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Abstract

Text Mining has established itself as a valuable tool for  
knowledge extraction in many commercial and scientific  
areas. Accordingly, a large number of different methods  
have  been  developed  focusing  on  a  broad  range  of  
different tasks. We report on a novel system architecture  
that  is  fundamentally  service-based,  i.e.,  it  models  and 
implements text mining and knowledge extraction routines  
as  independent,  yet  federated  services.  The  system  has 
several  layers:  (1)  Base  services  perform  various  
fundamental extraction tasks. They all implement a fixed  
interface  but  keep  their  particular  algorithms  and 
functionality. (2) A metaservice acting as a central access  
point  to  those  base  services,  thus  providing  a 
homogeneous  interface  to  different  algorithms.  (3)  An  
aggregation  service  on  top  of  the  metaservice  which  
implements  functionality  to  graphically  show,  compare,  
and aggregate the results of different base services. Each  
layer is accessible as a Web Service and thus ready to be  
integrated in applications that are higher up in the value  
chain,  such  as  authoring  tools  or  systems  for  the 
automatic construction of knowledge bases. We developed  
our system with a focus on the mining of Life Science text  
collections. It is available from http://www.bc-viscon.net.

1. Problem Background

Much of the present knowledge in the Life Sciences (as 
in many other domains) is not available in structured form 
but  only  in  scientific  articles  [4].  With  the  steeply 
increasing  levels  of  data  production,  it  has  become 
infeasible that a human researcher keeps up to date with 
the  latest  findings  even  in  very  small  areas.  Therefore, 
automatic methods for  finding and extracting knowledge 
from  large  collections  of  articles,  written  in  natural 
language, are needed. 

Text mining encompasses a set of techniques that target 
this  task  [16].  A  particular  relevant  technique  is 
information  extraction,  which  denotes  algorithms  and 
methods  for  finding  and  extracting  specific  pieces  of 
information from unstructured text. Information extraction 
typically is performed in the form of analysis pipelines, 
where  several  algorithms  are  called  one  after  the  other 
such that the output of each step in the pipeline is the input 
to  the  next  step.  Typical  steps  are  format  conversion, 

sentence  splitting,  tokenization,  word  stemming  or 
lemmatization,  annotation  of  tokens  with  their  part-of-
speech  (adjective,  verb,  article  etc.),  deep  or  shallow 
parsing, recognition of semantic units such as names (of 
persons, organizations, products etc.), dates, location etc., 
and  the  detection  of  relationships  between  entities.  For 
each  of  these  steps,  various  algorithms  have  been 
proposed and implemented. They all have their particular 
strengths,  depending  on  the  type  of  text,  the  type  of 
entities searched for, the domain etc.

The human organism has approximately 25000 genes, 
each  of  which  is  important  for  one  or  more  particular 
functions. Many genes for decades have been and still are 
the  target  of  intensive  research.  For  instance,  p53,  an 
important  gene  in  the  onset  of  many  cancer  types,  is 
mentioned  in  almost  50000 publications;  MCY,  a  gene 
involved in regulation of cell cycle, is mentioned in app. 
20000  articles.  Such  well-studied  genes  are  also  well 
represented in structured databases.  On the contrary,  for 
almost 50% of the human genes no structured functional 
information is available. Although researchers had studied 
many  of  them,  they  reported  on  their  findings  only  in 
papers. At the same time, complex and endemic diseases 
such  as  diabetes,  cardio-vascular  diseases,  rheumatic 
diseases etc., are associated to dozens or sometimes even 
hundreds  of  genes,  the  function  of  which  often  is  only 
described in text.

Text mining has established itself as an indispensable 
tool to get an overview of the genetic background of such 
diseases. The most important tasks that need to be solved 
are  (a)  recognition  of  gene  and  protein  names  (named 
entity  recognition,  NER),  (b)  recognition  of  functional 
information,  and  (c)  recognition  of  the  relationship 
between  biological  entities  (such  as  protein-protein 
interaction or gene-gene regulation) [7]. For each of these 
steps,  various  algorithms  have  been  proposed  and 
implemented  (see  [14]  or  [18]  for  surveys).  Their 
performance  differs  largely  depending  on  the  particular 
task  at  hand.  For  instance,  the  accuracy  of  tools  for 
recognition of gene names depends to a great extent on the 
species that has the gene. While genes of humans, mice or 
flies in general are very hard to detect (F-measure around 
80%), yeast genes are much simpler (~90%) [10]. Tools 
for  recognizing  protein  interactions  differ  in  their 
performance depending on the structure of the texts, the 
precise  definition  of  “interactions”,  and  many  other 



factors.  Furthermore,  all  tools  are  tuned  either  towards 
precision  or  recall;  finally,  they  offer  different  added 
services,  such  as  the  mapping  of  recognized  objects  to 
real-world entities (named entity normalization). 

Accordingly,  there  are  no  one-suits-all  text-mining 
tools,  and particular  projects  always need to  build  their 
individual  analysis  pipelines.  However,  when  we  fix  a 
particular task (such as NER for genes), the interfaces of 
all relevant tools can be described quite succinctly, as they 
basically  all  implement  the  same  functionality  and 
produce  the  same  output  (though  in  different  formats). 
Therefore,  it  should  be  possible  to  construct  systems 
where  each  tool  developer  implements  its  particular 
service in whatever  form, but  with a standard interface; 
building an entire text mining pipeline should then only be 
a matter of “gluing” together a selection of such services. 

In this paper,  we report on a system that implements 
this  idea.  We  built  a  multi-layer  application  for  the 
recognition of gene and protein names in scientific articles 
using  a  flexible  composition  of  a  set  of  independently 
developed and maintained services. The process is divided 
in three tasks (see Fig. 1):

• Given  an  arbitrary  text,  base  services  (BC-ASs  – 
BioCreative  Annotation  Servers) recognize  genes, 
proteins, taxa, and interactions in this text using their 
favorite  algorithm. All  base  services  implement  the 
same interface and provide their results in a standard 
format. In the current  system, there are twelve such 
base  services  running  at  institutions  all  over  the 
world.

• A  metaservice  (BCMS  –  BioCreative  MetaServer) 
controls and orchestrates a set of base services. The 
BCMS may be queried directly by providing a text, 
database  identifier,  or  a  reference  to  PubMed,  the 
largest  existing  collection  of  abstracts  in  the  Life 
Science1.  It  passes  this  information  to  the  base 
services, gathers their results and integrates them into 
a  uniform output.  BCMS also maintains a cache of 
analyzed  results  for  faster  access  and  provides 
metadata  on  the  base  services  and  their  statuses. 
Currently, it is ran and maintained in Madrid.

• An  aggregator  service  (BC-VisCon)  semantically 
integrates the results gathered by BCMS. To this end, 
it  implements  various  routines  to  merge  conflicting 
results  (which  happen  when  different  base  services 
annotate different regions in the text as genes) and to 
graphically analyze and compare results. VisCon can 
be used directly through a flexible Web2.0 interface, 
or  may  be  called  as  a  parameterized  service  from 
other applications. This service is currently set up in 
Berlin.

The system we present is, to our knowledge, the first 

1PubMed currently indexes app. 16 Million abstracts and grows at a rate 
of app. 500.000 abstracts per year.

application  connecting  distributed  web  services  for  text 
mining.  It  fundamentally  builds  on  SOA principles  and 
technology  and  demonstrates  their  use  for  scientific 
knowledge management in an important area, i.e., the Life 
Sciences.  Research  in  the  Life  Sciences  has  since  long 
been  a  worldwide  distributed  effort,  with  thousands  of 
groups  freely  contributing  data  and  programs.  The 
immense flood of data can only be analyzed by a concerted 
effort of groups around the world [2]. We believe that our 
endeavor  is  a  blueprint  for  setting  up analysis  pipelines 
using SOA technology.

The rest of this paper is structured as follows. In the 
following two subsections we detail the functionality of 
BCMS and BC-VisCon. An overview of  their  technical 
implementation is given in Section 2. We highlight the use 
of SOA and Web2.0 techniques in Section 3. Applications 
of  our  service  pipeline  are  highlighted  in  Section  4.  In 
Section 5, we conclude and discuss future extensions to 
our system.

Figure 1: Interplay of base services, the BCMS metaservice, 
and VisCon. All services were developed independently and 

are hosted by different organizations.

1.1. BCMS, the BioCreative MetaServer

The  BioCreative  MetaServer  (BCMS)  [12]  is  a  text-
mining platform that was built following the blueprint of 
similar and highly successful result aggregation platforms 
in Bioinformatics, such as structure prediction services [5]. 
The  common  principle  is  unifying  results  from  various 
algorithms running on the same task but in a distributed 
manner, thereby providing a collated view on the data that 
enables the service’s user to directly compare and access 
different results. 

BCMS started  after  the  BioCreative  II  workshop,  in 
which results on an international competition in biological 
text mining had been presented [11]. At this workshop, a 
large and international group of researchers decided that 
providing a standard interface to different annotations on 
biomedical  texts  would  provide  a  great  benefit  to 
biomedical  research.  For  text  mining  researchers,  the 
BCMS provides a consensus for annotations, which can be 
exchanged,  compared  and  reused  throughout  the 
community.  For  the  administrator  of  bioinformatics 



resources (databases etc.), the platform can provide added 
value  to  their  existing  systems  (e.g.,  mapping  protein 
records to Medline abstracts). Finally, a biomedical end-
user  can  use  it  to  have  simple  access  to  high-end  text 
mining solutions. All these use cases are possible due to 
the SOA-based design of the platform, as demonstrated in 
this publication.

BCMS2 provides  four  semantic  annotation  types  for 
scientific texts (see below for details). These are (a) gene/
protein  names,  (b)  gene/protein  normalizations,  (c) 
biological  taxa,  and  (d)  protein-protein  interactions. 
Currently, there are twelve annotation services connected 
to the platform. Through its SOA-based design principles, 
any  number  of  additional  Annotation  Servers  and 
annotation  types  could  be  integrated  into  the  platform 
without  changing  the  public  XML-RPC  interface,  thus 
shielding other applications – such as BC-VisCon – from 
changes. The overall BCMS design is visualized in Fig. 2.

Figure 2: BCMS Architecture. (1) The web server listens for 
incoming HTTP or XML-RPC (such as BC-VisCon) requests. 
(3) Requests are forwarded to the BC-ASs. (2, 4) Results are 
enriched by external services and stored and indexed locally 

in a warehouse.

1.2. BC-VisCon, a Semantic Aggregator

The base services  orchestrated by the BCMS provide 
some of the best NER systems for gene and protein names 
to date. The BCMS makes accessing their results simple; 
however, a user still has to chose which service might suit 
his  needs  best.  This  is  not  an  easy  task,  as  no  easily 
accessible method existed for comparing annotation server 
results on a given text. VisCon provides this functionality. 
It is a third level application on top of the services provided 
by the BCMS. It takes a PubMed query, calls the PubMed 
query service to find matching abstracts, passes these (or a 
user-chosen  subset)  to  the  BCMS,  and  receives  the 
annotations of the different annotation servers on all texts. 
As NER for gene names is not an easy task, the different 

2 The current prototype provides access to the corpus of approx. 22800 
Medline abstracts used during BioCreative II.

results often are conflicting, i.e., different servers annotate 
different  regions  in  the  text  as  gene.  VisCon  provides 
services  to  (a)  graphically  compare  the  conflicting 
annotations (see Fig. 3), (b) compute a unified result using 
different  consensus  finding  methods  (such  as  union, 
intersect, majority etc.), and to (c) compute a hierarchical 
clustering of all services on a given subset of the texts to 
identify groups of services performing similar annotations. 
These functions are available through a Web2.0 interface 
and as XML-RPC services.

Note  that  this  task  is  necessary  because  there  is  no 
ground truth in NER for genes. [10]. This starts with the 
question  what  a  gene  is  –  a  question  biologists  are  far 
from agreeing about – and ends with the unclear definition 
of  what  makes  a  gene's  full  name.  For  instance,  the 
longest  gene name we are aware of consists  of not  less 
than  ten  tokens:  “human  T  cell  leukemia  lymphotropic 
virus type 1 Tax protein “; however, where words such as 
“human” or “protein” should be part of this gene name is a 
question  of  debate  even  among  experts.  It  follows  that 
users seeking annotations for their texts have a more or 
less  precise,  but  in any case  non-universal  sense of  the 
'correctness'  of  a  tagging.  Any  system  for  aggregating 
annotations  thus  cannot  claim  to  be  able  to  derive  the 
“true” annotations, but can only provide tools for helping 
users  to  find  “their”  tagger  –  be  it  a  single  annotation 
server or be it the combination of several such servers.

Figure 3: The BC-VisCon web interface showing contradicting 
annotations by different base services (colored lines) on the 
same text (text on top of lines). The three-paneled area on 

the left contain configuration options. 

2. Technical Explanation

In this section, we briefly describe the techniques that 
were  used  to  implement  our  distributed  text  mining 
pipeline.

2.1. BCMS

From  the  very  start,  the  BCMS  was  designed  on  a 
service-based paradigm. This implies that all functionality 
is  provided  by  services  which  are  implemented 
independently and which are maintained worldwide. Prior 



to its creation, there actually was little incentive for text 
mining developers to provide their algorithms through web 
services;  however,  with the advent  of the BCMS, many 
providers have wrapped their algorithms into a web service 
implementing the BCMS standard AS interface. Thus, the 
fundamental  task  of  the  BCMS  service  is  that  of 
integration.

The  XML-RPC  protocol  was  chosen  as  message 
exchange format  because  it  is  the most  widespread  and 
lightweight  protocol  available.  We  disregarded  SOAP, 
even though it provides more functionality, because these 
advanced  features  are  not  required  for  the  BCMS 
platform. REST was discarded, as there is no standardized 
way of sending large quantities of data from the client to 
the  server3,  which  is  of  importance  for  future  versions 
when clients will be able to send arbitrary text to the meta-
service.

The  platform  listens  to  client  requests  for  a  given 
Medline identifier. Requests are directly forwarded to the 
various  Annotation  Servers  by  creating  client-specific 
threads. After the BC-ASs have completed their analysis, 
the  results  are  received  and  validated  by  the  BCMS. 
Validation  is  important  to  ensure  data  integrity.  It 
encompasses  several  tasks:  (a)  ensuring  that  reported 
database identifiers map to existing records, (b) retrieval 
of  the  names  for  referenced  identifiers,  and  (c) 
determining if a reported gene/protein name exists at the 
reported  offset  in  the  abstract.  The  first  two  tasks  are 
implemented  using  external  service  calls  to  important 
databases. 

Figure 4: BCMS Process. The BCMS orchestrates incoming 
requests (stored in a priority queue) to the Annotation 

Servers. Returned results are validated and augmented with 
additional data.

3 Standard-conform REST request are made via the URL parameter of a 
TCP/IP package, which is limited in number of characters.

Failed  validations  are  discarded  and  reported  to  the 
system’s administrator for review, while valid results are 
subsequently stored in the platform’s database (see Fig. 4). 
Storing  the  results  in  a  database  allows  the  BCMS  to 
respond  quickly  to  re-occurring  requests:  instead  of 
repetitively  requesting  annotations  for  a  given  text 
resource, the BCMS can directly return annotations from 
the cache. The annotation results themselves are modeled 
as simple as possible,  with the intent  to (a)  reduce data 
transfer size, (b) streamline the data structure to minimal 
requirements,  and  (c)  avoid  conflict  of  interests  (e.g., 
because of distribution limitations for Medline abstracts). 
For each annotation type a list of associative arrays (hash, 
dictionary) is returned with the following elements:
• Gene/protein names: the name string itself, character 

offset determining the string’s position in the text, and 
a  section  designator  (“title”  or  “abstract”  for 
Medline),

• Gene/protein  normalizations:  a  unique  database 
identifier and the database’ name,

• Biological  taxa:  the  NCBI  taxonomic  ID  and  a 
confidence score, and

• Protein-protein  interactions:  array  containing 
classification  result  (true/false)  together  with 
confidences scores.

For  requests  made  to  the  BCMS,  these  arrays  are 
grouped by Annotation Server and forwarded to the client. 
Optionally, the raw results can also be viewed in a web 
browser [12].

2.2. BC-VisCon

The central component of the VisCon web service is a 
server  application  build  on  top  of  the  Catalyst  MVC 
framework4.  This  framework  allows  for  a  completely 
modularized development of the components of the system 
(see Fig. 5). 

The controller component of the system has three main 
duties: (a) finding and retrieving PubMed abstracts based 
on  a  users  query,  (b)  finding  the  consensus  of  the 
annotation  servers  through  various  methods  and  (c) 
calculating  analysis  data  for  pair-wise  comparison  of 
annotation servers. It uses a number of modules for these 
tasks:

1. The  BCMS communications  module  implements  a 
convenient interface to the web service provided by 
the  BCMS  using  the  RPC::XML  CPAN  module. 
Through  this  model  not  only  general  information 
regarding the specifics of the annotation servers and 
the teams that deploy them, but also the annotations 
for specific abstracts are fetched.

2. The PubMed module  allows searching for abstracts 
by  id  or  keyword  search  using  the 
WWW::Search::PubMed  module  providing  access 

4 See http://www.catalystframework.org/



to the NCBI. This retrieval of abstracts directly from 
PubMed  is  necessary  due  to  legal  restrictions 
concerning  the  dissemination  of  abstracts.  BC-
VisCon only uses the abstracts for display in its user 
interface. 

Figure 5: Schema of the BC-VisCon system architecture

3. The  consensus finding back-end  was designed in a 
highly  modular  way:  Each  consensus  finding 
subunit (e.g. union, majority voting, etc) has its own 
model class providing one or more evaluation type 
denoting  methods  (e.g.  strict,  loose,  etc.).  For 
greatest  flexibility  and  extensibility  each  of  these 
classes has to register itself with a core module that 
keeps  a  central  directory.  This  directory  is  later 
queried by the controllers. This approach makes it 
very  easy to add new consensus finding methods. 
Furthermore,  the  internals  of  the  subunits 
themselves  are  completely  abstracted.  It  is  also 
possible  to  add  modules  that  engage  external 
services  for  finding  their  consensus.  To  facilitate 
module  development,  the  core  consensus  module 
provides  various  methods  for  common  tasks,  i.e. 
filtering of given annotations or grouping of several 
consensus finding methods.

4. The analysis back-end provides, for a given pair of 
annotation sets on one or more abstracts,  methods 
for calculating the similarity of the annotations. To 
this  end,  all  annotations  are  compared  pair-wise. 
The results are stored in a base services similarity 
matrix,  which  is  the  basis  for  a  hierarchical 
clustering algorithm to graphically show groups of 
similar services in a dendrogram. Another service of 

this  module  calculates  precision,  recall  and  f-
measure  of  all  servers  wrt.  to  a  selected  server, 
which  takes  the  role  of  a  gold  standard. 
Comparisons  can  be  based  on  five  different 
evaluation types: strict  match, overlap,  right-, left- 
and  either-boundary-match.  The  evaluation  is 
performed using micro- or macro averaging.

Founding  on  this  solid  base  of  model  back-ends  the 
controller  component  not  only  interconnects  the  models 
but also and foremost services their capabilities to the user. 
According to the three main duties  described above and 
reflecting  the  underlying  model  layer  architecture,  this 
central component is divided into three main parts:

1. The  search unit  engages the corresponding method 
of  the  PubMed  module  to  find  abstracts  and  to 
retrieve the result list. 

2. The  annotation unit  communicates with the BCMS 
for  annotations  and  computes  the  consensus 
annotations. It accepts a number of parameters for 
fine-tuning,  such  as  selecting  specific  BCMS-
connected  annotation  servers  or  selecting  the 
consensus-finding methods.

3. The  analysis  unit is  responsible  for  computing 
similarities  between  annotation  services.  As 
opposed  to  the  annotation  unit  it  operates  on 
multiple annotated abstracts, but takes the same set 
of  tuning  parameters.  The  flow  of  control  is  as 
follows: For a given list of PMIDs, annotations are 
loaded  via  BCMS  and  optionally  filtered  by  the 
server selection parameter. The chosen consensuses 
are  calculated  and  are  added  to  the  list  of 
annotations.  Finally,  all  resulting  annotations  are 
compared against each other for similarity and/or f-
measure computation. 

The clustering is also implemented in the analysis unit 
using the open source C Clustering Library5, the output of 
which is reordered to form a list representation of a binary 
tree. This tree is visualized as a dendrogram using XHMTL 
and CSS (see Fig. 6).

Figure 6: Dendrogram visualizing the similarity of different 
annotation servers and consensus methods for a right-

boundary-match.

BC-VisCon offers access to its system in two ways. A 
web interface provides easy access to all features and also 
visualizes  results.  It  lets  the  users  interactively  explore 
5 http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/cluster/software.htm



annotations  made  by  the  BCMS-connected  servers  in 
various ways using Web 2.0 paradigms and AJAX. 

The second door to the system is an XML-RPC based 
web  service  offering  all  functionality  (except  the 
visualization)  and  that  can  be  used  by  knowledge 
management applications further up the value chain (see 
Section  7).  A  full  description  of  this  interface  can  be 
found at http://www.bc-viscon.net/xmlrpc.

3. SOA Methodology

Our  application  is  fundamentally  built  upon  SOA 
principles.  It  emphasizes  the  aspect  of  integrating 
independently  developed  and  distributed  services  into 
composed services  that  each  offers  an added value.  The 
ensemble  of  BC-AS base  services,  the  BCMS platform, 
and  the  BC-VisCon aggregator  realizes  a  novel  type  of 
service  orchestration in  biomedical  research  benefiting 
from  the  primary  design  principle  of  SOA: 
interoperability.  The  BCMS  acts  as  data  provider 
encapsulating  the BC-ASs, i.e.,  the autonomous services 
from the Annotation Servers are managed and presented by 
the  BCMS.  On  the  other  side,  the  BC-VisCon  service 
implements  a  fine-grained  visualization  on  the  resource 
(i.e.,  abstraction and  composition).  Finally,  the  general 
platform’s  loose  coupling minimizes  the  metadata 
requirements that otherwise add unnecessary overhead to 
such frameworks.  Another  SOA paradigm,  federation of  
resources, is intrinsic to our system in various aspects (see 
Fig. 7).

Figure 7: SOA Design. Each component is an independent 
entity with a defined interface (blue boxes). This underlines 
the loose coupling of each service: they are aware of each 

other, but can also act autonomously. The type of 
annotations provided by and the number of Annotation 
Servers is unlimited, as is the number of downstream 

services, which can be connected to any of these 
components. These two issues are regulated by the contract 
agreement (annotation types, message protocol) and enable 

individualized composition.

This ease of integration comes at the prize of a small 
reduction  of  the  autonomy of  the  participating  services: 
they must implement a common interface, and they must 
provide their data in a predefined format. However, these 
restrictions  are  little  compared  to  the  gains,  which  is 
proven by the high number of participating base services. 
Note that,  before  the creation of  BCMS, only two gene 
NER applications were available for online use, while our 
system currently makes available 13 (not all of which are 
online all the time). An alternative would be to switch to a 
more  loosely  coupled  implementation,  where  arbitrary 
services are integrated by means of automatic methods for 
service  discovery and parameter  matching [15],  possibly 
using semantic web technology [3]. We closely follow the 
developments  in  these  areas,  but  believe  that  current 
technology is not yet mature enough to offer automatic and 
high quality service integration.

A  particular  concept  of  our  architecture  is  that  of 
chaining services into pipelines. Each step in the pipeline 
performs  a  certain  task  and  can  be  implemented  by 
different services. Currently, only base services exist more 
than once,  but we also envision that  new providers will 
offer alternative implementations for the other steps. Such 
alternatives  would  immediately  benefit  from  the 
developed architecture. Clearly, one could also break the 
complete  pipeline  into finer-grained steps.  For instance, 
there  could  be  proper  services  for  tokenizing  or 
linguistically  annotating  texts,  prior  to  NER  services 
making use of this data. Currently, we did not follow this 
approach due to the fact that such services are not offered 
(yet); and because they are not offered, these tasks usually 
are  tightly  integrated  into  the  implementations  of  NER 
services.  However,  we  are  convinced  that  service 
providers  will  slowly  start  to  break  up  their 
implementation and to offer interfaces for other services to 
hook  in.  Currently,  demanding  such  a  change  in 
implementation would probably compromise autonomy of 
service providers too much.

BC-VisCon is not only available as XML-RPC but also 
acts  as  a  user  portal  to  the  BCMS  and  BC-VisCon 
functionality. This portal makes extensive use of Web2.0 
technologies that allowed us to create a comfortable and 
full-fledged tool for online usage, providing informative 
and appealing visualizations. Besides a track-enabled view 
of  the  annotations  made  by  the  back-end  servers  and 
consensus  methods  (see  Fig.  3),  the  comparisons  of 
annotations are available as similarity matrices and as an 
intuitive dendrogram (see Fig. 6). A control panel lets the 
user  choose  which  abstracts,  consensus  methods  and 
annotation servers to use. 

BC-VisCon  has  not  yet  been  optimized  for 
performance. The time it takes to create an answer to the 
various services depends on a variety of factors, such as 
the speed of the base annotators, the number of recognized 
gene names in the abstracts, the number of abstracts which 
a  comparison  is  based  upon  etc.  Only  some  of  these 



factors can be influenced in the BCMS or in BC-VisCon, 
and we paid attention to do so as much as possible, using, 
for  instance,  parallel  AS calling and  caching  of  results. 
However, consensus results can not be reasonably cached 
due to the countless number of combinations of consensus 
methods,  abstracts,  and  servers  included  in  consensus 
finding. 

4. Innovation

The project we present in this paper is the first system 
world-wide  that  leverages  the  advantages  of  a  service-
based approach to the construction of distributed systems 
for  text  mining,  an  essential  component  of  current 
knowledge  management  systems.  Component-based 
systems for text mining have been developed before (such 
as LingPipe6 or UIMA [8]), but none of them is as simple 
to  use,  has  so  few  requirements  for  tool  developers  to 
participate,  and  was  from  scratch  designed  for  the 
distributed execution of services. 

It  is  also  the  first  project  to  bundle  the  efforts  of 
multiple groups from all over the world to tackle difficult 
problems in information extraction for the Life Science. 
We believe that such a bundling is the only feasible way 
to cope with the tremendous challenges in this area;  no 
single group is able to build up the competence and the 
systems to address merely the most pressing problems [9].

There  is  an  interesting  relationship  between  an 
approach  like  ours  and  current  developments  in  the 
Mashup-community.  For  instance,  companies  like 
OpenCalais  offer  a  range  of  services,  which  perform 
tagging  of  texts  with  entities  such  as  person  names, 
telephone  numbers,  places  etc.  Such  functions  are  also 
frequently available in Mashup-Tools like Yahoo Pipes or 
Intel’s  Mash-Maker.  However,  none  of  these  tools  is 
capable of integrating various tools for the same task and 
to  perform  consensus  computation  on  these  resources. 
Clearly,  the  functionality  offered  by  the  BC-VisCon 
service is unique in itself. It offers a wealth of options to 
compare and aggregate NER services that is unrivaled by 
existing  tools.  We  hope  that  VisCon  will  become  a 
standard service to be used in text  mining competitions 
and  projects  building  on  different  (and  competing) 
services, and we also think about adding it as pluggable 
service to current Mashup-platforms.

5. Discussion

Information extraction has become vital for advancing 
Life Science research [1]. It is used both in the academic 
community  and  in  commercial  companies.  Actually, 
several  large pharmaceutical  companies recently built  up 
knowledge management departments to harvest the large 
amount of information existing, yet not easily accessible, 
in  their  corporate  knowledge  bases  (personal 

6 See http://alias-i.com/lingpipe/

communications). As important as mining publications is 
the  extraction  of  information  from  patents.  Although 
several companies are active in this area (such as Temis, 
BioAlma,  LingPipe,  etc.),  no  single  vendor  has  the 
resources  to  build  applications  that  would  cover  all 
customers’ needs. On the contrary,  commercial  tools are 
regularly  outperformed  by  academic  algorithms  [10]; 
However, academic tools are usually specialized to a single 
problem,  have  no  integration  with  other  tools,  and  are 
difficult to deploy and maintain. 

The goal of our endeavor is to show the feasibility of 
building  high-end  text  mining  systems  for  the  Life 
Sciences based on a service-oriented architecture. Such a 
system is capable of integrating the many freely available 
methods developed throughout the world,  provided they 
implement  certain  simple  and  standardized  interfaces. 
Since the beginning of the BCMS initiative, the platform 
is being used as a starting ground to several other projects. 
Examples  are  services  for  annotating  genome  browsers 
with Medline abstracts (unpublished) and the use of the 
platform for full-text annotation. This second approach is 
currently pursued in the BioCreative II.5 challenge, which 
is  run  by  collaboration  between  Elsevier/FEBS  Letters, 
the  MINT  database,  and  the  BioCreative  organizers7. 
Apart from these developments, BCMS itself evolves, and 
new functionality is added to the system in the form of 
value-added services. BC-VisCon is one such example.

We envision several other applications or extensions to 
our  project.  For  instance,  author  curation  is  a  currently 
discussed  possibility  to  shift  the  burden  of  knowledge 
extraction  from  professional  curators  to  the  authors  of 
publications. In author curation, authors mark respective 
entities  in  their  text  themselves.  The  annotation  is 
embedded  in  the  file  and  can  be  extracted  directly  by 
software [13]. Clearly, such an approach is only feasible 
when authors  are  supported in  their  annotation process, 
which in turn requires flexible and powerful text mining 
tools.  The  aforementioned  publishers  created  the  FEBS 
Letters experiment [6], where authors provide annotations 
for their publications prior to review since January 2008. 
BC II.5  will  now explore the possibility of  augmenting 
this  process  with  the  use  of  the  BCMS  platform  by 
providing online annotations on the full-text.

Another line of future development in this area is the 
usage  of  text  mining  for  the  automatic  annotation  of 
biological objects in databases. Here, the task is to extract 
relevant information on a gene, protein, SNP etc. by using 
text  mining  [17].  This  task  requires  uttermost  accuracy 
and  therefore  currently  is  performed  manually  by 
employees of major Life Science databases; however, this 
approach does not at all scale with the number of objects 
to be annotated (think of the millions of genes present in 
all species of the world) and the rapid increase in available 
articles.  A concerted action which gathers the efforts of 

7 See http://www.biocreative.org/



different  text  mining  groups  and  projects  all  over  the 
world that develop and integrate services such as the ones 
presented  in  this  paper  could  potentially  offer  a  more 
principled and more scalable approach to this problem. 

A tool like BC-VisCon also has the power to support 
the  development  of  future  text  mining  algorithms.  For 
instance,  we  are  currently  building  in  a  function  with 
which  users  may  upload  their  texts  to  be  annotated 
together  with  a  gold  standard  annotation.  This 
functionality  can  readily  be  used  by  organizers  of  text 
mining challenges to compare participating tools. It would 
offer the advantage that all evaluation would be performed 
online,  making  the  complicated  and  competition-critical 
shipping of  test  data  unnecessary.  Equally  well,  such  a 
function could be used by companies to perform an online 
evaluation  of  the  tools  of  different  vendors  on  their 
particular types of documents.

Finally, we want to note that our architecture is by no 
means  restricted  to  the  Life  Sciences.  Actually,  BC-
VisCon  is  completely  independent  of  any  application 
domain.  Therefore,  we  also  explore  the  use  of  our 
approach to other areas, such as blogs or news mining.
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