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Content of this Lecture 

 
 
 
 

• Graph Traversals 
• Strongly Connected Components 
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Recall: Reachability in Trees 

• Assume a DFS-traversal 
• Build an array assigning each 

node two numbers 
• Preorder numbers 

– Keep a counter pre 
– Whenever a node is entered the 

first time, assign it the current 
value of pre and increment pre  

• Postorder numbers 
– Keep a counter post 
– Whenever a node is left the last 

time, assign it the current value 
of post and increment post  
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Examples from S. Trissl, 2007 
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Ancestry and Pre-/Postorder Numbers 

• Trick: A node v is reachable from a node w iff  
pre(v)>pre(w) ∧ post(v)<post(w) 

• Explanation 
– v can only be reached from w, if w is “higher” in the tree, i.e.,  

v was traversed after w and hence  
has a higher preorder number 

– v can only be reached from w,  
if v is “lower” in the tree, i.e.,  
v was left before w and hence  
has a lower postorder number 

• Analysis: Test is O(1) 
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Pre-/Post-order Labeling for Graphs 

• Method 
Let G=(V, E). We assign each v∈V a pre-order and a post-
order as follows. Set pre=post=1. Perform a depth-first 
traversal of G, starting at arbitrary nodes. When a node v 
is reached the first time, assign it the value of pre as pre-
order value and increase pre. Whenever a node v is left 
the last time, assign it the value of post as post-order 
value and increase post.  

• Notes 
– Traversals are cycle-free by definition –avoid multiple visits 
– Complexity: O(|V|+|E|)) 
– Labeling not unique; depends on chosen start nodes and order in 

which children are visited 
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Example 
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Example 
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Last visit: Cannot be visited again 
without running into a cycle 
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Example 
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Example 

X: 1,9 
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• Reachability trick does not work 
• Example: K1-K4 

– Reachable in G 
– But pre(K4)>pre(K1) 
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Tricks to Speed-Up Reachability in Graphs 

 
 
 

• Much research over the  
last decade 
– PPO: Pre-/Post-Order Pair 

• Ideas 
– If the graph is “tree-like” and acyclic 
– Follow all paths and assign multiple PPOs 
– Requires exponential space in WC, depending on “tree-likeliness” 
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Tricks to Speed-Up Reachability in Graphs 

 
 

• Ideas (GRIPP) 
– If the graph is acyclic 
– Perform a modified DFS 

• When a node is visited for the none-first time, assign another PPO but 
to not continue traversal further 

• For each node, store all PPOs 

– During search, expand with nodes which have multiple PPOs 
• Expand: “Jump” to the first PPO and branch another search 

– “Almost constant” runtime in many graphs 
 

Trissl, S. and Leser, U. (2007). "Fast and Practical Indexing and Querying of Very 
Large Graphs". SIGMOD. 
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Tricks to Speed-Up Reachability in Graphs 

• Observation: If v is reachable  
from w, then there exists a  
DFS of G in which pre(w)<pre(v)  
and post(w)>post(v) 
– Example K1-K4: Start DFS in K1 

• Idea 
– Perform a fixed number (k) of DFS and use as filter 
– If v is reachable from w in any of the DFS: Done.  
– Otherwise use another method (hopefully not often!) 
– Very effective in dense graphs where most nodes are reachable 
– Parameter k controls runtime and space 

 

Yildirim, H., Chaoji, V. and Zaki, M. J. (2010). "GRAIL: Scalable Reachability Index 
for Large Graphs." VLDB 
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Graph Transformations 

 
• Many other suggestions 
• All require a preprocessing phase (e.g. PPO indexing) and 

a search phase 
• Complexities of both phases depend fundamentally on |G|  

– If we could shrink G (without losing reachability-relevant 
information), all algorithms would be much faster 

• Furthermore, some methods only work with acyclic graphs 
– We need a way to transform a cyclic graph G into an acyclic graph 

G’ which encoded the same reachability information 
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Content of this Lecture 

 
 
 

• Graph Traversals 
• Strongly Connected Components (SCC) 

– Motivation: Graph Contraction 
– Kosaraju’s algorithm 
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Recall 

• Definition 
Let G=(V, E) be a directed graph.  
– An induced subgraph G’=(V’, E’) of G is called connected if G’ 

contains a path between any pair v,v’∈V’  
– Any maximal connected subgraph of G is called a strongly 

connected component of G 
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Recall 

• Definition 
Let G=(V, E) be a directed graph.  
– An induced subgraph G’=(V’, E’) of G is called connected if G’ 

contains a path between any pair v,v’∈V’  
– Any maximal connected subgraph of G is called a strongly 

connected component of G 
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Motivation: Contracting a Graph 

• Consider finding the transitive closure (TC) of a digraph G 
– If we know all SCCs, parts of the TC can be computed immediately 
– Next, each SCC can be replaced by a single node, producing G’ 
– G’ must be acyclic – and is (much) smaller than G 
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Reachability and Graph Contraction 

• Intuitively: TC(G) = TC(G’)+SCC(G) 
• Representing SCC(G): Hash table h mapping each node ID to 

its SCC-ID 
• Testing reachability v→w: Test if h(v)=h(w) 
• Thus, we only have to consider G’ further  

• Computing SCC solves our problems in graph reachability 
– “If we could shrink G (without losing reachability-relevant 

information), all algorithms would be much faster” 
• Yes we can 

– “We need a way to transform a cyclic graph G into an acyclic graph 
G’ which encoded the same reachability information” 

• Yes we can 

• But – how much work do we need to compute SCC(G)? 
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Content of this Lecture 

 
 
 

• Graph Traversals 
• Strongly Connected Components (SCC) 

– Motivation 
– Kosaraju’s algorithm 
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Kosaraju‘s Algorithm  

 
• Definition 

Let G=( V,E). The graph GT=(V, E‘) with (v,w)∈E‘ iff (w,v) 
∈E is called the transposed graph of G. 

• Kosaraju’s algorithm is very short (but not simple) 
– Compute post-order labels for all nodes from G using a first DFS 

• We don’t need pre-order values 

– Compute GT 

– Perform a second DFS on GT always choosing as next node the one 
with the highest post-order label according to the first DFS 

– All trees that emerge from the second DFS are SCC of G (and GT) 

• Unpublished; Kosaraju, 1978 
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Example 
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Correctness 

• Theorem 
Let G=(V,E). Any two nodes v, w are in the same tree of 
the second DFS iff v and w are in the same SCC in G. 

• Proof 
– ⇐: Suppose v→w and w→v in G. One of the two nodes (assume it 

is v) must be reached first during the second DFS. Since v can be 
reached by w in G, w can be reached by v in GT. Thus, when we 
reach v during the traversal of GT, we will also reach w further 
down the same tree, so they are in the same tree of GT. 
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Correctness 

• ⇒: Suppose v and w are in the same DFS-tree of GT  
– Suppose r is the root of this tree  
– (1) Since r→v in GT, it must hold that v→r in G  
– (2) Because of the order of the second DFS: post(r)>post(v) in G 
– (3) Thus, there must be a path r→v in G: Otherwise, r had been 

visited last after v in G and thus would have a smaller post-order 
– (4) Since v→r (1) and r→v (3) in G, the same is true for GT 

– (5) The same argument shows that w→r and r→w in G  
– (6) By transitivity, it follows that v→w and w→v via r in G and in GT 
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Examples (p(X) = post-order(X)) 

• v→w 
• Thus, w→v in GT 

• Because w↛v in G, 
p(v)>p(w) 

• First tree in GT starts 
in v; doesn’t reach w 

• v, w not in same tree 
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• v→w and w→v in G 
and in GT 

• Assume w is first in 
1st DFS: p(w)>p(v) 

• Thus 2nd DFS starts 
in w and reaches v 

• v, w in same tree 
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• Let’s start 1st DFS in r: 
p(r)>p(w)>p(v) 

• 2nd DFS starts in r, but 
doesn’t reach w 

• Second tree in 2nd DFS 
starts in w and reaches v 

• v, w in same tree 
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Complexity 

• Both DFS are in O(|G|), computing GT is in O(|E|) 
• Instead of computing post-order values and sort them, we 

can simple push nodes on a stack when we leave them the 
last time in the first DFS – needs to be done O(|V|) times 

• In the 2nd DFS, we pop nodes from the stack as new roots 
– Needs one more array to remove selected nodes during second 

DFS from stack in constant time 

• Together: O(|V|+|E|) 
– Optimal: Since in WC we need to look at each edge and node at 

least once to find SCCs, the problem is in Ω(|V|+|E|) 

• There are faster algorithms that find SCCs in one traversal 
– Tarjan’s algorithm, Gabow’s algorithm 
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