also consider techniques other than evolution, e.g. merging
states starting with a fully specified model [Seymore et al.,
1999]. For a broader evaluation of our methods, we will
also perform the extraction of relations from other corpora
(IEPA, BioText).
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