EINFÜHRUNG IN DIE KOMPLEXITÄTSTHEORIE PROF. JOHANNES KÖBLER

WS 2010/11 26. Oktober 2010

Übungsblatt 2

Abgabe der schriftlichen Lösungen bis 11. November 2010

Aufgabe 7 mündlich

Sei M eine DTM, die für mindestens eine Eingabelänge n nach $\leq n+1$ Schritten hält. Was lässt sich daraus für die Komplexität von L(M) schließen?

Aufgabe 8 mündlich

Betrachten Sie die Menge der Palindrome $L = \{x \in \Sigma^* \mid x = x^R\}$, wobei x^R das Wort ist, bei dem die Symbole von x in umgekehrter Reihenfolge aufgeschrieben sind. Beschreiben Sie sowohl eine 1-DTM M als auch eine 2-DTM M', die L entscheidet. Vergleichen Sie die Rechenzeiten von M und M'.

Aufgabe 9 mündlich

Sei M eine DTM. Für jedes Wort $x \in \{0,1\}^*$, für das eine Eingabe $y \in \{0,1\}^*$ mit M(y) = x existiert, bezeichne

$$K_M(x) = \min\{|y| \mid y \in \{0, 1\}^*, M(y) = x\}$$

die Kolmogorov-Komplexität von x bezüglich M. Zeigen Sie:

(a) Es gibt eine DTM U, so dass für jede DTM M eine Konstante c existiert, so dass für alle Wörter $x \in \{0,1\}^*$ gilt:

$$K_U(x) \leq K_M(x) + c$$
.

Hinweis: Benutzen Sie eine universelle Turingmaschine.

Für die folgenden Teilaufgaben definieren wir $K(x) = K_U(x)$.

- (b) Es gibt eine Konstante c, so dass für alle Wörter $x \in \{0, 1\}^*$ gilt: $K(x) \leq |x| + c$.
- (c) Für alle $n \ge 0$ gibt es ein Wort x der Länge n mit $K(x) \ge n$.
- (d) Geben Sie (möglichst enge) untere und obere Schranken für $K(0^n)$ an.

Aufgabe 10 10 Punkte

Sei M eine 1-DTM, die die Sprache $L = \{x \in \{0,1\}^* \mid x = x^R\}$ der Palindrome entscheidet. Wir möchten zeigen, dass M hierzu Zeit $\Omega(n^2)$ benötigt. Führt M eine Konfiguration (q, u, av) in die Konfiguration (q', u', v') über, so heißt dieser Übergang **Überquerung** der i-ten Feldgrenze im Zustand q', falls

- |u| = i 1 und |u'| = i oder
- |u| = i und |u'| = i 1

gilt. Überquert M bei Eingabe x die i-te Feldgrenze m-mal, so heißt die Folge

$$S_i(M,x) = q_1, \dots, q_m$$

der dabei angenommenen Zustände **Überquerungsfolge** (engl. crossingsequence) für die *i*-te Feldgrenze. Für $y \in \{0,1\}^n$ sei $t(y) = \text{time}_M(y0^ny^R)$ der Zeitverbrauch von M bei Eingabe des Palindroms $x = y0^ny^R$. Zeigen Sie:

- (a) Es gibt eine Zahl $i, n \leq i \leq 2n$, so dass $S_i(M, x)$ die Länge $m \leq \frac{t(y)}{n}$ hat.
- (b) Das Wort y ist eindeutig durch Angabe von M, $S_i(M, x)$, n und i beschreibbar.
- (c) $K(y) \in \mathcal{O}\left(\frac{t(y)}{|y|} + \log|y|\right)$.
- (d) M benötigt Zeit $\Omega(n^2)$.