
Algorithms and Data Structures

Ulf Leser

Strongly Connected Components

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 2

Content of this Lecture

• Graph Traversals
• Strongly Connected Components

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 3

Recall: Reachability in Trees

• Assume a DFS-traversal
• Build an array assigning each

node two numbers
• Preorder numbers

– Keep a counter pre
– Whenever a node is entered the

first time, assign it the current
value of pre and increment pre

• Postorder numbers
– Keep a counter post
– Whenever a node is left the last

time, assign it the current value
of post and increment post

A

B D

H E F G

R [0

C

[1

[2

[3 [4 ,0] ,1]

,2] [5 ,3]
[6 ,6]

[7 ,4] [8 ,5]

,7]

,8]

Examples from S. Trissl, 2007

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 4

Ancestry and Pre-/Postorder Numbers

• Trick: A node v is reachable from a node w iff
pre(v)>pre(w) ∧ post(v)<post(w)

• Explanation
– v can only be reached from w, if w is “higher” in the tree, i.e.,

v was traversed after w and hence
has a higher preorder number

– v can only be reached from w,
if v is “lower” in the tree, i.e.,
v was left before w and hence
has a lower postorder number

• Analysis: Test is O(1)

A

B D

H E F G

R [0

C

[1

[2

[3 [4 ,0] ,1]

,2] [5 ,3]
[6 ,6]

[7 ,4] [8 ,5]

,7]

,8]

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 5

Pre-/Post-order Labeling for Graphs

• Method
Let G=(V, E). We assign each v∈V a pre-order and a post-
order as follows. Set pre=post=1. Perform a depth-first
traversal of G, starting at arbitrary nodes. When a node v
is reached the first time, assign it the value of pre as pre-
order value and increase pre. Whenever a node v is left
the last time, assign it the value of post as post-order
value and increase post.

• Notes
– Traversals are cycle-free by definition –avoid multiple visits
– Complexity: O(|V|+|E|))
– Labeling not unique; depends on chosen start nodes and order in

which children are visited

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 6

Example

X

K1

K2

K3

K4

K5

K7

K8

K6

X

K1

K2

K3

K4

K5

K7

K8

K6

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 7

Example

X

K1

K2

K3

K4

K5

K7

K8

K6

X

K1

K2

K3

K4

K5

K7

K8

K6

1,

2,

3,

4

Last visit: Cannot be visited again
without running into a cycle

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 8

Example

X

K1

K2

K3

K4

K5

K7

K8

K6

1,

2,

3,

4,1 5,

6,

7,2 8,3

X

K1

K2

K3

K4

K5

K7

K8

K6

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 9

Example

X: 1,9

K1: 4, 1

K2: 3,6

K3: 2,8

K4: 9,7

K5: 8,3

K7: 6,4

K8: 7,2

K6: 5,5

X

K1

K2

K3

K4

K5

K7

K8

K6

1,9

2,8

3,6

4,1 5,5

6,4

7,2 8,3

9,7

• Reachability trick does not work
• Example: K1-K4

– Reachable in G
– But pre(K4)>pre(K1)

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 10

Tricks to Speed-Up Reachability in Graphs

• Much research over the
last decade
– PPO: Pre-/Post-Order Pair

• Ideas
– If the graph is “tree-like” and acyclic
– Follow all paths and assign multiple PPOs
– Requires exponential space in WC, depending on “tree-likeliness”

X: 1,9

K1: 4, 1

K2: 3,6

K3: 2,8

K4: 9,7

K5: 8,3

K7: 6,4

K8: 7,2

K6: 5,5

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 11

Tricks to Speed-Up Reachability in Graphs

• Ideas (GRIPP)
– If the graph is acyclic
– Perform a modified DFS

• When a node is visited for the none-first time, assign another PPO but
to not continue traversal further

• For each node, store all PPOs

– During search, expand with nodes which have multiple PPOs
• Expand: “Jump” to the first PPO and branch another search

– “Almost constant” runtime in many graphs

Trissl, S. and Leser, U. (2007). "Fast and Practical Indexing and Querying of Very
Large Graphs". SIGMOD.

X: 1,9

K1: 4, 1

K2: 3,6

K3: 2,8

K4: 9,7

K5: 8,3

K7: 6,4

K8: 7,2

K6: 5,5

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 12

Tricks to Speed-Up Reachability in Graphs

• Observation: If v is reachable
from w, then there exists a
DFS of G in which pre(w)<pre(v)
and post(w)>post(v)
– Example K1-K4: Start DFS in K1

• Idea
– Perform a fixed number (k) of DFS and use as filter
– If v is reachable from w in any of the DFS: Done.
– Otherwise use another method (hopefully not often!)
– Very effective in dense graphs where most nodes are reachable
– Parameter k controls runtime and space

Yildirim, H., Chaoji, V. and Zaki, M. J. (2010). "GRAIL: Scalable Reachability Index
for Large Graphs." VLDB

X: 1,9

K1: 4, 1

K2: 3,6

K3: 2,8

K4: 9,7

K5: 8,3

K7: 6,4

K8: 7,2

K6: 5,5

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 13

Graph Transformations

• Many other suggestions
• All require a preprocessing phase (e.g. PPO indexing) and

a search phase
• Complexities of both phases depend fundamentally on |G|

– If we could shrink G (without losing reachability-relevant
information), all algorithms would be much faster

• Furthermore, some methods only work with acyclic graphs
– We need a way to transform a cyclic graph G into an acyclic graph

G’ which encoded the same reachability information

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 14

Content of this Lecture

• Graph Traversals
• Strongly Connected Components (SCC)

– Motivation: Graph Contraction
– Kosaraju’s algorithm

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 15

Recall

• Definition
Let G=(V, E) be a directed graph.
– An induced subgraph G’=(V’, E’) of G is called connected if G’

contains a path between any pair v,v’∈V’
– Any maximal connected subgraph of G is called a strongly

connected component of G

X

K1

K2

K3

K4
K5

K7

K8

K6

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 16

Recall

• Definition
Let G=(V, E) be a directed graph.
– An induced subgraph G’=(V’, E’) of G is called connected if G’

contains a path between any pair v,v’∈V’
– Any maximal connected subgraph of G is called a strongly

connected component of G

X

K1

K2

K3

K4
K5

K7

K8

K6

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 17

Motivation: Contracting a Graph

• Consider finding the transitive closure (TC) of a digraph G
– If we know all SCCs, parts of the TC can be computed immediately
– Next, each SCC can be replaced by a single node, producing G’
– G’ must be acyclic – and is (much) smaller than G

X

K1

K2

K3

K4
K5

K7

K8

K6

SCC1

SCC3

SCC4

SCC2

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 18

Reachability and Graph Contraction

• Intuitively: TC(G) = TC(G’)+SCC(G)
• Representing SCC(G): Hash table h mapping each node ID to

its SCC-ID
• Testing reachability v→w: Test if h(v)=h(w)
• Thus, we only have to consider G’ further

• Computing SCC solves our problems in graph reachability
– “If we could shrink G (without losing reachability-relevant

information), all algorithms would be much faster”
• Yes we can

– “We need a way to transform a cyclic graph G into an acyclic graph
G’ which encoded the same reachability information”

• Yes we can

• But – how much work do we need to compute SCC(G)?

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 19

Content of this Lecture

• Graph Traversals
• Strongly Connected Components (SCC)

– Motivation
– Kosaraju’s algorithm

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 20

Kosaraju‘s Algorithm

• Definition

Let G=(V,E). The graph GT=(V, E‘) with (v,w)∈E‘ iff (w,v)
∈E is called the transposed graph of G.

• Kosaraju’s algorithm is very short (but not simple)
– Compute post-order labels for all nodes from G using a first DFS

• We don’t need pre-order values

– Compute GT

– Perform a second DFS on GT always choosing as next node the one
with the highest post-order label according to the first DFS

– All trees that emerge from the second DFS are SCC of G (and GT)

• Unpublished; Kosaraju, 1978

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 21

Example

X: 9

K1: 1

K2: 6

K3: 8

K4: 7

K5: 3

K7: 4

K8: 2

K6: 5

X

K1

K2

K3

K4

K5

K7

K8

K6

9

8

6

1 5

4

2 3

7

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 22

Example

X

K1

K2

K3

K4
K5

K7

K8

K6

X:9
K3:8
K4:7
K2:6
K6:5
K7:4
K5:3
K8:2
K1:1

X

K1

K2

K3

K4
K5

K7

K8

K6

X

K1

K2

K3

K4

K5

K7

K8 K6
X

K1

K2

K3

K4
K5

K7

K8

K6

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 23

Correctness

• Theorem
Let G=(V,E). Any two nodes v, w are in the same tree of
the second DFS iff v and w are in the same SCC in G.

• Proof
– ⇐: Suppose v→w and w→v in G. One of the two nodes (assume it

is v) must be reached first during the second DFS. Since v can be
reached by w in G, w can be reached by v in GT. Thus, when we
reach v during the traversal of GT, we will also reach w further
down the same tree, so they are in the same tree of GT.

v

z

u

w
x

y v

z

u

w
x

y

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 24

Correctness

• ⇒: Suppose v and w are in the same DFS-tree of GT
– Suppose r is the root of this tree
– (1) Since r→v in GT, it must hold that v→r in G
– (2) Because of the order of the second DFS: post(r)>post(v) in G
– (3) Thus, there must be a path r→v in G: Otherwise, r had been

visited last after v in G and thus would have a smaller post-order
– (4) Since v→r (1) and r→v (3) in G, the same is true for GT

– (5) The same argument shows that w→r and r→w in G
– (6) By transitivity, it follows that v→w and w→v via r in G and in GT

r

v

In GT r

v

r:4

v:2

r

v

r

v
In G

⇒ ⇒ ⇒ ⇒ (1) (2) (3) (4) (3)

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 25

Examples (p(X) = post-order(X))

• v→w
• Thus, w→v in GT

• Because w↛v in G,
p(v)>p(w)

• First tree in GT starts
in v; doesn’t reach w

• v, w not in same tree

r

z

v

w

x

y

r

z

v

w

x

y

• v→w and w→v in G
and in GT

• Assume w is first in
1st DFS: p(w)>p(v)

• Thus 2nd DFS starts
in w and reaches v

• v, w in same tree

r

z

v

w

x

y

• Let’s start 1st DFS in r:
p(r)>p(w)>p(v)

• 2nd DFS starts in r, but
doesn’t reach w

• Second tree in 2nd DFS
starts in w and reaches v

• v, w in same tree

Ulf Leser: Algorithms and Data Structures, Summer Semester 2017 26

Complexity

• Both DFS are in O(|G|), computing GT is in O(|E|)
• Instead of computing post-order values and sort them, we

can simple push nodes on a stack when we leave them the
last time in the first DFS – needs to be done O(|V|) times

• In the 2nd DFS, we pop nodes from the stack as new roots
– Needs one more array to remove selected nodes during second

DFS from stack in constant time

• Together: O(|V|+|E|)
– Optimal: Since in WC we need to look at each edge and node at

least once to find SCCs, the problem is in Ω(|V|+|E|)

• There are faster algorithms that find SCCs in one traversal
– Tarjan’s algorithm, Gabow’s algorithm

	Foliennummer 1
	Content of this Lecture
	Recall: Reachability in Trees
	Ancestry and Pre-/Postorder Numbers
	Pre-/Post-order Labeling for Graphs
	Example
	Example
	Example
	Example
	Tricks to Speed-Up Reachability in Graphs
	Tricks to Speed-Up Reachability in Graphs
	Tricks to Speed-Up Reachability in Graphs
	Graph Transformations
	Content of this Lecture
	Recall
	Recall
	Motivation: Contracting a Graph
	Reachability and Graph Contraction
	Content of this Lecture
	Kosaraju‘s Algorithm
	Example
	Example
	Correctness
	Correctness
	Examples (p(X) = post-order(X))
	Complexity

