Department of Mathematics and

Computer Science

Freie Universitat Berlin

Acquisition of 3D-Head-Models using
SLR-Cameras and RGBZ-Sensors

A thesis submitted to receive the degree of

Master of Science
April 29, 2013

Wolfgang Paier
Mat.Nr: 4400789

1st examiner Prof. Dr. Raul Rojas
2nd examiner Prof. Dr.-Ing. Peter Eisert
Supervisor David C. Blumenthal-Barby

Abstract

For automatic authentication of subjects at access controls or security gates it can be
usefull to have a three-dimensional model of a subject’s head, for example to improve
the performance of face-recognition algorithms by adjusting lighting or pose. This thesis
describes a system for the automatic acquisition of a well textured face model of a subject
walking through a security gate. Two Kinects and an SLR-camera are used to gather
depth-data and to take a high quality picture of the subject’s head. The collected depth-
data is merged to obtain an improved head model. Since the subject is moving, all
depth-scans must be aligned before further processing can performed. For the alignment
process it’s important to consider that head and torso are not tied rigidly together, so
only the head alone can be used to perform the alignment.

By employing the ICP-algorithm and warp-optimization, the collected depth-scans are
aligned to each other and to the SLR-image. Then, the depth-scans can be merged
to obtain an improved facial geometry and the SLR-image can be used to replace the
low definition Kinect-image. The main contribution of this work is the registration of
consecutive depth scans from both Kinects and the alignement of the resulting model to
the SLR-image.

Contents

1 Introduction
2 Related Work

3 Theoretical background

3.1 Camera model and image formation process
3.1.1 TImage Distortion oo
3.1.2 Mapping between cameraso

3.2 Eulerangles

3.3 Acquisitionof 3D Data

3.4 Registration of point clouds oL

3.5 Least squares problems L

4 Calibration and Scanning

4.1 Camera Setup
4.2 Third party libraries L
4.3 CQalibration
4.4 Scanning
5 Reconstruction
5.1 Pre-processing L oo
5.1.1 Synchronization L
5.2 Alignment of point clouds oo
5.2.1 Refining the head pose
5.2.2 Regularization oo
5.2.3 Implementation of the Gauss-Newton optimization
5.2.4 Brightness constancy constraint
5.3 Fusion of face-scans Lo
6 Results

7 Conclusion and future works

12
13
13
15
17
20

26
26
28
29
30

34
37
37
40
41
47
48
50
52

54

63

List of abbreviations

avg. Average

DoF Degree of freedom

ICP Iterative Closest Point

SLR Single-Lens Reflex

SVD Singular value decomposition

TSDF Truncated signed distance function

I Identity matrix

1 Introduction

With the emergence of consumer 3D-sensors in the last years (e.g. Microsoft Kinect,
ASUS Xtion) new possibilities for the reconstruction of 3D-models arose. These devices
are inexpensive, small and typically provide more than just raw depth-data (e.g. colour
images, body motion tracking, depth-segmentation). Also they can be used out of the
box to generate point-clouds or coloured triangle-meshes (with a little more effort) of
scanned objects.

However, compared to expensive laser scanners or sophisticated multi-camera setups,
they deliver only low quality depth-data since their main purpose is to serve as an input
device for natural user interaction applications. But it has been shown that it is possible
to increase the quality of the obtained 3D-model by merging many depth-scans from
different viewpoints [22]. The main challenge for such methods is the correct alignment
of depth scans before they can be merged. The resulting 3D-model is smoother, contains
more details and is more complete since it contains depth-information from different
points of view. However, if a nicely textured 3D-model is required the images captured
by the integrated colour-camera are not sufficient, since they are noisy and blurry. An
alternative is to use an additional camera that captures a high quality colour image which
is then used to texture the 3D-model. Depending on the type of colour-camera a more
or less complex method must be employed to align the high quality colour-image with
the obtained 3D-model.

A well known method for general image alignment problems is warp optimization. A
warp describes an arbitrary parametric image deformation that can be used to remove
optical distortions introduced by a camera or viewing perspective, to register an image
with a reference grid such as a map, or to align two or more images [18]. However, if
depth information for an image is available, a warp can also be used to re-render the
image of an object from a different viewpoint. And inversely, if an image of the moved
object is available, the new object-position can be inferred by finding optimal parameters
of a warping function that re-produces the image of the moved object.

In this thesis, this technique of warp-optimization is used to obtain a well textured 3D
model of a person’s head. Depth-maps from two Kinects are pre-aligned using the ICP
(Iterative Closest Point) algorithm. Then, warp-optimization is employed to register the
depth-maps with the SLR-image. Finally, the aligned face scans are averaged to obtain
an improved geometry and the SLR-image can be used to replace the low quality texture.

Head models have a wide range of applications: they can be used to establish virtual
eye contact in the context of video conferencing, they are necessary for many image-
based-rendering tasks or they can be used in the domain of security and surveillance to
improve the quality of automatic as well as manual authentication.

This thesis is structured as follows: in chapter two, existing methods used in the context

1 Introduction

of 3D reconstruction, especially the reconstruction of facial geometry, are summarized.
Chapter three will cover necessary fundamentals of computer vision which are assumed
to be known by the reader. The actual implementation is explained in chapter four and
five, where the calibration of the camera setup, the scanning procedure and the actual
reconstruction is described. In chapter six presents the results of the developed method
and chapter seven draws a conclusion.

2 Related Work

Reconstruction of head and facial geometry or 3D-geometry in general is a well studied
problem in the field of computer vision. Therefore a large variety of possible solutions
exist, especially image based methods have a large share which is subsumed under the
common term of Shape-From-X. Probably the most popular way to extract depth in-
formation from images is stereo vision. For example, Beeler et al. describe in [7] a
stereo-vision system to capture highly detailed facial geometry. They use a NCC winner-
take-all block-matching strategy. Then a refinement-algorithm is applied to enhance the
initially coarse geometry. Finally a mesoscopic-augmentation-step adds fine features to
the model that are basically too small to be reconstructed by the stereo-algorithm.

Schneider et al. [40] propose a global optimization based solution to calculate head-
and-shoulder portraits from calibrated stereo images, but in contrast to [7], the recon-
struction problem was formulated for a mesh-based inference of depth. They described
the task as parametric warp estimation problem which is then solved in a robust Gauss-
Newton framework.

Another solution for the reconstruction of 3D-geometry is to use an active light source
that projects a known pattern onto the scene. Based on the deformation of that pattern
in captured images, depth values can be inferred as well. Such approaches are presented
in [32, 39|, where structured light is used for head motion tracking and surface recon-
struction.

In contrast to the previously mentioned methods that use image correspondences to
infer depth values, Blanz et al. [10] propose to derive a morph-able model from a set of
3D face models by transforming the shape and texture of training samples into a vector
space representation. New faces or facial expressions can then be modeled by forming
linear combinations of the prototypes. In [25] Liao et al. use morph-able models but
they are combined with a shape from shading approach to develop an algorithm for rapid
3D face reconstruction.

With the emergence of low cost consumer 3D-sensors in the last years (e.g. Kinect,
Xtion) new possibilities for the reconstruction of 3D-models arose. RGBZ-sensors are
used to scan an object from different points of view and an improved model is obtained
by integrating many 3D-scans. The basic idea of such approaches is to improve the quality
by averaging aligned depth-scans. Recent works on pose estimation show good results
when working with geometry alone [15] or coupled with colour information [11]. For
example in [22]| Idazi et al. present an ICP based solution for camera pose tracking and
depth-map fusion. They estimate the camera-pose in real time by aligning the current
scan to a reference-model using a GPU implementation of the ICP-algorithm. Knowing
the correct camera-pose, the current depth-scan is added to a volumetric model of the
scene that integrates all captured depth-maps. Hernandez et al. describe in [28] the

2 Related Work

application of such low-cost depth sensors to capture facial geometry based on temporal
integration and spatial smoothing of depth scans. When only alignment of point clouds
is needed, the ICP algorithm or one of its variants is a near choice |38, 41, 12]. However if
the registration of 3D data to an image is desired, other algorithms must be applied. For
example Paterson et al. [33] describe an image-based approach to estimate a head-pose
using morph-able head-models. They use a non-linear optimization technique to find a
reasonable head-pose as well as parameters for the head-model.

3 Theoretical background

This chapter will cover basics of image processing and computer vision which are referred
to in the following chapters. Firstly, the model of a pinhole camera and its mathematical
formulation is explained. The second part will give a short explanation of Euler angles,
since they are used for the parametrization of the warp-optimization. The next section
explains the mathematical model behind the Kinect’s depth-sensor. The last two parts
of this chapter will introduce the ICP algorithm for point-cloud registration and Least-
Squares Problems.

3.1 Camera model and image formation process

Section 3 is mainly adapted from Multiple View Geometry in Computer Vision [19]. For
a more detailed overview, interested readers may refer to this book.

A camera model is a mapping between the 3D coordinates and a 2D image coordinates.
In computer vision applications, typically the pinhole camera model is used, see figure
3.1. The pinhole camera model represents a central projection of points in space onto
the image plane. The projection of a point x given in camera coordinates is done by
intersecting the image plane (z = f) with a ray that joins x with the coordinate origin
(figure 3.1).

Figure 3.1: Model of a pinhole camera [19]

f focal length
) principal point
By similar triangles, it can be seen that the 3D-point [Ty z]T is mapped to the

pixel at image coordinates [fZ f¥]T.

(3.1)

3 Theoretical background

However, equation 3.1 assumes that the origin of image coordinates is identical to the
principal point, while in practice this is not true (figure 3.2).

Yeam

Yo pe —»
X cam

- '
X XO

Figure 3.2: Image (x,y) and camera(Zcam, Ycam) coordinate system [19]

Therefore the mapping (equation 3.1) must be changed to consider the principle point
offset [To Yo]T

[z y 2] > [f24a0 fLty]" (3.2)

Using homogenous coordinates, equation 3.2 can be expressed by a single matrix multi-
plication, see equation 3.4). A point is converted to homogenous coordinates by adding
. . T . .

a trailing one. All homogenous points [pw w } refer to the same point p in eu-
clidean space. Geometrically spoken, the point [pw w]T given in homogenous coor-
dinates represents a ray in euclidean space that starts at the origin 07 and passes p .

It can be converted back to euclidean coordinates by dividing it by w, which is called
de-homogenization (see equation 3.3):

Tw

yw N

o — |y (3.3)
z

w

Equation 3.2 can now be expressed by one matrix multiplication.

fx+ zxo
= | fyt+zy | =[K 0]
z

(3.4)

=N e 8
_ a8

The matrix K is called the camera calibration matrix and it contains the focal length f

10

3 Theoretical background
and the principal point [o Yo]T

/ 0
K= I v (3.5)
1

For the previous equations it is assumed that the 3D point is given in camera coordinates.
However, in general points will be expressed in terms of the world coordinate frame. Both
coordinate frames are related via a rotation and a translation (figure 3.3).

Y|II-‘B.I‘I:I

X

Figure 3.3: The euclidean transformation between the world and camera coordinate
frames [19]

If x € R*is a point in the world coordinate-frame given in homogenous coordinates and
Xcam Tepresents the same point in the camera coordinate frame, then x.q, = R(X — ¢)
where ¢ represents the coordinates of the camera centre in the world coordinate frame.
R is a 3 x 3 rotation matrix that holds the orientation of the camera coordinate frame.

R —Rec
Xcam = [0 1 :|X (3.6)
Putting all together leads to
p=KR[I|—c]x (3.7)
p=K[R | t]x (3.8)

11

3 Theoretical background

With t = —Rc. All parameters in K are called intrinsic parameters while R and t are
referred to as extrinsic parameters. Both K and [R | t | can be calculated from a set
of images with a known 3D geometry (e.g. chessboard pattern with known side length).

3.1.1 Image Distortion

For real (i.e. non pinhole) lenses the assumption of a linear projection model does not
hold. The most important deviation is the radial distortion, see figure 3.4.

Figure 3.4: no distortion, barrel distortion and pincushion distortion [24]

The distortion pushes or pulls pixel away from or to the distortion center. This effect
depends on the pixel’s distance from the distortion center, i.e. the farther away the
stronger the distortion is. The cure is to correct the image measurements to those that
would have been obtained under a perfect linear camera action (figure 3.5) [19].

radial distortion linear image

correction

—

Figure 3.5: The image of a square with strong radial distortion is corrected to one that
would have been obtained under a perfect linear lens [19]

For the correction, an undistortion-factor £(r) can be approximated by a Taylor ex-

. . T . .
pansion £(r) = 1 + k17 + kor? + ... + k™. With [Te Yo } as the distortion center
and r as the pixel’s distance from the distortion center, the correction can be calculated

by:

i -l

Yeorr

The corrected point [Teorr Yeorr }T is now related to the coordinates of the 3D world
point by a linear projective camera. The undistortion coefficients k1, ko, k3, ... are counted
to the intrinsic parameters of a camera. In practice it is sufficient to use a reduced set
of undistortion parameters (see equation 3.10), as well as to use the principal point as
distortion centre.

12

3 Theoretical background

L(r) =1+ k11’ + ror* + kgr® (3.10)

The undistortion parameters can be estimated from the same set of images that was
used to calculate K and [R | t]. For wide angle lenses the intrinsic parameters can
be extended further to cover the tangential distortion too [42]. The whole procedure of
finding K, [R | t]and ki1, k2, k3 is known as camera calibration. There exist already
many tools/frameworks (e.g. OpenCV') which can be used to calibrate a certain camera.

3.1.2 Mapping between cameras

In a fully calibrated setup consisting of more than one camera, one can calculate the
mapping of a pixel between two cameras if its depth is known. Given p; as a pixel
in camera K; with known depth z;, then corresponding pixel p2 in camera Ky can be
calculated as follows. First the 3D point needs to be reconstructed from its 2D position
and depth.

21(37 - xO)/fx
x=[R{ | -Rit1]| z1(y —w0)/fy (3.11)
21

The vector x represents p; and ps in world coordinates. Using equation 3.8 x can now
be re-projected onto the image plane of camera Ko.

P2 = KQ[RQ | tg]X (312)

3.2 Euler angles
Euler angles are a minimal and human readable form of defining a rotational motion. A

point in 3D-space is rotated by applying three consecutive rotations around one of the
three orthogonal axes, see figure 3.6.

13

3 Theoretical background

Figure 3.6: The convention for roll, pitch and yaw angles [46]

Rotate roll about the z-axis:

cos(p3) —sin(pz) 0 0
sin(ps) cos(psz) 0 0
0 0 10
0 0 0 1
Rotate pitch about the x-axis:
1 0 0 0
0 cos(p1) —sin(e1) O
0 sin(p1) cos(p1) O
0 0 0 1
Rotate yaw about the y-axis:
cos(p2) 0 sin(pz) 0
0 1 0 0
—sin(p2) 0 cos(p2) O
0 0 0 1

When these transforms are applied, the vertex is first rotated about the z-axis (roll),
followed by a rotation about the x-axis (pitch), followed by a rotation about the y-axis
(vaw). For performance reasons a pre-calculated rotation matrix can be used that per-
forms all rotations in correct order at once instead of performing three separate rotations.

T11 = cos(p3)cos(pa) — sin(ps)sin(pr)sin(ps)

14

3 Theoretical background

T3 = cos(p3)sin(p2) + sin(ps)sin(pi)cos(e2)
Ta1 = sin(ps)cos(p2) + cos(ps)sin(p1)sin(p2)

Tos = sin(ps)sin(p2) — cos(ps)sin(pi)cos(p2)

Ti1 —sin(ps3)cos(p1) Ti3
R = To cos(p3)cos(p1) T3 (3.13)
—cos(p1)sin(p2) sin(p1) cos(p1)cos(p2)

Gimbal lock A major weakness of Euler angles is that under certain conditions one
degree of freedom is lost. Then it is only possible to rotate a point around two axis. An
example from [46] illustrates such a situation quite well:

pitch =907 .-

b - /\

z X Z z X

" x’
rofl = 45°

Figure 3.7: Roll of 45° (left) followed by a pitch of 90° (right) [46]

Figure 3.7 shows a roll of 45° followed by a pitch of 90°. If a yaw of 45° is performed
now it would rotate the x’-axis towards the x-axis counteracting the effect of the original
roll. Yaw has become a negative roll, caused by the 90° pitch. That means, basically one
degree of freedom is lost, since it is only possible to rotate around two axis.

3.3 Acquisition of 3D Data

Microsoft’s Kinect [16] is an USB based image, depth and audio sensor. It has an RGB
camera, a 3D sensor and an array of four microphones to enhance voice recognition,
see figure 3.8. The depth sensor consists of an IR laser emitter and an IR camera.
The Kinect uses a structured light approach to estimate depth values instead measuring
the run time of laser pulses. In the following, a short explanation of the used depth
measurement process provided. For a detailed description see [1, 16].

15

3 Theoretical background

Figure 3.8: Exposed IR laser emitter, IR camera and RGB camera of a dismantled Kinect

[36]

The laser source emits a single beam which is spit into multiple beams by a diffraction
grating to create a constant pattern of speckles projected onto the scene, see figure 3.9.

Figure 3.9: Left: cropped IR speckle pattern. Right: corresponding part of the depth
image

Then, the IR camera captures the speckle pattern and it will be correlated against a
reference pattern. This pattern was projected onto a plane at a known distance from the
sensor and is stored in the sensor’s memory. To estimate the depth at a single pixel of
the depth image, the sensor analyzes the offset between the captured position and the
position of the speckle in the reference pattern. When the distance is smaller or larger
then that of the reference plane the position of the speckle in the infrared image is shifted
in the direction of the baseline between the laser projector and the perspective centre

16

3 Theoretical background

of the infrared camera. These shifts are measured using an image correlation procedure.
Finally the depth can then be calculated from the measured disparity using triangulation.
The following mathematical model is taken from [1] and explains the calculation of the
object depth from the measured disparity and the stored reference pattern.

D Zy—Z

; Z (3.14)
d D
=7 (3.15)

Equation 3.14 and 3.15 can be derived from the similarity of triangles. Zy denotes the
distance to the reference plane and Zj the distance(depth) of the point k in object space,
b is the base length, f is the focal length of the infrared camera, D is the displacement of
the point &k in object space and d is the observed disparity in image space. Substituting
D from 3.15 into 3.14 and expressing Zj in terms of the other variables yields:

2

Ty = ——0—
: 1+ 24d

(3.16)

Equation 3.16 is the basic mathematical model for the derivation of depth from the
observed disparity, assuming constant parameters Zy, f and b which can be determined
by calibration. Besides depth, the Kinect delivers also colour images, a 3D skeleton of
up to two persons and a simple segmentation of the depth-map. For resolutions up to
640x480 it runs at approximately 30 Hz. The colour camera can even deliver images at
a resolution of 1280x720 but only at a reduced frame rate of 15Hz. Compared to other
sensors it is inexpensive and easy to use. Basically it can be used out of the box with no
further calibration, but I decided to calibrate it to achieve more accurate results.

3.4 Registration of point clouds

Often an object of interest needs to be reconstructed from multiple 3D scans, because the
scanner provides a too small field of view or the object has a complex geometry which
can not be captured from a single point of view. To achieve this, the scanner and/or the
object is moved during the scanning procedure. The movement can be modeled as rigid
body motion T which consists of a rotational and translational component.

T=[R t] (3.17)

17

3 Theoretical background

It does not matter if only the scanner, the object or both are moved during the scan. It
always results in a single transformation 7' which represents the motion. So it can be as-
sumed that scanner is always fixed and only the objects moves. To combine all scans into
a single more complete model a compensation for this motion is needed. A well known
approach to estimate the rigid motion between two point clouds is the ICP (iterative clos-
est point) algorithm. The ICP was introduced by Chen and Medoni in 1991 [12]. It takes
a source point cloud P, a target point cloud) and estimates a geometric transformation
that minimizes the distance between both point clouds. However, the point clouds have
to be roughly aligned before the ICP can be applied. Since many improvements and
optimizations have been proposed I stick to the basic algorithm because, it is simple and
gives a good understanding. Two problems need to be solved to align the point clouds.
Firstly, corresponding points from both point clouds must be identified and secondly,
a rigid motion needs to be calculated that minimizes the distance between correspond-
ing points. The advantage of the ICP is that point correspondences do not need to be
known in advance, because the algorithm solves both problems (correspondence- and
transformation-estimation). Since a single point does not contain enough information to
discriminate it from others, spatial closeness is used to establish preliminary correspon-
dences. That means, a point p from point cloud P corresponds to the closest point q
from point cloud Q. With estimated correspondences a rigid transformation T/ can be
estimated. Applying the transformation T/ on P yields a new point cloud Py, that
is closer to). To further improve the alignment, P, is used as source point cloud
to estimate a transformation that improves the alignment between P, and Q. It has
been shown that the algorithm converges to the correct solution by iteratively refining
the alignment between both point clouds [§].

1. lteration 2. lteration
eo—9 eo® - e
@ e® ad @
@ o® e® ®
—° o® e °
o—o °® o® ®
Step 1 Step 2 Step 1 Step 2

Figure 3.10: Two iterations showing functionality of ICP

Figure 3.10 shows the basic steps of the ICP-algorithm, that are repeated until con-
vergence (e.g. distance between both point clouds falls under a certain threshold):

e Step 1: Estimate correspondences between points of P and @)

18

3 Theoretical background

e Step 2: Estimate T’ that minimizes the distance between corresponding points

e Step 3: Applying TV on P yields P, that is used as source point cloud during the
next iteration

The final T is obtained by concatenating all T’. In the following a closed form solution for
the transformation estimation problem is presented [6]. The objective is to minimize the
distance the sum of the squared distances between corresponding point pairs (equation
3.18), with R being an rotation matrix and t a translation vector.

£=> lpi — (Rg; +t)]| (3.18)
=1

First calculate the centroid ¢ of each point cloud.

1 ¢ 1 ¢
cp:ﬁZpi,cq:EZqi (3.19)
i=1 i=1

Then calculate matrix H from the centred point clouds.

H= Z (Pi —¢p) (@i — Cq>T (3.20)
=1

Perform a singular value decomposition on H to calculate R and t.

H=UAVT (3.21)

R=VU? t=q—-Rp (3.22)

This is only one possible solution to estimate the transformation between two point
clouds. Other proposed methods use quaternions [21], additional information like colours
[23] or minimize a point to plane distance [12]. Minimizing the point to plane distance
is slower than the closed form solution for the point to point distance but it has a
significantly better convergence rate [38].

Further improvements: The most time consuming part is typically the search for cor-
respondences. Point clouds can easily hold several hundred thousand points. An easy
approach to increase the speed is to work only on a subset of both point clouds. Different

19

3 Theoretical background

sampling strategies like uniform [45]/random sampling [27] or normal space sampling (en-
sures that samples have normals distributed as uniformly as possible) have been proposed
to aid speed or convergence. Gelfang et al. [17] propose a geometrically stable sampling
strategy for the point-to-plane error metric. Based on the Figenvalues of the covariance
matrix it is possible to determine which parts of the transformation are constrained.
They calculate for each point which DoF (degrees of freedom) are constrained by this
point. Then for the transformation estimation, only a subset is used, which constrains all
DoFs of the transformation equal. Nevertheless, a naive approach to find the correspon-
dences has a complexity of O(n?). This is not feasible. Therefore many implementations
use a kd-Tree to speed up the correspondence search. A different approach to establish
correspondences is projecting a 3D point onto the image plane of the other range camera
[9, 30]. This strategy produces a slightly worse alignment per iteration but is two orders
of magnitude faster than other matching strategies. A further improvement is to reject
outliers before estimating the optimal transformation. A simple method is to reject cor-
respondences between points p and ¢ if ||p — ¢|| > J. Chetverikov et al. [13] propose to
sort correspondences by their point to point distance and use only a certain percentage
of the correspondences with the lowest distance (e.g. if the overlap of two point clouds
is 70% than use only the closest 70% of all correspondences). Another possibility is to
use a Random Sampling Consensus method to calculate the optimal motion parameter.
Turk et al. [45] propose to reject all correspondences containing points on boundaries.

3.5 Least squares problems

The largest source of unconstrained optimization problems are least squares problems|31],
therefore this section will focus on this type of optimization problems. Solving a problem
in the least squares sense minimizes the sum of squared errors. Figure 3.11, shows an
example of a least squares problem. Data (blue) sampled from an unknown function
g(t) is used to train a model (red) that explains the observed values. This is done by
minimizing the difference between measured and predicted values.

20

3 Theoretical background

1.1

> 0.9

0.8

0.7

0.6

0.5 1 1 1 J
0 0.5 1 1.5 2
t

Figure 3.11: Least squares fit (red) of noisy data y (blue) sampled from a function g(t).
The black lines symbolize the errors between the fitted function and the
sampled data.

The objective function of least-squares problems has a special form as shown in equa-
tion 3.23 with x as model parameter and r;(x) as residuals that represent differences
between the observed and predicted values.

160 =23 () (3.23)

The sampled data from figure 3.11 seems to originate from a linear function plus some
measurement errors. A probable model that describes the observed data could look like

equation 3.24, with ¢t being an input value and x = [T1 To]T being the parameters of
the linear model.

g(tj) = X1tj + Xa (3.24)

For this model a residual looks like equation 3.25.

rj(x) = g(t;) —y; (3.25)

21

3 Theoretical background

Equation 3.26 shows the objective function in matrix notation that must be minimized to
solve the fitting problem with A € R™*2 holding the input values and y € R™ containing
the measured data.

to1
A=|

t 1

1 2
fx) =5 llAx —y]| (3.26)

It can be seen that this objective function is convex and that any solution x* with
Vf(x*) = 0 is a global minimizer of f [31]. The gradient of f(x) can be expressed as
follows (equation 3.27) with J(x) being the Jacobian and r(x) as the residual vector.

r(x)=Ax -y
Vf(x)= er(x)Vrj(x) = J(x)Tr(x) (3.27)
j=1

The Jacobian J(x) is the m x n matrix of first partial derivatives of the residuals [31]:

oy O . Orp
ox1 Oxo 0zn
Ory Ora . Ory
] 0 Oxn
J(x) = o v (3.28)
Orm Orm ... Orm
8:E1 8$2 azn

Equation 3.29 shows the gradient of the objective function (equation 3.26).

Viix)=AT (Ax—y) (3.29)

Therefore the solution x* must satisfy the following equation that can be obtained by
rearranging equation 3.29:

ATAx* = ATy (3.30)

Equation 3.30 contains the normal equations of the optimization problem (3.26). The
solution can be found by solving equation 3.30 for x* (e.g. by employing the Moore-

22

3 Theoretical background

Penrose pseudoinverse of A)

ATy (3.31)

Nonlinear least-squares problems

However, more complex tasks can not be described well by a linear model. Therefore a
nonlinear objective function must be used. Such objective functions can not be minimized
directly, so iterative methods must be employed. Iterative methods are for example
Gradient Descent, Newton’s method or the Gauss-Newton algorithm.

They need an initial estimate for the parameter vector x where the optimization is
started. The objective function is then approximated around the current working point
to find an update direction that is used to improve the parameter vector x. The resulting
parameter vector is then used to start a new iteration as long as the value of the objective
function decreases. Other stopping criterions could be a maximum number of iterations
or a minimal change € > 0 of the objective function f(x). It is crucial that the initial
parameter vector xg is already close to a good solution otherwise the algorithm might
get stuck in a local minimum which leads to a bad overall solution.

A simple method for nonlinear optimization is called Gradient Descent. It approxi-
mates the objective by a linear function and makes a step towards the negative gradient

of f(x).

Algorithm 3.1 Pseudo code of gradient descent

X0 = Xinit
eo = f(x0)
do

Xi+1 = Xj — OéVf(XZ)

€i+1 = f(Xi+1)
while(ei — €41 > (5)

If « is too small convergence can be slow, especially on plateaus where the gradient
is small. If « is too big, the algorithm fails to decrease the cost function. A common
way to improve the algorithm is to use an adaptive step size determined by some kind
of line search [44]. In that case an inexact line search finds a step size which reduces the
function value (an exact line search would try to find a local minimum). The step size is
increased (e.g. @ = a* 1.1) as long as the error improves, otherwise try to make smaller
steps (e.g. @ = a*0.5). This helps to improve the convergence speed at plateaus and
allows to reduce the error monotonically.

Second order methods

Second order methods also use the second order derivative to perform a parameter up-
date. One well known algorithm for second order optimization is Newton’s method. It
approximates f(x) by a quadratic function g(x) at the current working point, instead of
a linear function as before. Then, a step towards the minimum of ¢g(x) is made which can

23

3 Theoretical background

be calculated analytically. The algorithm is similar to Gradient Descent, but it differs in
the parameter update:

Xip1 = x; — YH IV f(x) (3.32)

Where H is the Hessian of f(x) that contains the second order derivatives.

A o’f ... _0%f 7
Bx% Ox10x2 0x10Tn
f ’r .. _f
2
H(f) _ 81‘2.8931 8:702 ' sz'amn (333)
oy ey .. 2
L Oznz1 Oxnx2 oxZ

25 T

Figure 3.12: Illustration of the Newton’s method

Figure 3.12 shows an illustration of Newton’s method. A first local quadratic approxi-
mation at the initial point xy = —1.5 is formed (red). The corresponding minimizer is the
new iterate, 1. A new quadratic approximation of the function is formed at that point
(black), leading to the second iterate, x5. The process is repeated until a minimum in
x4 is reached. One drawback of this method is the need to calculate the inverse Hessian
matrix, which can be time consuming (especially when x is a high dimensional vector).

24

3 Theoretical background

The Gauss-Newton algorithm is an alternative to Newton’s method, since it does not
need H(f) to perform a parameter update. It provides better convergence properties like
Newton’s method without the need to explicitly calculate the Hessian. This advantage
comes with a loss of generality, because it can only be applied to cost functions that are
a sum of squared function values (e.g. E(z) = Y." f(2;)?). The Hessian of a least
squares objective function can be calculated as follows:

m

Vif(x) = Zw] x)Vr ()7 + 3 ri(x)V2ri(x) (3.34)
j=1
= +er x)V2rj(x (3.35)

In many applications the first term in equation 3.34 is dominating, because the residuals
are close to affine near the solution (i.e. V?r;j(x) are relatively small) or the residuals
(rj(x)) itself are small [31]. The Gauss-Newton algorithm exploits this fact and approx-
imates the Hessian by the following expression:

V2i(x) = J(x)TJ(x) (3.36)
Now the search direction p can be obtained by solving the following equation:
J(x)TJ(x)p = —J(x)"r(x) (3.37)
The parameter update changes to:
xiv1 = x; — ()T T (1)) T ()T () (3.38)

One can clearly see, that the update corresponds to the Linear-Least-Squares solution of
(3.39) with r(x) containing the residuals and v as step size.

J(x)p = —r(x) (3.39)

25

4 Calibration and Scanning

In this chapter the camera setup and some preliminary work is presented that is necessary
to actually collect test data. That includes a recording software and a calibration process
for the camera setup.

4.1 Camera Setup

The setting for my experiments is a security gate where subjects need to be authenticated
before they are allowed to move on. Subjects passing the gate are recorded by two Kinects
and an SLR-(Canon EOS 550D) camera to create a 3D representation of the head. The
Kinects are mounted on the left and on the right side of the gate at about 1,7m. The
SLR-camera is placed farther away having a frontal view on the face.

"

Kinect 1 Kinect 2

O

Subject

Figure 4.1: Topview of the camera setup

26

4 Calibration and Scanning

Figure 4.2: Photo of the used setup to acquire test data for the reconstruction

The mock security gate is an aluminum frame made from item(®) profiles. The Kinects
are attached to the frame using an angle iron, a mount plate and a tripod head. The
tripod head can be directly attached to the gate. To fix the Kinects rigidly, a small
solution had to be developed (figure 4.3), since the Kinect has no original mounting
point. This allows for a good view on the person’s face for each Kinect without losing
the benefit of a rigid camera setup that helps to reduce calibration errors caused by
small changes of the camera’s pose. It also helps to keep the calibration effort down to
a minimum, since a single calibration of the whole setup is sufficient. Both Kinects are
aligned inwards to have optimal view on the persons face.

Since a single Kinect occupies already a major part of the USB bandwidth, every Kinect
must be connected to a separate USB-controller. The SLR camera is also controlled via
USB using a library provided by the manufacturer. However a drawback is that the
trigger time can not be determined accurately since there exists a comparatively high
delay between the trigger command and its execution. Another issue is that the transfer of

27

4 Calibration and Scanning

Figure 4.3: Self made mount point

the SLR-image leads to several missing depth- and colour frames, which is problematic,
since there is only a short period of time where useful depth-image can be captured.
Therefore the SLR-camera was configured to store the image on the SD-card and the
photo is added to the record afterwards by hand.

4.2 Third party libraries

Some third party libraries are used to reduce the coding effort for components which are
not in the focus of this work. That includes OpenNI 1.5.4/Nite 1.5.2, OpenCV and the
Point Cloud Library. OpenNI is an open source SDK to develop 3D sensing applications
[3]. It consists of libraries for 3D sensing, voice command recognition, hand gestures and
body motion tracking. In contrast to other SDKs it is not restricted to a special sensor
(e.g. Microsoft Kinect, ASUS Xtion), or platform (e.g. Windows, Linux, OS X) which
makes it very attractive to a wide range of developers.

OpenCYV is a well known and widely used library for computer vision and image pro-
cessing [2]. It provides data structures to hold images or matrices, basic image processing
functions (e.g. filtering, conversion, ...) as well as advanced algorithms for feature detec-
tion, 3D reconstruction or machine learning. OpenCYV is used in this project mainly for
calibration, which will become apparent in the next section.

The Point Cloud Library (PCL) is a standalone, large scale, open project for 2D /3D
image and point cloud processing [4]. As the name already indicates, the target scope
of PCL are algorithms for point cloud processing. That covers for example filters, fea-
ture detection, registration or segmentation. PCL’s ICP implementation is used for the
registration of point clouds.

For general image processing purposes a department internal library called VMLib is
employed. It contains basic data structures and algorithms for filtering, resizing etc..
Other department interal libraries are: CVCGWarpLib for the Gauss-Newton based
refinement of head poses, CanonCaptureLib to trigger the SLR-camera via USB and the
CVCGKinectLib to collect depth and color image from the Kinects.

28

4 Calibration and Scanning

4.3 Calibration

In contrast to other reconstruction methods (e.g. [5]) the camera setup needs to be
calibrated in advance. That involvs intrinsic and extrinsic calibration of all cameras. As
already explained in Chapter 3.1, the intrinsic calibration consists of the camera matrix
and undistortion coefficients,

[k1, K2, K3,]T

while the extrinsic calibration [R | t | holds the pose of a camera w.r.t. a certain ref-
erence coordinate system. The intrinsic parameters are necessary to convert a depth-map
into a point cloud or to project a 3D point (in camera coordinates) onto a camera (e.g.
when determining colour values for a point cloud). The extrinsic calibration for example
allows to switch from camera coordinates into certain reference coordinate system (e.g.
world coordinates or just another camera coordinate system).

Although OpenNI provides API functions for pointcloud generation from depth maps
and alignment of depth and colour image, a calibration of both Kinects yields higher
accuracy for further processing steps. Also, the extrinsic and intrinsic parameters are
necessary for the warp-based refinement of head poses. The calibration is done once when
all cameras are adjusted and the their poses are fixed. For the calibration a 66cm x48cm
chessboard pattern is used. Every Kinect has an IR- and colour-camera to be calibrated.
For the calibration of the IR camera the IR projector must be covered otherwise the
speckle-pattern confuses the chessboard detector. It is also important to have a light
source that emits enough infrared light (e.g. sun or a lamp with no energy saving light
bulb) otherwise the chessboard appears too dark. For the intrinsic calibration of the
IR~ and colour-camera several images of the chessboard-pattern are captured at different
poses in front of the cameras. The chessboard corners are then extracted from these im-
ages by cv::findChessboardCorners(...) and cv::cornerSubPiz(...). Based on the extracted
chessboard corners and the known geometry of the chessboard cuv::calibrateCamera(...)
calculates the intrinsic parameters of both cameras. The Kinect-internal extrinsics (i.e.
pose of the colour camera w.r.t. the depth camera) are then calculated seperately by
cv::stereoCalibrate(...) as proposed in the OpenCV’s manual. Interestingly, the IR-
camera’s intrinsics can not be used directly to align the colour- and depth-images, be-
cause then there is an obvious offset between the depth- and the aligned colour image.
It appears to be a consequence of the correlation window size used for the depth esti-
mation [36]. A raw depth-image (figure 4.4) contains a null band on the right side. A
reasonable explanation is that the Kinect starts to send the depth image at the first
pixel with a calculated depth value. Since a correlation window is used the first pixel in

29

4 Calibration and Scanning

Figure 4.4: Raw depth image with null band on the right side

the depth-image does not correspond to the first pixel in the IR-image. The result is a
constant principle-point offset on the order of -4.8 x -3.9 pixel between the calibration of
the TR camera and the calibration which is used for depth-map processing. The extrinsic
calibration of both Kinects with respect to the SLR-camera is precarious, since there are
only a few poses where the chessboard pattern is completely visible by all cameras. A
tool is used that automatically captures images from both Kinects and the SLR-camera
when the pattern is detected. Since the Kinect as well as the SLR-camera does not sup-
port any kind of synchronization the chessboard pattern is placed on a tripod to ensure
that small motions (e.g. when held by a human) do not degrade the calibration quality
because the images are taken at different times. Finally, cv::stereoCalibrate(...) is used
again to calculate the pose of both Kinects with respect to the SLR-camera.

4.4 Scanning

Two Kinect sensors are placed at the left and the right side of the gate to capture
both sides of the subject’s head. An additional SLR-camera is placed in front of the
gate to take a high quality image, that can be used as texture. The scanning works as
follows: The subject starts about three meters away in front of the gate. As the subject
approaches the gate, the body tracking information can be used to decide which scans
are stored for the reconstruction and which are discarded.

30

4 Calibration and Scanning

head

shoulder elbow hand

“LEFT” &——— 1% “RIGHT”

torso cenfer G

. right hip

right knee

=
I s
i

right foot

Figure 4.5: Joints of the skeleton tracking [34]

The body tracking information is represented as skeleton of about fifteen joints, as
shown in figure 4.5. To decide if a 3D scan is stored or not, the head’s distance to the
Kinect sensor is observed. A 3D-scan is only used if the head is between 0.65m and 1.1m
away. The lower threshold is chosen to ensure that the depth-maps are still valid and do
not contain too many holes.

31

4 Calibration and Scanning

Figure 4.6: Raw depth-map at approx. 0.62m (left) and 1m (right)

One advantage of OpenNI over Microsoft’s Kinect (for XBox) SDK is that it does not
apply a pass through filter on the depth-map (i.e. it delivers also depth values smaller
than 800mm and bigger than 4000mm). This can lead to incomplete depth-maps (see
figure 4.6) when a subject gets closer, but it can be compensated over time and leads to
a more detailed 3D model.

32

4 Calibration and Scanning

Figure 4.7: Facial geometry averaged from 50 depth-frames of a non moving subject at:
0.6m (left), 0.95m (middle) and 1.2m (right)

The upper threshold ensures that the depth-maps are still accurate enough to generate
a detailed model of the subject’s face. As demonstrated in figure 4.7 the distance of a
scanned object plays a big role since the measurement error grows according to the square
law [1]. Details of lips, hair and nose that are cleary visible at 0.6m disappear at a larger
distance.

The SLR-camera is triggered automatically via the serial interface when the person is
detected at a certain distance.

33

5 Reconstruction

Raw depth-data suffers from noise and discretization errors, see figure 5.1. To improve
the quality of the final depth-map, consecutive depth scans are aligned and combined to
a smoother and more detailed geometry. Also, a single Kinect can not cover the whole
face of a subject. Therefore two depth sensors are used, one at the left and another one
at the right side of the gate. Their scans are combined to obtain a complete model of
the subject’s face. Since the Kinect’s RGB images are of inferior quality, an additional
SLR-camera is used to acquire a highly detailed texture. By combining the data of all
sensors, a better 3D model with a high quality texture can be created. The challenges
which need to be dealt with are:

1. The synchronization of the left and the right depth-maps
2. The alignment of consecutive face scans

3. The alignment of the resulting 3D-model with the SLR-texture

Figure 5.1: Noisy point cloud with discretization error and vertical bands (white arrows)

The following paragraph describes the reconstruction process (see figure 5.2), the used
data and all assumptions which are made. For every subject that passes the gate, a
Kinect sensor delivers approximately 20 depth-maps with corresponding colour images

34

5 Reconstruction

at a usable definition. Every depth-colour image pair can be aligned using the calibration
of the corresponding Kinect sensor (i.e. intrinsics/extrinsics of its IR and colour camera).
An aligned pair of depth and colour image forms an RGBZ-image. The raw data is very
noisy and suffers from discretization errors and other artifacts (e.g. vertical banding).
To obtain an improved and well textured 3D model all RGBZ-images are aligned with
the SLR-image. Then, the aligned data is averaged by projecting them onto the SLR-
camera’s image and calculating a robust average of all depth values.

The alignment process is split into two parts. Firstly, all scans are aligned to one
reference using the ICP algorithm. After that initial alignment it is already possible to
produce an improved depth-map since all scans are aligned. However, at this point of the
reconstruction the SLR-image does not fit well since it is not aligned with the averaged
model. In the second part the alignment of all scans is refined using warp optimization.
The advantage of this technique is that it is possible to align a textured 3D model with
an image. The alignment is driven by minimizing the overall intensity errors between

RGBZ- and SLR-images.

35

5 Reconstruction

Preprocessing:

Undistortion

Synchronize both Kinects

Align depth and colour images
Extract heads from depth-maps

v
Initial ICP-based solution:

Select useable scans

Align all face-scans to one reference

Refine head pose:
Align all face-scans with the SLR-texture
using warp-optimization

v
Merge aligned point clouds:

Project aligned face-scans on SLR-camera
Merge projected face-scans
Smooth final head model

Figure 5.2: Diagram of the reconstruction process

It is assumed, that the left and right part of the subject’s face perform almost the
same rigid motion during the warp optimization (i.e. the left and right depth-map
were captured at the same time). However, the Kinect does not provide any kind of
synchronization with other Kinects. Therefore a synchronization stage is ran before
starting the actual reconstruction which is presented in section 5.1.1. Another constraint
is that corresponding pixel in the RGBZ- and SLR-image have similar intensity values.
That is a problem, since both images origin from different types of image sensors. The
solution for this problem is explained in subsection 5.2.4. Finally the aligned depth-
maps are averaged to obtain an improved depth-map as explained above. Depending on
the number of merged face-scans (i.e. the walking-speed of the person), the resulting
model can still look a bit coarse. To cope with that a smoothing operator applied on the
depth-map.

36

5 Reconstruction

The following list explains which data is used during the reconstruction process:
1. Depth images of left and right Kinect are the basic data for the improved depth-map
2. Colour images of left and right Kinect are needed during the warp optimization

3. Body motion tracking information is used to extract only the person’s head from
point clouds

4. The SLR-image is used as texture for the final model

5. Intrinsic and extrinsic calibrations is needed to (un)project pixel and switch from
camera to world coordinate system

5.1 Pre-processing

To determine which point clouds are actually used for the reconstruction, two thresholds
Omin and ;g are used. A scan is only accepted if the subject’s head is at least ;4
and at most g, away from the sensor. As explained in chapter 4,these thresholds are
chosen to ensure that the point clouds do not contain too many holes (when the subject
is too close) and are still detailed enough (because the subject is not too far away).

Though the Kinect has good lenses with low distortion coefficient, all images are undis-
torted. Also irrelevant data from the depth scans is removed using the body-tracking-
information provided by the Kinect sensor. A bounding-cylinder is placed around the
head-joint and all depth-pixel that correspond to 3D-points outside this cylinder are in-
validated (i.e. set to zero). However, head and shoulder do not form a rigid object so a
small cylinder is used that cuts off the shoulders too, otherwise the pose estimation would
not work reliably since it assumes a non-morph-able object. Finally corresponding colour-
and depth-images are aligned to form an RGBZ-image where corresponding depth- and
colour-pixel have same image coordinates. Since intrinsic and extrinsic parameter of all
Kinect cameras (IR and RGB) are known, the alignment can be accomplished by pro-
jecting a depth pixel onto the colour image (equation 3.11). The RGB-value can then be
obtained by sampling (e.g. bilinear interpolation) from the colour image. The last part
of the pre-processing stage is explained in the following subsection.

5.1.1 Synchronization

As USB device, the Kinect does not support any kind of synchronization with other
devices. This is a problem, since 3D data from two Kinects should be merged without
creating artifacts in the overlapping region. A simple idea would be to estimate a frame-
offset based on the recording time, but that would ignore all kinds of timing issues
between two not synchronized devices. Every frame is timestamped, but they origin
from different clocks. Nevertheless this can be used to estimate the constant time offset
between both clocks. Therefore a simple search strategy is used to estimate a time offset
that minimizes the distance between corresponding point pairs from the left and right

37

5 Reconstruction

point cloud, because temporal proximity results in small distances. The correspondences
are established by reprojecting a depth pixel onto the other depth-image.

N w B (o)) [e2] ~ (0
o o o o o o o
T T T T T T 1

-
o
T

average distance between corresponding pointsimm]

0 1 1 1 1 1 1 1 J
-7300 -7250 -7200 -7150 -7100 -7050 -7000 -6950 -6900
time difference[msec]

Figure 5.3: Average distance between left and right scan depending on the time offset.
The best offset is makred by a black circle

The final estimate is an average time offset calculated from several results at different
positions in the stream (e.g. the offset is calculated at every fifth frame). As shown in
figure 5.3, the average distance decreases in a linear fashion until the optimal value for
the time offset is reached and increases after that point again linearly, since a person
walks approximatly at a constant speed.

38

5 Reconstruction

Figure 5.4: Synchronized raw data from both Kinects

Refining the synchronization

Now, left and right scans should be 16 milliseconds off at most, since the average
gap between consecutive frames is 33 milliseconds. Though it seems neglect-able it still
can cause a noticeable gap in the overlapping region (see figure 5.5). To cope with that
problem, one point cloud is shifted forward or backward along an estimated motion-path
until the previously mentioned distance is minimal. Possible rotational components are
omitted, since it includes only motions on the order of some millimeters and this possible
error can be corrected later during the warp-optimization-based refinement of the head
pose. Also the overlapping region is too small to estimate rotations correctly (figure
5.4). To generate a motion-path for the synchronization refinement the body tracking
information is used (i.e. the position of the head-joint at the previous, current and next
time step). Figure 5.5 shows a reconstruction of the head with frame-exact and refined
synchronization.

39

5 Reconstruction

Figure 5.5: Left: reconstruction with frame exact synchronization. Right: reconstruction
with refined synchronization.

5.2 Alignment of point clouds

This section describes how face-scans from different time steps are aligned, because that is
necessary to average depth-images. A synchronized pair of a left and a right RGBZ-image
form a face-scan F. All scans Fj,., are aligned to a single reference scan Frpp using
ICP. This approach is used to ensure that registration errors are not propagated (e.g.
when performing only pairwise registration between consecutive scans F; and F;y1). The
alignment process is started at Frpr—_1,Frrr+1 and continues to F,,, and F),, respectively.
This way, the alignment of every scan Fj can be initialized with the result of the previous
one, since the motion between consecutive scans is small. Both parts of a face scan are
aligned at once to ensure that they can not drift away from each other. Therefore the
alignment has to be performed in world-coordinates, because a common rigid motion can
not be optimized in different coordinate systems. The face-scan that fits the SLR-image
best (i.e. it was recorded almost at the same time as the SLR-image) is selected as
Frpr. As explained in section 4.1, it is not possible to determine exactly when the SLR-
camera was triggered, since there is a comparatively high delay and the camera does not
provide any usefull timing information. However, since all extrinsic and intrinsic camera

40

5 Reconstruction

parameters are known, a simple intensity based approach can be used. By projecting
every RGBZ-pixel (that belongs to the subject’s head) onto the SLR-image an average
intensity difference for every face-scan can be calculated, see figure 5.6. Since most
alignment errors result from the fact that face-scans and SLR-image are captured at
different times, it is likely that the face-scan with the lowest average intensity difference
is also that one with the lowest temporal difference to the SLR-image. Brightness and
contrast are adjusted before calculating the difference as explained in section 5.2.4 to
achieve better results.

0.9 b

0.7 b

error

0.5 b

0.4r b

0 10 20 30 40 50 60 70 80
tested face—scan

Figure 5.6: Avg. intensity difference between corresponding pixel in SLR-image and
Kinect-image

After the ICP based registration, there might be still alignment errors between left
and right part of the face due to errors in the extrinsic calibration, errors induced by
synchronization refinement and the fact that Frppr might not be perfectly chosen.

5.2.1 Refining the head pose

After the initial ICP based registration all RGBZ-images should fit together but they do
not fit the SLR-image well. However, it is not possible to use a geometry based aligned-
ment since no depth information is available for the SLR-image. Therefore, the head
pose is refined based on the texture match between RGBZ- and SLR-image. Assuming
that corresponding pixel in Pgrr (SLR-image) and Pkinect (Kinect-image) have an equal
intensity an optimal alignment yields a zero valued difference image. This is an often

41

5 Reconstruction

made assumption (e.g. when calculating optical flow) that is called brightness constancy
constraint.

Based on that insight, it is a near choice is to formulate the task as optimization
problem because the magnitude of intensity differences is related to the alignment quality.
That means a good alignment yields low differences while a bad alignment causes high
intensity differences between corresponding pixel. To calculate the image difference, every
RGBZ-pixel from a face-scan is projected onto the SLR-image as explained in subsection
3.1.2 and the intensity difference is evaluated. Firstly, this calculation must be expressed
as a parameterized function that can be processed by an optimization framework. In this
case, the function is parametrized by a vector 1) € RS that defines a rigid motion 7~ with
R, being a rotation matrix determined by three Euler angles 1, 2, 3 and t. being a

translation vector [ty ty t.]T:

w - [gpla 9027 <P37 t:l?a ty; tz]T

Tp.¥)=[R: t- |p

T represents a rigid motion that is used to align a face-scan with the SLR-image. Though
Euler angles suffer from the possibility of a Gimbal lock, they offer an easy way of lin-
earization which is an advantage when solving optimization problems. Also, all rotational
motions are relatively small, so the probability of a Gimbal lock is very low.

The next part explains the reprojection of an RGBZ-pixel qrgpz = [x Yy]T onto the
SLR image to calculate the intensity difference between corresponding pixel. Firstly, the
pixel qrgpz must be transformed from 2D image coordinates to 3D camera coordinates
PrGBz using the measured depth value z and the intrinsic calibration K ey, of the depth
camera.

Jz Zo
Kdepth = fy Yo
1

Z(:U - xO,depth)/fr,depth

z(y - yO,depth)/fy,depth (5 1)
z
1

PRGBZ =

Based on the extrinsic calibration [Rsir tsir] of the Kinect w.r.t. the SLR-camera,

42

5 Reconstruction

Praiz can be transformed to the coordinate frame of the SLR-camera.

R t
PSLR = [gTLR SlLR] PRrRGBZ

At this point the optimized motion 7 is applied on pgrr.

Paligned = [R, t; }pSLR

The corresponding SLR-pixel qgzr can now be found by projecting paignes onto the
SLR~image using the intrinsic calibration Kgz r.

qds.r = KsLrO (KsLRrPatigned)

The function ©(p) performs a de-homogenization (i.e. divides a vector by its last com-

ponent):
x/z x
o) =|vy/z|.p=|y
1 z

Now the intensity difference between a single RGBZ-pixel qrgpz and the corresponding
SLR-pixel can be expressed as follows:

R t
T =PsLr <KSLR@ <[R, t. | [(*)gTLR SlLR

pRGBZ)> — Pkinect (ArGBz) (5.2)

Finally an objective function £(1)) must be defined, that considers the overall intensity
difference of a face-scan. Here, a least-squares formulation is used since their special
structure makes them easier to be solved. The general structure of a least-squares prob-
lem looks like equation 5.3.

) = =3 r2w) (5.3)

=1

Minimizing the objective £(¢) yields an optimal parameter vector ¢* (a rigid motion)
that causes a low overall error (in this case low intensity differences). To formulate the
objective for the alignment task the residual r(¢)) needs to be replaced by equation 5.2.
It is important to keep in mind that p; repz is the corresponding 3D point (camera

43

5 Reconstruction

coordinates) to the RGBZ-pixel q; rapz, see equation 5.1.

R t
r(¢) = PsLr <KSLR@ <T (% [(;SIQR SlLR] Pj,RGBZ>>> — PKinect (45,RGBZ)

1 — 2
E() = 3 Z <PSLR <KSLR@ (T <¢, [RS%R tSfR] Pj,RGBZ>)> — PKinect (Qj,RGBZ)>
=1

(5.4)
Now &£(1)) represents the sum of squared intensity differences of all head pixel and mini-
mizing equation 5.4 should yield a good alignment of the face-scan and the SLR-image.
A well known method to solve nonlinear least-squares problems is the Gauss-Newton
algorithm. It uses the special structure of least-squares problems to provide better con-
vergence properties of second order methods without the need to explicitly calculate the
Hessian. Only the Jacobian of r(¢) and the value of r(¢) itself is needed to minimize
E(Y). In the following the calculation of the Jacobian is presented. The function W
performs the reprojection of an RGBZ-pixel onto the SLR-image and is added only for
notational reasons.

W(p,¥) = KsLr® (T (w, [ROS%R tSfR] p)) (5.5)
g; = ;wpsuz W(p,)) — 881/}731(1‘716@5

Since Prinect (4;) does not depend on 1) its derivatives will always evaluate to zero and
can therefore be omitted.

0 _ OPsLr OW

The derivatives of Pgrr can be approximated by applying a Sobel filter on Pgyr-

P P
LR o Porrar = Psir* Sy, — il = Psrr.dy = PsLr * Sy
oz dy

44

5 Reconstruction

-1 0 1 1 -2 -1
Se=|-202|,8=|0 0 o0
-1 0 1 1 2 1

Here P * H denotes a filter operation of image P with the kernel . The derivatives of
Psrr at pixel-coordinates p can be written as:

0 PSLR’ [PsrR,dz(P)]
oW Psrr,dy(P)

Now © and T are the only factors that still depend on the parameter vector 1. Applying
the chain-rule on %—Q} yields:

W _ 0K 00 OT
ob 00 9T o

For the implementation it is important to keep in mind that f, has a negative sign
because pixel coordinates increase actually from top to bottom.

8KSLR |: x 0 Cx:|
—fy ¢y

The derivative of the de- homogenlzatlon (p) can be calculated as follows:

_Px
pz 0 P2

ol = | 0w B | PR
0 O 0

The last row is zero, because © (p) returns always a vector with p, = 1.

Since T contains a rotation, it can not be linearized directly, but it is possible to find an
approximate solution. As explained above the rotation is defined by three Euler angles.
According to the law for small angles (sin(¢) = ¢ and cos(p) = 1 for ¢ = 0), equation
3.13 can be approximated as:

0 -3 @2
rot(p) = | 3 0 —¢1 |, withe~0T
—p2 ¥l 0

Following that, a small change in ¢ can be written as:

45

5 Reconstruction

0 —A(pg A@Q
rot(p + Ap)x = rot(p)r + | Aps 0 YN
—Aps Aypy 0

0 —XI3 xI9
rot(e + Ap)x = rot(p)r + | x3 0 —x1 | Ay (5.6)
—XI2 X 0

Using equation 5.6, % can be approximated by the following matrix:

oT 0O -p py 1 00
87 — pz 0 —px O 1 O
vl -py pPx 0 0 01
Now that all necessary derivatives are available, g—; can be easily calculated:
Or _ OPsir | IKsrLr 00 oT (5.7)
8¢ p 8KSLR Pwarped 8@ 8T paligned 8¢ PSLR -
_ |RsLr tsir
PSLR oT 1
Paligned = T(pSLR7 lb)
Pwarped = W(p7 w)
Finally, the Jacobian of r(¢) looks as follows:
0 0 0 1o} 1o} 0
I=| 50 Ops O 06 O, o (5.8)

J and r(¢) can now be used to create the normal equation (equation 3.37) of the current
RGBZ-pixel qrapz, that is needed for the Gauss-Newton iteration.

46

5 Reconstruction

5.2.2 Regularization

However, in some situations the optimization-process needs some guidance. Regulariza-
tion is used when the optimization problem should not only consider some kind of error
measure but also other factors. For example prior information is available and the final
result should stay close to a given parameter configuration. Another typical situation is
when smoothness constraints are added because similar objects should have similar pa-
rameter configurations. Then the objective function is extended with regularizing terms
that are used to gain more control over the optimization process. Such an objective
function could look like the following:

m

f(x) = %Z’I"JQ(X) +)\% Zx?
i=1

J=1

The second term of this objective function leads to a parameter vector x with values close
to zero, because the squared norm of x is part of the optimization problem. Regularizing
terms should be weighted by a scalar value A that allows to determine their impact.
That means a high value of A causes the regularizer to be more important while a
small A gives more weight to the error measure. For the optimization of the head pose
different regularizing terms are added. Firstly, the step-size of the parameter updates
are constrained because the approximated Jacobian is only valid in a small neighborhood
around the current pixel. Equation 5.9 restricts the step-size, with p©" beeing the search
direction of the Guass-Newton update and I beeing the identity matrix.

Ip&N =0T (5.9)

Secondly, equation 5.10 constrains the final parameter vector to be close to the ICP
solution. This is especially necessary because changes along the z-axis (depth) are less
accurate than others, so that degree of freedom is more constrained than other parame-
ters.

IpGN = (Q;Z)prior - @b) (510)

The third regularizer (equation 5.11) is used to allow an independent optimization for
the left and right part of the face. It was mentioned in subsection 5.2 that the left and
right part of a face-scan are optimized at once to ensure that they can not drift away
from each other. That is still true, but this constraint is relaxed in a way that allows
slightly different motions for the left and right part of the face-scan. By doing so, a small
misalignment between left and right part can be corrected. Therefore the parameter
vector holds now two parameter sets.

47

5 Reconstruction

1 = (Gotner —) (511)

5.2.3 Implementation of the Gauss-Newton optimization

For the implementation of the head-pose refinement a well known approach called warp-
ing is used. An image warp establishes a geometrical relation between corresponding
parts of images. In the simplest case, this could be a translation or a rotation but also
more complex transforms like perspective projections or mesh based transformations are
possible. In general, a warp (equation 5.12) is a parameterized function that defines
an arbitrary mapping of one image onto another with pgs being the coordinates of the
destination image, psr. being the source coordinates and ¥ being the parameter vector
that describes the transform.

Pdst = w (psrw \Ij) (512)

Warp functions can be applied in forward or backward direction. Forward direction
means that for a source pixel the destination coordinates are calculated and the source
value has to be added to the destination image. Typically the destination coordinates are
floating point values, this means the warped image can contain empty areas or aliasing
effects if the insertion is not done carefully. If the inverse mapping is known it is much
easier since the destination pixel has integral coordinates and the corresponding value in
the source image can be simply obtained by sampling (e.g. bi linear, cubic). An image
warp can not only be employed to perform a transformation. It can also be used as
model that explains how a parameterized transformation affects an image. For example
if depth values of an image are known a warp can be used to re-render the scene from
a different viewpoint and inversely if an image from a different viewpoint is available
the new camera pose can be inferred by estimating warp-parameter that re-produce the
second image.

To refine the head-pose a function is defined that projects an RGBZ-image onto the
SLR-image and calculates a pixel wise intensity difference over all head pixel, see equa-
tion 5.4. The part that reprojects an RGBZ-pixel can be expressed as image warp, see
equation 5.5. That means, the refinement of the head-pose can be expressed as a warp-
optimization problem which can be solved by a general warp-optimization-framework.

In this work, the CVCGWarpLib is used to run the warp-optimization. It provides
interfaces to optimize an arbitrary warp-function and to add different regularizers to the
optimization process. The class diagram in figure 5.7 displays only the relevant relations
of the framework, since a detailed description would go beyond the scope of this work.
The WarpOptimizer runs an optimization loop until a stopping criterion is met. Every
warp- and regularizer-object contributes normal equations to a linear equation system
that is solved by the GaussNewtonStep in order to perform the parameter update as
explained in subsection 3.5.

48

5 Reconstruction

The classes WarpRGBZImage and StepRegularizerRGBZImage are implementations
of AbstractWarp and AbstractReqularizer respectively. WarpRGBZImage implements
an image-warp that re-renders an object (the subject’s head) from a different view-
point. Therefore it implements two important methods (compute(...) and normalEqua-

tions(...)).

WarpOptimizer

+run() : int
1
1
GaussNewtonStep
+step() : int

1

1.*
1"*

AbstractWarp AbstractRegularizer

+compute() : int
+normalEquations() : int

i

+normalEquations() : int

WarpRGBZImage StepRegularizerRGBZImage
+compute() : int +normalEquations() : int
+normalEquations() : int

Figure 5.7: UML-Diagram of relevant classes

Compute(...) builds a look-up-table that contains floating point source coordinates for
every pixel in the destination image. By performing a re-map operation the warp function
can then be efficiently applied to images. The second important method, normalEqua-
tions() is used during the optimization to add a normal equation for every face pixel
to a system of linear equations (equation 3.37) which is solved in order to calculate the
parameter-update for the Gauss-Newton iteration. Based on equation 5.7 the Jacobian
can be approximated at every RGBZ-pixel of a face-scan. Since the corresponding resid-
uals are provided by the warping-framework, the normal equation for every RGBZ-pixel
of the face-scan can be easily calculated by inserting into equation 3.37.

The left and right part of the face-scan are processed simultaneously with two separate
WarpRGBZImage-objects but they share the same parameter vector ¢. The advantage

49

5 Reconstruction

of this approach is that the relative pose of both face-scans can be improved while a
regularizer (equation 5.11) is used to keep both parts close together.

Every regularizer contributes additional normal equations (equations 5.9, 5.10 and
5.11) but their impact can be controlled by a scalar weight. After all Warp and Reg-
ularizer objects have finshed, the update step can be calculated by equation 3.38 and
the next iteration starts. An important fact that needs to be considered for the imple-
mentation is that the Kinect deliveres colour images at a resolution of 640x480 while
the SLR-images have a resolution of several megapixel. That means, an SLR-image con-
tains much more details (i.e. edges), it is much sharper and has different brightness
distribution, which makes it difficult to run a pose estimation based on intensity differ-
ences. To cope with that, the SLR-images are smoothed and scaled before they are used
for warp-optimization. The next section explains the used method to adjust the image
brightness.

5.2.4 Brightness constancy constraint

One condition for the warp-optimization to work properly is that corresponding pixel in
source and destination image have an equal or at least similar brightness. Correspondence
means in this context, that the pixel depict the same part of the subject’s face. This
is especially important since the warp-optimization is performed between images from
different cameras. The destination image is captured by the Kinect RGB-camera and
the source image is taken by a Canon EOS 550D. Both images have different intensity
distributions caused by a different aperture size, exposure time, point of view and of
course image sensor. To make both images look more similar, a global and local brightness
correction is performed. Figure 5.8 and 5.9 show the effect of the brightness correction.
However, the brightness correction ignores the fact that RGBZ-image and SLR-image
are not perfectly aligned. This means that a correspondence between an RGBZ-pixel
and a SLR-pixel is established simply by re-projection as described in section 3.1.2.
Firstly, two normal-distributions N (ttxinect, U%(mect) and N (usrLr, U%LR) that model
the intensity distributions of all corresponding pixel in the SLR- and RGBZ-image are
calculated. Then, the intensities of the adjusted image are corrected as follows:

1 ld — g
Leorr = (2 Mref) ref + Href
Oold

Now, a local brightness correction is performed based on the average intensity difference
between the neighbourhoods of corresponding pixel. To ensure that it works also near
strong edges (e.g. hair, eye or mouth) a weighted mean is used. The weighting function
is similar to the probability density of a normal distribution A (, o?).

Leorr = Lola + (angEf(Iold) - avgdd([dd))

50

5 Reconstruction

_ 2 lia(li, o)
avatlo) = S T To)

The function avg(ly) calculates the weighted mean intensity of a square image patch
around a pixel of interest with intensity Iy. The weighting function «(I, Ip) reduces the
impact of pixel that are very dissimilar to the adjusted pixel.

all;, Io) = exp <_<II>>

o2

For the choice of the neighbourhood it is important to consider the expected alignment
error to ensure that enough similar pixel are found in the reference image.

Figure 5.8: Source and destination image before intensity adjustment

5 Reconstruction

Figure 5.9: Source and destination image after intensity adjustment

5.3 Fusion of face-scans

After the warp-optimization, all RGBZ-images are assumed to be aligned with the SLR-
image and a new improved depth-map can be calculated. As explained in the beginning,
the raw depth-maps suffer from noise, vertical banding and discretization errors. Also, a
single depth-map captured by a Kinect does not depict the complete face and can contain
holes when the person is very close. Noise, discretization errors and vertical banding can
be reduced by averaging many scans. Vertical banding, however, does actually not vary
over time, but the vertical lines vanish in the final model since all depth scans are taken
from different points of view (w.r.t. the subject’s head).

In order to merge the aligned face-scans they are projected onto a virtual camera
using a triangle mesh that connects neighbouring pixel as explained in [35]. The virtual
camera has the same pose as the SLR-camera but different intrinsics since the resulting
depth-map has a lower resolution compared to the texture. The re-projected depth-maps
are then averaged on a per pixel basis. Since two Kinects are operated simultaneously
the projection of both IR-speckle patterns causes sometimes heavy outliers that lead to
artifacts in the final model. To reduce the impact of such outliers depth-values that are
more than a certain threshold dg4eptp, away from the median are ignored. To calculate
a reasonable value for dgepen the mad (median absolute deviation) is used since it is a
robust and consistent estimator for the standard deviation ¢ of a normally distributed
variable [37].

mad(X) = median {|X; — median(X)|}
0 ~ 1.4826 x mad

5 Reconstruction

5depth =30

Finally, the new depth-map is smoothed using the Guided Filter [20]. The Guided
Filter performs an edge-aware image smoothing operation similar to the Bilateral Filter
[43]. A big advantage of the Guided Filter is that it is computationally less expensive.
To keep the flattening effect as low as possible only a small filter radius is used.

Since depth-values are only calculated for face-pixel that are visible in the SLR-image,
it is sufficient to fuse all face-scans into one new depth-map, because only 3D-regions with
colour-information are of interest. For more complex models or when a more complete
model of the human head is needed other approaches would be more suitable. For example
the usage of cylindrical depth-maps as described in [28]. As the name suggests 3D-points
are not projected onto a planar depth image, but on a cylinder that is centred around
the object of interest. This way also star-shaped-objects can be represented correctly.

If depth scans of arbitrary objects or scenes need to be fused, a volumetric approach
like [14] should be considered. Curless et al. use a TSDF (truncated signed distance
function) to represent the surface of an object inside a scanned volume. The scanned
volume can be for example represented by a 3D-grid. Every voxel of the grid holds the
value of the TSDF at that position. A negative value corresponds to a voxel that is inside
the object (or behind the surface) whereas a positive value denotes a voxel that is outside
the object (or in front of the surface). The surface is located exactly at the zero-crossings
of the TSDF. Before the reconstructed object can be manipulated or rendered as triangle
mesh, all vertices need be to be extracted from the TSDF. To do so, Curless et al. for
example employs a Marching Cube algorithm [26, 29] to extract the triangle-mesh.

53

6 Results

This section presents results of the reconstruction process. The left column shows to the
reconstruction after the ICP-based alignment and the right column depicts the result
after the warp-based optimization.

The first row shows the mean difference image between the SLR- and Kinect-texture.
After the ICP-based alignment the model can still be about a half frame off which is
clearly visible in the difference images. The second row depicts the rendered triangle-
mesh after the ICP based registration and after the Warp-based optimization. In some
cases a misalignment can be seen in the nose region which got finally corrected by the
warp based alignment. However, there are also cases where the displacement is still
visible. The last row shows the mesh textured with the Kinect-image on the left and
with the SLR-image on the right side.

54

6 Results

6 Results

6 Results

6 Results

58

6 Results

6 Results

60

6 Results

61

6 Results

62

7 Conclusion and future works

This work shows how data from low-cost RGBZ-cameras (e.g. Kinect) can be combined
with textures from high quality SLR-cameras to create a realistic looking 3D-model of a
human head.

Therefore a system was developed that automatically selects suitable data from an
RGBZ-stream and generates an improved model of the subject’s face by temporal inte-
gration and spatial smoothing. Depth-scans from two RGBZ-sensors are fused to reduce
negative effects like noise, discretization errors or other artifacts. A two-stage synchro-
nization method was implemented to ensure that corresponding depth-scans from differ-
ent sensors are almost correctly aligned before starting the actual alignment-optimization.
This eases the final alignment since corresponding scans can be aligned at once which
improves the alignment quality of the warp-based alignment since it constrains the opti-
mization problem and leads to more reasonable results. However, the warp-based align-
ment solves a non-linear optimization problem and needs initially a good starting point
to converge to a correct solution. Therefore, the ICP-algorithm is employed to pre-align
all used face-scans to a dedicated reference scan. All face-scans are aligned to a single
reference to ensure that small alignment errors are not propagated as it can happen
with pairwise registration of consecutive face-scans. The final alignment is performed
by a warp-optimization that aligns all RGBZ-images with the SLR-texture. Finally, all
aligned face-scans are projected onto the image plane of the SLR-camera and averaged
on a per-pixel basis. Depending on the walking speed of a subject, the number of useable
face-scans can be low, so an edge-preserving smoothing is performed on the depth-map
to obtain a smoother 3D-model.

Section 6 shows results of the reconstruction. The improved geometry is smoother and
contains more details than the raw data. Additionally, the original texture was replaced
by an SLR-image to create a more realistic impression.

However, one drawback of the current implementation is the consumed processing time.
Currently the reconstruction of a face takes about two minutes. While the pre-processing
and the ICP based registration takes about 20 seconds, the most time consuming part is
the warp-based alignment. So this part could be optimized. Nevertheless, the combina-
tion of ICP and warp-optimization leads to a good alignment, but it is not perfect. The
estimation of the head-pose along the z-axis is less accurate than other optimized param-
eters and the difference-images show that there are still small misalignments between
the Kinect- and SLR-texture. This might be caused due to the fact that, the warp-
optimization is performed on images that origin from different camera types. Another
problem is that the Kinect does not support any kind of synchronization. That includes
synchronization between different Kinects as well as the internal synchronization of the
colour- and depth-camera. This can degrade the final pose-estimation as well since it

63

7 Conclusion and future works

leads to small missalignments between a depth-map and its corresponding colour-image,
but it can be avoided by using for example a different sensor.

64

Acknowledgements

Hereby I want to thank all people who supported me during my studies and the work
on this thesis. Especially I want to thank my family who made my education possible
and Diana for the proof reading and support. A big thank goes out to the image-
processing team at Heinrich Hertz Institute for several useful hints, especially David for
many advises and ideas. Finally, I want to thank Prof. Rojas and Prof. Eisert for
supervising my thesis.

65

Declaration of academic honesty

Hereby I declare that I have produced this thesis entitled “ Acquisition of 3D-Head-Models
using SLR-Cameras and RGBZ-Sensors” without the prohibited assistance of third par-
ties and without making use of aids other than those specified. Notions taken over directly
or indirectly from other sources have been identified as such. This paper has not previ-
ously been presented in identical or similar form to any other German or foreign exami-
nation board. This thesis work was conducted from September 2012 to April 2013 under
the supervision of David Blumenthal-Barby at the Fraunhofer Heinrich Hertz Institute,
Berlin.

Wolfgang Paier

Berlin, 23 April 2013

66

List of Figures

3.1
3.2
3.3

3.4
3.5

3.6
3.7
3.8

3.9

3.10
3.11

3.12

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
2.3

0.4
9.5

5.6

Model of a pinhole camera [19] L. 9
Image (x,y) and camera(Zcam, Yeam) coordinate system [19] 10
The euclidean transformation between the world and camera coordinate

frames [19] L 11
no distortion, barrel distortion and pincushion distortion [24] 12
The image of a square with strong radial distortion is corrected to one

that would have been obtained under a perfect linear lens [19] 12
The convention for roll, pitch and yaw angles [46] 14
Roll of 45° (left) followed by a pitch of 90° (right) [46] 15
Exposed IR laser emitter, IR camera and RGB camera of a dismantled

Kinect [36] o 16
Left: cropped IR speckle pattern. Right: corresponding part of the depth

Image 16
Two iterations showing functionality of ICP 18

Least squares fit (red) of noisy data y (blue) sampled from a function g(t).
The black lines symbolize the errors between the fitted function and the

sampled data. 21
Mustration of the Newton’s method 24
Topview of the camera setup 26
Photo of the used setup to acquire test data for the reconstruction 27
Self made mount pointo Lo 28
Raw depth image with null band on the right side. 30
Joints of the skeleton tracking [34] 31
Raw depth-map at approx. 0.62m (left) and 1m (right) 32
Facial geometry averaged from 50 depth-frames of a non moving subject

at: 0.6m (left), 0.95m (middle) and 1.2m (right) 33
Noisy point cloud with discretization error and vertical bands (white arrows) 34
Diagram of the reconstruction process 36
Average distance between left and right scan depending on the time offset.

The best offset is makred by a black circle 38
Synchronized raw data from both Kinects 39
Left: reconstruction with frame exact synchronization. Right: reconstruc-

tion with refined synchronization.o 40
Avg. intensity difference between corresponding pixel in SLR-image and

Kinect-image L L 41

67

List of Figures

5.7 UML-Diagram of relevant classes
5.8 Source and destination image before intensity adjustment
5.9 Source and destination image after intensity adjustment

68

Bibliography

[1]

2]
3]
[4]
[5]

[6]

7]

8]

[9]

[10]

[11]

[12]

[13]

Accuracy analysis of kinect depth data. ISPRS Workshop Laser Scanning,
38(5/W12).

Opencv. http://opencv.willowgarage.com.
Openni. http://www.openni.org/.
Pointcloud library. http://pointclouds.org/.

Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Tan Simon, Brian Curless,
Steven M. Seitz, and Richard Szeliski. Building rome in a day. Commun. ACM,
54(10):105-112, 2011.

K. S. Arun, T. S. Huang, and S. D. Blostein. Least-Squares Fitting of Two 3-
D Point Sets. IEEE Transactions on Pattern Analysis and Machine Intelligence,
PAMI-9(5):698-700, September 1987.

Thabo Beeler, Bernd Bickel, Paul Beardsley, Bob Sumner, and Markus Gross. High-
quality single-shot capture of facial geometry. ACM Trans. on Graphics (Proc.
SIGGRAPH), 29(3):40:1 40:9, 2010.

P.J. Besl and Neil D. McKay. A method for registration of 3-d shapes. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 14(2):239-256, 1992.

Gerard Blais and Martin D. Levine. Registering multiview range data to create
3d computer objects. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND
MACHINE INTELLIGENCE, 17:820 824, 1993.

Volker Blanz and Thomas Vetter. A morphable model for the synthesis of 3d faces.
In Proceedings of the 26th annual conference on Computer graphics and interac-
tive techniques, SIGGRAPH 99, pages 187-194, New York, NY, USA, 1999. ACM
Press/Addison-Wesley Publishing Co.

Amit Bleiweiss and Michael Werman. Robust head pose estimation by fusing time-
of- flight depth and color, 2010.

Y. Chen and G. Medioni. Object modeling by registration of multiple range images.
pages 2724-2729, 1991.

D. Chetverikov, D. Svirko, D. Stepanov, and Pavel Krsek. The trimmed iterative
closest point algorithm. In In International Conference on Pattern Recognition,
pages 545548, 2002.

69

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

Bibliography

Brian Curless and Marc Levoy. A volumetric method for building complex models
from range images. In Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, SIGGRAPH 96, pages 303-312, New York,
NY, USA, 1996. ACM.

Gabriele Fanelli, Juergen Gall, and Luc J. Van Gool. Real time head pose estimation
with random regression forests. In CVPR, pages 617-624. IEEE, 2011.

Barak Freedman, Alexander Shpunt, Meir Machline, and Yoel Arieli. Depth mapping
using projected patterns, 2009.

Natasha Gelfand, Leslie Tkemoto, Szymon Rusinkiewicz, and Marc Levoy. Geomet-
rically stable sampling for the ICP algorithm. In Fourth International Conference
on 8D Digital Imaging and Modeling (3DIM), October 2003.

Chris A Glasbey and Kanti V Mardia. A review of image-warping methods. Journal
of applied statistics, 25(2):155-171, 1998.

R. 1. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, ISBN: 0521540518, second edition, 2004.

Kaiming He, Jian Sun, and Xiaoou Tang. Guided image filtering. In Proceedings of
the 11th European conference on Computer vision: Part I, ECCV’10, pages 1-14,
Berlin, Heidelberg, 2010. Springer-Verlag.

Berthold K. P. Horn. Closed-Form Solution of Absolute Orientation Using Unit
Quaternions. Journal of the Optical Society of America A, 4(4):629-642, April 1987.

Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe,
Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,
and Andrew Fitzgibbon. Kinectfusion: real-time 3d reconstruction and interaction
using a moving depth camera. In Proceedings of the 24th annual ACM symposium
on User interface software and technology, UIST *11, pages 559 568, New York, NY,
USA, 2011. ACM.

Andrew Johnson and Sing Bing Kang. Registration and integration of textured 3-d
data. In IMAGE AND VISION COMPUTING, pages 234-241, 1996.

DxO Labs. Lens distortion. http://www.dxo.com/en/photo/dxo_optics_pro/
features/optics_geometry_corrections/distortion.

Hai-Bin Liao, Qing-Hu Chen, Qian-Jin Zhou, and Lin Guo. Rapid 3d face re-
construction by fusion of sfs and local morphable model. J. Vis. Comun. Image
Represent., 23(6):924-931, August 2012.

William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution
3d surface construction algorithm. SIGGRAPH Comput. Graph., 21(4):163-169,
August 1987.

70

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Bibliography

Sakaue K. Masuda, T. and N. Yokoya. Registration and integration of multiple
range images for 3-d model construction. In CVPR, 1996.

Jongmoo Choi Matthias Hernandez and Gerard Medioni. Laser scan quality 3-d
face modeling using a low-cost depth camera.

Claudio Montani, Riccardo Scateni, and Roberto Scopigno. A modified look-up table
for implicit disambiguation of marching cubes. The Visual Computer, 10(6):353-355,
1994.

P. J. Neugebauer. Geometrical cloning of 3d objects via simultaneous registration
of multiple range images. In Proceedings of the 1997 International Conference on
Shape Modeling and Applications (SMA ’97), SMA '97, pages 130—, Washington,
DC, USA, 1997. IEEE Computer Society.

Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer series
in operations research and financial engineering. Springer, New York, NY, 2. ed.
edition, 2006.

Oline Vinter Olesen, Rasmus R. Paulsen, Liselotte HA7jgaard, Bjarne Roed, and
Rasmus Larsen. Motion tracking for medical imaging: A nonvisible structured light
tracking approach. IEEE Trans. Med. Imaging, 31(1):79-87, 2012.

J. A. Paterson and A. W. Fitzgibbon. 3d head tracking using non-linear optimiza-
tion. In Proceedings of the British Machine Vision Conference 2003, volume 2, pages
609 618, September 2003.

PrimeSensor. Preime sensor nite 1.3 algorithms notes. http://pr.cs.cornell.
edu/humanactivities/data/NITE.pdf.

Christian Richardt, Carsten Stoll, Neil A. Dodgson, Hans-Peter Seidel, and Christian
Theobalt. Coherent spatiotemporal filtering, upsampling and rendering of RGBZ
videos. volume 31, May 2012.

ROS.org. Technical descripton of kinect calibration. http://www.ros.org/wiki/
kinect_calibration/technical.

D. Ruppert. Statistics and data analysis for financial engineering. Springer texts in
statistics. Springer New York, 2011.

Szymon Rusinkiewicz and Marc Levoy. Efficient Variants of the ICP Algorithm.
In Proceedings of the Third Intl. Conf. on 3D Digital Imaging and Modeling, pages
145 152, 2001.

Joaquim Salvi, Sergio Fernandez, Tomislav Pribanic, and Xavier Llado. A state
of the art in structured light patterns for surface profilometry. Pattern Recogn.,
43(8):2666-2680, August 2010.

71

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Bibliography

David C. Schneider, Markus Kettern, Anna Hilsmann, and Peter Eisert. A global
optimization approach to high-detail reconstruction of the head. In VMYV, pages
9-15, 2011.

David A. Simon, Martial Hebert, and Takeo Kanade. Real-time 3-d pose estimation
using a high-speed range sensor. In in Proceedings of IEEE International Conference
on Robotics and Automation (ICRA 94, pages 2235-2241, 1994.

C. C. Slama, C. Theurer, and S. W. Henriksen, editors. Manual of Photogrammetry.
American Society of Photogrammetry, 1980.

C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In
Proceedings of the Sizth International Conference on Computer Vision, ICCV ’98,
pages 839—, Washington, DC, USA, 1998. IEEE Computer Society.

Marc Toussaint. Lecture notes: Some notes on gradient descent. http://userpage.
fu-berlin.de/mtoussai/notes/gradientDescent.pdf.

Greg Turk and Marc Levoy. Zippered polygon meshes from range images. In Proceed-
ings of the 21st annual conference on Computer graphics and interactive techniques,

SIGGRAPH 94, pages 311 318, New York, NY, USA, 1994. ACM.

John Vince. Introduction to the Mathematics for Computer Graphics. Springer-
Verlag, Berlin, Heidelberg, 3rd edition, 2010.

72

