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Abstract— Ever since the advent of high-throughput biology (e.g., 
the Human Genome Project), integrating the large number of 
diverse biological data sets has been considered as one of the 
most important tasks for advancement in the biological sciences. 
Whereas the early days of research in this area were dominated 
by virtual integration systems (such as multi-/federated databas-
es), the current predominantly used architecture uses materiali-
zation. Systems are built using ad-hoc techniques and a large 
amount of scripting. However, recent years have seen a shift in 
the understanding of what a “data integration system” actually 
should do, revitalizing research in this direction. In this tutorial, 
we review the past and current state of data integration for the 
Life Sciences and discuss recent trends in detail, which all pose 
challenges for the database community.  
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I.  INTRODUCTION 
Biological research is a science which derives its findings 

from the proper analysis of experiments. But what has changed 
dramatically over the last three decades is the throughput of 
those experiments – from single observations to gigabytes of 
sequences in a single day – and the breadth of questions that 
are studied – from single molecules to entire genomes, tran-
scriptomes, proteomes, etc. Today, a large variety of experi-
ments are carried-out in hundreds of labs around the world, and 
their results are reported in a myriad of different databases, 
web-sites, publications etc., using different formats, conven-
tions, and schemas. The integration of these diverse and distri-
buted databases has been a topic of bioinformatics research for 
more than 20 years. The goals of data integration (DI) from a 
biologists point-of-view are mostly cost reduction (less redun-
dant work), quality enhancement (exploiting redundant work), 
new findings (combining complementary work), and faster 
discoveries (reusing instead of redoing). From the very begin-
ning, also database researchers have worked on this topic [1], 
attracted by the importance and challenge of the problem and 
the multitude of truly heterogeneous and freely available data 
sets. However, after about a decade of research, efforts de-
clined in the early 2000’s. A number of technologically ad-
vanced systems had been developed (federated, mediator-
based, multi-database languages), but almost none of them 
achieved a notable impact in the targeted domain. In turn, 
projects that were well received in the field had been developed 
by pure practitioners, mostly using home-grown data structures 
– and large quantities of Perl programming. 

However, the need for DI in the Life Sciences has not 
ceased, but is ever increasing [2, 3]. Systems Biology, aiming 

at a comprehensive view on cell physiology, inherently de-
pends on data from a multitude of different sources. Transla-
tional Medicine targets the transfer of results from basic bio-
logical research into medical practice, calling for the integra-
tion of genomic and medical data. Related disciplines such as 
ecology, paleontology, or biodiversity, increasingly need to 
include data on a level of detail that is only achieved by ge-
nomic research, often integrating bio-molecular data with geo-
graphic information. This trend is also reflected in the estab-
lishment of a proper workshop/conference series (DILS – Data 
Integration for the Life Sciences), large project calls on na-
tional and international level (eScience, cyberinfrastructure 
etc.), and the establishment of specialized working groups at 
international organizations (such as W3C-HCLS) 

Recent years have seen a revitalization of DI research in the 
Life Sciences. But the perception of the problem has changed: 
While early approaches concentrated on handling schema-
dependent queries over heterogeneous and distributed databas-
es, current research emphasizes instances rather than schemas, 
tries to place the human back into the loop, and intertwines 
data integration and data analysis. Transparency, one of the 
main goals of federated databases, is not a target anymore; 
instead, users want to know exactly which data from which 
source was used in which way in studies (provenance). The old 
model of “first integrate, then analyze” is replaced by a new, 
process-oriented paradigm: “integration is analysis – and anal-
ysis is integration”. These new views on DI, lessons learnt 
from the past, and the challenges to face are the subject of this 
tutorial. 

II. BIOLOGICAL DATA SETS 
Designing DI solutions in the context of the Life Sciences 

must take into account the specific properties of the domain [4, 
5]. These are related to (i) the way biological data is produced 
and stored within biological databases (BDB), (ii) the fact that 
biology is a science in constant evolution, and (iii) the fact that 
BDB users are from various communities.  

Regarding the first point, primary BDB store data that is 
close to the raw experimental result (e.g., DNA sequences), 
while secondary BDB manage information obtained after vari-
ous steps of analysis and careful curation, grouped around 
increasingly complex entities (e.g., genes, diseases, pathways 
etc.). While (discrete, string-type) sequences were the main 
kind of raw data to integrate 20 years ago, today various –
omics data set (transcriptomics, proteomics,etc.), often consist-
ing of quantitative measurements, are of equal importance. 
Secondary BDBs heavily import data from other BDB and are 
mostly maintained by human curators [6]; they may be com-
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plementary but also could be redundant and divergent (espe-
cially when experts disagree). Because humans offer unrivaled 
precision, manual curation still predominates, despite its high 
cost and obvious problems of scalability [7].  

The number of BDB is increasing steeply; currently more 
than 1,200 BDBs are publicly available [8]. This led to the call 
for DI systems with extreme scalability in the number of 
sources. However, in reality the usage of these databases is 
Zipf-distributed [2], and there are only a few projects that work 
with more than, say, 20 different data sources. The choice of 
BDB to be integrated is usually is different from project to 
project, driven by specific user requirements, and very often 
encompasses integration of local (private) data with publicly 
available data sets.. Additionally, DI is hardest when applied to 
the large and constantly changing set of secondary databases; 
however, these are also the most rewarding targets as they 
provide condensed knowledge instead of raw data. Another 
feature of BDBs is that they heavily cross-reference each other, 
mostly in the form of storing external IDs. These instance-level 
links probably are the most important source of information for 
DI and form a dense network of hundreds of databases [4], 
although they also create severe problems (e.g., no semantics, 
broken and outdated links, a high level of incompleteness, etc.). 

Biology is a science in a state of constant evolution. This 
leads to a general high level of fuzziness and volatility in con-
cept definitions. Even a fundamental concept such as “gene” 
has plenty of definitions that change over time, due to scientific 
discoveries of new phenomena [9]. This has obvious conse-
quences in schema mapping. The second consequence is the 
inherent difficulty to identify objects. A given gene may be 
discovered (and named) independently by various groups and it 
is often hard to establish that different pieces of information are 
actually related to the same object.  

The third class of BDB properties is related to social issues. 
Biologists need to know the exact origin of any information 
used in an analysis, as only this gives them an understanding of 
what they can expect from the data (in terms of quality, com-
pleteness etc.). Therefore, provenance and the trust are very 
important aspects of DI. Other “soft” criteria are definition and 
usage of standards, and very human problems around the (lack 
of) willingness to share [10, 11]. This is especially important in 
a competitive area such as the Life Sciences. Furthermore, 
integrating BDB is an interdisciplinary topic as users of DI 
solutions are biologists, while their developers often are com-
puter scientists or bioinformaticians.  

III. THE PAST OF DI IN THE LIFE SCIENCES  
The first published systems targeting DI in the Life 

Sciences all followed a similar scheme: They used scripts to 
parse the database (flat-files with proprietary formats) into a 
semi-structured form that was indexed and could be searched 
(SRS [12], Entrez [13], dbGET [14]). Links between entries 
were used to offer join-like functionality and, more important-
ly, web-based browsing. All three systems were developed by 
biologist researchers and used no database technology; they all 
still exist, and Entrez and SRS arguably still are the most fre-
quently used DI systems in the Life Sciences.  

The second generation of systems was built around the 
concept of federated databases. Examples include OPM [15], 
BioKleisli/K2 [16], and DiscoveryLink [17]. Later research 

(third generation) focused on mediator-based systems, often 
targeting semantic integration by using ontologies [18, 19]. A 
very influential system of this kind was TAMBIS [19], based 
on an ontology with more than 1,000 classes and a sophisti-
cated query rewriting algorithm using description logics. How-
ever, none of the second or third generations of DI systems (to 
our knowledge) still exist today. Note that they had a couple of 
properties in common. They were based on virtual integration, 
focused on schemas, paid little attention to actual data, and 
targeted maximal transparency to relieve the user from having 
to know which source to query. 

Notably, the influence of bioinformatics on DI was even 
greater than the influence of DI on biological discover. Many 
of the DI projects were performed when the Web was still 
young. Bioinformatics at that time was one of the few areas 
were many, large, and heterogeneous data sets were freely 
available and where there was a strong need for DI. In particu-
lar, the Human Genome Project posed unprecedented chal-
lenges to DI and fostered new ideas [5]. 

IV. CURRENT STATUS  
In the early 2000’s, ad-hoc systems based on materializa-

tion and developed by bioinformaticians replaced mediator-
based prototypes since they were adapted much better to the 
analysis and visualization needs of bioinformatics. In a nut-
shell, the predominant approach to DI is “PERL + MySQL + 
XML” a.k.a “Data warehouses” (DWH) in this field.  

The first reason for the success of DWH is the fact that 
maintaining a BDB almost always involves data curation. In 
this process, researchers may, for instance, discover that some 
instances should be grouped together or that others should be 
split. Values are imputed, tuples are filtered, data is added, etc. 
The resulting, cleansed data is the input to new analysis and 
may be redistributed. Such operations require data to be present 
locally. The second key point is economies of scale. Bioinfor-
matics over the years produced several mature libraries for 
several aspects of building and managing BDBs (BioPerl, 
BioJava, BioSQL etc.). Today, parsers for loading data from all 
major biological sources into a variety of relational schemas 
are freely available; furthermore, modeling can build on proven 
schemas (e.g., GUS [16], BioWarehouse [20],, GMOD [21]). 
Building a DWH integrating dozens of BDB nowadays can be 
achieved in weeks rather than months [22]; however, an open 
and major problem is to keep a system in a current and consis-
tent state, despite constant changes in the underlying data 
sources and cleansing operations being performed in the DWH 
[23].  

A few current used systems work with distributed data. The 
probably most popular one is DAS, the Distributed Annotation 
System [24] which essentially is a data exchange protocol and 
a server. BIRN or caBIG are more heavy-weight systems based 
on shared schemas and ontologies [25, 26]. 

Last but not least, an increasingly popular technique for 
solving semantic DI problems is the usage of ontologies, which 
are hosted in the hundreds in repositories such as BioPortal 
[27] or OBOFoundry [28]. In practice these are not used during 
DI, but before, i.e., as structured, controlled vocabularies for 
annotating entities. Despite a plethora of work devoted to 
building inference-based DI solutions, none of these are cur-
rently being used in production-level systems.  



V. TRENDS IN DATA INTEGRATION 
The recent revitalization of DI research in the Life Sciences 

is accompanied by a change in the perception of the role and 
necessary functionality of a DI system. Early systems consi-
dered DI as an upfront effort leading to a homogeneous and 
clean integrated database to be then used by researchers for 
biological discoveries. This probably never was a good idea, 
because semantics is context-dependent, implying that different 
users need different ways of “integration” even for the same 
data sets. Note that highly successful systems, such as Entrez 
completely refrain from semantic data.  

This paradigm change gives rise to some important re-
search trends. First, the process of integration itself, i.e., the 
“integration workflow”, is becoming a research topic in its 
own. A second trend is the growing importance of sensible 
ranking, because data sets grow and grow and crisp results do 
not properly represent the fuzziness and noise in biological 
data. Note that both these trends are not unique to the Life 
Sciences; especially recent work in Data Spaces follows similar 
lines [29]. A third important trend is the increasing usage of 
Semantic Web technologies to cope with semantic diversity. 
This trend is especially fuelled by the simplicity of RDF when 
used as a global data model.  

A. Scientific Workflows 
Typical analysis processes in the Life Sciences are com-

plex, multi-staged, and large. In contrast to typical ETL 
workflows, their building blocks are complex user-defined 
functions rather than relational operators. On the other hand, 
they are focused on data flow, which contrasts them from busi-
ness workflows. These differences have accumulated into so-
called scientific workflow systems (SWFS) [30], an area large-
ly driven by the bioinformatics community. SWFS aim to pro-
vide an environment to guide a scientific analysis process from 
its design to its execution. The analysis processes are 
represented at a high level of abstraction which enhances flex-
ibility, reuse, and modularity while allowing for optimization, 
parallelization, etc. [31]. SWFS may also deal with failure 
handling, scheduling, and monitoring. All steps plus interme-
diate results are traced to enhance reproducibility. Using a 
SWFS for DI implements the paradigm of “integration is anal-
ysis”.  

Challenges: Very interestingly, SWF can be shared, 
searched, compared etc., opening a door to the exchange of 
mature and specialized DI solutions (e.g., myExperiment is a 
portal that hosts about 900 scientific workflows; BioCatalogue 
is a repository of more than 3,000 web services to be called in 
workflows [32]). Such non-technical aspects offer a number of 
open research questions. First, users might want to search for a 
specific workflow having only weak constraints in terms of 
requested functionality. Alternatively, users might have a con-
crete workflow and are interested in finding similar ones. Both 
problems boil down to approximate queries in SWF reposito-
ries. Research in these directions has recently started [33, 34], 
but many questions such as searching heterogeneous workflow 
models, proper similarity measures, and scalability are still 
open.  

There are also interesting open questions in the manage-
ment of SWF. Provenance in SWFS is a key concept since it 
supports reproducibility and helps assessing the quality of 

results [35, 36]. SWFS uses various models of computation 
when executing workflows, providing various kinds of trace 
while the amount of data produced is enormous. Open research 
questions in this area include modeling runs [35], designing 
scalable management and analysis methods for storage frame-
works [37, 38], visualization and user-interface topics [34], 
comparing workflow runs based on their provenance data [33], 
querying and indexing provenance information [38-40], and 
orchestrating distributed web services calls in an efficient way 
[41]. 

B. Ranking  
One of the key challenges in DI in the Life Sciences is to 

help users choose between alternative pieces of information, 
such as choosing between conflicting updates when maintain-
ing a DWH [23], choosing between different data sources [42], 
or choosing among several answers when querying a DI system 
[43]. Such choices are best supported by sensible ranking me-
thods [44]. However, even widely used portals still do not 
provide any ranking services although queries often produce 
huge amounts of results. For instance, searching for the set of 
genes involved in breast cancer returns 1,472 answers in the 
reference database EntrezGene without any ranking in terms of 
importance. 

Challenges: Despite the large body of work on ranking 
search results performed in the database community [45, 46], 
no approach is currently able to take into account features of 
Life Science data. Here, entries often are text-centric, which 
requires the inclusion of text mining methods in the ranking 
[47]. Facts are not always of equal strength. In the example 
above, some genes may be clearly involved in breast cancer 
while for others this relationship might still be putative. Links 
between entries are very important to augment the confidence 
in results; however, they cannot be considered in isolation, but 
only in the context of the entire network of linked entities [42]. 
This may be achieved using PageRank-style algorithms in 
systems such as Biozon [48] or soft-rank [49] while various 
criteria (e.g., the reliability of sources providing data or links) 
should additionally be considered [50]. End users also have 
different expectations, such as either looking for established or 
for more surprising results [51]. Also, works on probabilistic 
databases may play an important role [52] . Another open prob-
lem is the proper evaluation of different ranking methods.  

C. Semantic Web  
Semantic heterogeneity on all levels (schema elements, 

attribute values, object identifiers) has always been a strong 
impediment to the integration of biological data [5]. Recently, 
many groups promote the usage of Semantic Web (SW) tech-
nologies to alleviate these problems. In their view, the combi-
nation of RDF as a common data model, SPARQL as a query 
language for seamlessly crossing database borders, and the 
inference capabilities of OWL build a tool stack that is ideally 
suited for the Life Sciences [53, 54]. This has lead to the crea-
tion of a series of prototypes trying to showcase advantages of 
this approach [54-56].  

Challenges: A number of issues are still open and offer 
ample opportunities for research. First, although the usage of 
ontologies is commonplace in the Life Sciences (see above), 
they mostly are not interlinked, most of them are not used as 
widely as they could be, and/or many of them change rapidly. 



Increasing their interconnectedness and their usage calls for 
research in ontology matching [57] and automated annotation 
[58-60] (with relationships to work in social networks [61]). 
Another important line of research tackles the evolution of 
ontologies [62]. Note that ontologies are far less formal than 
what the SW community assumes to be an ontology, leading to 
frequent misunderstandings between researches.  

Second, SPARQL still misses essential features for DI, 
such as user-defined functions, transitive predicates for navi-
gating heterogeneous graphs, and aggregation. SPARQL also 
does not adequately support distributed queries [63]. Several 
proposals are on the way to extend SPARQL with such features 
(e.g. [64, 65]), but for many of them no efficient implementa-
tion is currently available. 

Third, using RDF as common data model does not by itself 
solve the problem of semantic heterogeneity, but only post-
pones it until query time. Current efforts on the large-scale 
“triplification” of biological data sets [53, 66] must be aug-
mented with methods for object unification and for mapping of 
ontology terms to unleash the full potential of the SW. 

VI. CONCLUSIONS  
Research in DI and research in the Life Sciences for long 

had and still have an intimate relationship. In few (if any) other 
areas, there is such an abundance of complex, heterogeneous, 
and freely available data sets coupled with strong scientific 
incentives. The Life Sciences offer an excellent testbed for DI 
solutions, and in turn this field also had a strong impact on DI 
research (e.g., biological data was a main motivator for early 
work in semi-structured data which then become XML [67]).  

However, experiences have shown that to have an impact, 
DI research must work closely with domain experts and must 
develop methods that keep these users in the loop, leveraging 
their knowledge instead of trying to replace it. Also, biologists 
often remain unimpressed if DI projects stop with the creation 
of “clean” data sets; instead, the separation between integration 
and analysis must be overcome. Whether this is best done by 
empowering systems with more and more semantic knowledge 
(the SemWeb way) or by empowering people to build their 
own systems (the SciWF way) remains an open question, leav-
ing ample space for research in both directions.  

VII. ABOUT THE TUTORIAL 

A. Intended Audience and outline 
Researchers and research-oriented engineers in data inte-

gration, knowledge management, scientific databases, semantic 
web, object ranking, and workflow systems. The tutorial will 
offer a survey over a wide range of topics. Familiarity with 
biological terms is not necessary. 

Attendees will learn about (i) specificities of biomedical da-
tabases, (ii) lessons learnt from 20 years of data integration 
research in this field, and, most importantly, (iii) current hot 
topics and opportunities for research, especially from a data-
base / data engineering point-of-view. The latter will make up 
for approximately half of the tutorial. 

B. About the Speakers 
Sarah Cohen-Boulakia graduated from Université Paris-

Sud, is currently an assistant professor in the same University 
and has spent a post-doc in the Database group at the Universi-

ty of Pennsylvania. Her major research interest is data integra-
tion in the Life Sciences, with a focus on provenance in scien-
tific workflows. She collaborates closely with biologists, phy-
sicians, and bioinformaticians in European and International 
projects.  

Ulf Leser holds a CS degree from TU München and a PhD 
in Query Optimization from TU Berlin. He currently is a Pro-
fessor for Knowledge Management in Bioinformatics at Hum-
boldt Universität in Berlin. His primary research interests are 
data integration, information extraction, and bioinformatics. He 
is part of a number of interdisciplinary projects with Biologists 
and MDs in which he joyfully experiences the challenges and 
benefits of directly working together with biologists. 
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