Searching (Sub-)Strings

Johannes Starlinger

This Lecture

e Exact substring search
— Nalve
— Boyer-Moore

e Searching with profiles
— Sequence profiles

— Ungapped approximate search
— Statistical evaluation of search results

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Searching / Comparing Strings

e Exact matching
— Given strings s and t: Find all occurrences of sin t
— Given a set S and t: Find all occurrences of any seSint

e Approximate matching
— Given s and t: Find all approximate occurrences of sin t

— Given s and t: Find s’, t' such that s’ similar tot' and s’ is a
substring of s and t’ is a substring of t

— Given s and a set of strings T
e Find all teT that are similar to s
e Find all teT containing a t’ similar to a s’ contained in s

e Many more variants ...

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Applications

e Given strings s and t: Find all occurrences of sin t

— Restriction enzyme cut positions; fixed patterns in gene structure;
seeds for approximate searching

e Glven a set S and t: Find all occurrences of any seSint
— Same

e Given s and t: Find all approximate occurrences of sin t
— Less conserved patterns; read mapping; TF binding sites

e Glvens and t: Find s', t' such that s’ similar to ' and s’ is a
substring of s and t’ is a substring of t
— Local alignment; homologous genes; cross-species searches

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Strings

e A string (or sequence) s Is an ordered list of characters
from an alphabet £
— |s| is the length of s
— g[i] is the character at position i in s (starting from 1)
s[i..j] is the substring from position i to position j in s
— S[i..j] is an empty string if | > |
s[1..i]] is a prefix of s ending at position i
— s[i..|s]] is a suffix of s starting at position i
e Alphabet
— Usually: Z={A, C, G, T}
— Often, we need blanks: '={A,C, G, T, }
e Lower/upper case: S may denote a set of strings, or a
sequence of characters (a string)

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Exact Matching

e Given P, T with |P] << |T|
e Find all occurrencesof PIn T

e Example of application: Restriction enzymes
— Cut at precisely defined sequence motifs of length 4-10

— Are used to generate fragments (for later sequencing)
— Example: Eco RV - GATATC

tcagcttactaattaaaaattctttctagtaagtgctaagatcaagaaaataaattaaaaataatggaacatggcacattttcctaaactcttcacagattgctaatgat
tattaattaaagaataaatgttataattttttatggtaacggaatttcctaaaatattaattcaagcaccatggaatgcaaataagaaggactctgttaattggtactat
tcaactcaatgcaagtggaactaagttggtattaatactcttttttacatatatatgtagttattttaggaagcgaaggacaatttcatctgctaataaagggattacga
aaaactttttaataacaaagttaaataatcattttgggaattgaaatgtcaaagataattacttcacgataagtagttgaagatagtttaaatttttctttttgtattac
ttcaatgaaggtaacgcaacaagattagagtatatatggccaataaggtttgctgtaggaaaattattctaaggagatacgcgagagggcttctcaaatttattcagaga
tggatgtttttagatggtggtttaagaaaagcagtattaaatccagcaaaactagaccttaggtttattaaagcgaggcaataagttaattggaattgtaaaafatatet
aattcttcttcatttgttggaggaaaactagttaacttcttaccccatgcagggccatagggtcgaatacgatctgtcactaagcaaaggaaaatgtgagtgtagacttt
aaaccatttttattaatgactttagagaatcatgcatttgatgttactttcttaacaatgtgaacatatttatgcgattaagatgagttatgaaaaaggcgaatatatta
ttcagttacatagagattatagctggtctattcttagttataggacttttgacaagatagcttagaaaataagattatagagcttaataaaagagaacttcttggaatta
gctgcctttggtgcagectgtaatggectattggtatggctccagettactggttaggttttaatagaaaaattccccatgattgctaattatatctatecctattgagaaca
acgtgcgaagatgagtggcaaattggttcattattaactgctggtgctatagtagttatccttagaaagatatataaatctgataaagcaaaatcctggggaaaatattg
ctaactggtgctggtagggtttggggattggattatttcctctacaagaaatttggtgtttactfatatecttataaataatagagaaaaaattaataaagatgatat

Johannes Starlinger: Bioinformatics, Summer Semester 2017

How to do it?

e The straight-forward way (naive algorithm)
— We use two counter: t, p
— One (outer, t) runs through T
— One (inner, p) runs through P
— Compare characters at position T[t+p-1] and P[p]

for t = 1 to |T|
match := true;
p :=1;
while ((match) and (p <= [|P]))
if (T[t + p — 1] <> P[p]) then
match := false;

else
p :=p + 1;
end while;
1T (match) then
-> OUTPUT t

end for;

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Examples

Typical case Worst case
T ctg ag atcg CJQ ta T dddddaddadddadadadad
P ga%?ggc P aaaaat
g g%g atC aaaaat
gagatc aaaaat
gag%g%c aaaaat
gatatc
gatatc

e How many comparisons do we need in the worst case?
e talways runs through T
e p runs through the entire P for every position in t (worst case)
e Thus: Roughly |P|*|T| comparisons (read: is in O(|P|*|T|))
e Alot: |T|=250M (chromosome), |P|=250 (exon) => ~62E9 ops

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Other Algorithms

e Exact substring search has been researched for decades
— Boyer-Moore, Z-Box, Knuth-Morris-Pratt, Karp-Rabin, Shift-AND, ...

— All have WC complexity O(|P| + |T])

— Real performance depends a lot on size of alphabet and
composition of strings (most have strengths in certain settings)

e One simple and popular algorithm: Boyer-Moore
— We present a simplified form
— BM is among the fastest algorithms in practice

e Note: Much better performance possible if T maybe
preprocessed (best algorithms reach O(|P]))

Johannes Starlinger: Bioinformatics, Summer Semester 2017

This Lecture

e Exact substring search
— Nalve
— Boyer-Moore

e Searching with profiles
— Sequence profiles

— Ungapped approximate search
— Statistical evaluation of search results

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Boyer-Moore Algorithm

e R.S. Boyer /J.S. Moore. , A Fast String Searching
Algorithm*, Communications of the ACM, 1977

e Main idea
— Again, we use two counters (inner loop, outer loop)
— Inner loop runs from right-to-left

— If we reach a mismatch, we know
e The character in T we just didn’t match
— This is captured by the bad character rule
e The suffix in P we just did match (before reaching the mismatch)
— This is captured by the good suffix rule

e Use this knowledge to make longer shifts in T

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Bad Character Rule

e Setting 1
— We are at position t in T and compare right-to-left
— Let i be the position of the first mismatch in P
e We saw n-i+1 matches before
— Let x be the character at the corresponding pos (t-n+i) in T
— Candidates for matching x in P

e Case 1: x does not appear in P at all — we can move t such that t-n+i
IS not covered by P anymore

T xabxfabzzabwzzbzzb T xabxfabzzabwzzbzzb
P abwxyabzz P abwxyabzz
— —
What next?

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Bad Character Rule 2

e Setting 2
— We are at position t in T and compare right-to-left
— Let i be the position of the first mismatch in P
— Let x be the character at the corresponding pos (t-n+i) in T
— Candidates for matching x in P
e Case 1: x does not appear in P at all

e Case 2: Let j be the right-most appearance of x in P with j<i (read: left
of i) — we can move t such that j and i align

T xabxkabzzabwzzbzzb T xabxkabzzabwkzbzzb

P abzwyabzz P ab abzz
P —
J What next? I

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Bad Character Rule 3

e Setting 3
— We are at position t in T and compare right-to-left
— Let i be the position of the first mismatch in P
— Let x be the character at the corresponding pos (t-n+i) in T
— Candidates for matching x in P
e Case 1: x does not appear in P at all

e Case 2: Let j be the right-most appearance of x in P with j<i
e Case 3: As case 2, but j>i — we need some more knowledge

T xXabxkabzzabwizbzzb
= abzwyaljzz

—

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Preprocessing 1

e In case 3, there are some “x” right from position |
— For small alphabets (DNA), this will almost always be the case
— Thus, case 3 is a usual situation
e These “x” are Irrelevant — we need the right-most x left of |

e This can (and should!) be pre-computed
— Build a two-dimensional array A[|2]|,|P]]
— Run through P from left-to-right (pointer i)
— If character c appears at position i, set all A[c,j]:=i for all j>=i
— Runtime negligible because P is small

e Array: Constant lookup at search time

Johannes Starlinger: Bioinformatics, Summer Semester 2017

(Extended) Bad Character Rule

e Simple, effective for larger alphabets

e For random DNA, average shift-length is ~2
— Expected distances to the next match using EBCR
— Per position in t, the expected length of the match also is ~2
— Thus, we expect ~ 2*|T|/2 = |T| comparisons
e Worst-Case complexity of BM algorithm does not change
— Why?

Johannes Starlinger: Bioinformatics, Summer Semester 2017

(Extended) Bad Character Rule

e Simple, effective for larger alphabets

e For random DNA, average shift-length is ~2
— Expected distances to the next match using EBCR
— Per position in t, the expected length of the match also is ~2
— Thus, we expect ~ 2*|T|/2 = |T| comparisons
e Worst-Case complexity of BM algorithm does not change

T 99999999999 |

9999999999¢
9999999999¢
9999999999¢

9999999999¢

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Good-Suffix Rule

e Recall: If we reach a mismatch, we know ...
— The character in T we just didn’t match
— The suffix in P we just did match

e Good suffix rule
— We did find some matches in P; let this suffix be S
— Where else does S appear in P?

— If we know the right-most appearance S’ of S in P, we can
Immediately align S’ with the current match in T

— If S does not appear at least twice in P, we shift t by |P|- |S|+1

—

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Good-Suffix Rule — One Improvement

e Actually, we can do a little better
e Not all S* are of interest to us

B s I s B s B s

e We only need S’ whose next character to the left is not y
 Why don‘t we directly require that this character is x?

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Complete Algorithm

t :=1;
while (t<=|T]-|P]) do \\ outer loop
p = |PI;
match := true;
while (match and p>=1) do \\ i1nner loop
1T (T[t+p]=P[p]) then p := p-1 \\ matching chars
else match := false; \\ mismatch
end while;
1T match then print t; \\ complete match
compute shift s; using BCR(t,p);
compute shift s, using GSR(t,p);
t := t + max(s;, S,); \\ shift maximal
end while;

Johannes Starlinger: Bioinformatics, Summer Semester 2017

GSR Preprocessing

e We need to find all occurrences of all suffixes of P iIn P with
restrictions on the character left of the suffix

e Could be computed using naive algorithm for each suffix
e Or, more complicated, in linear time (not this lecture)
e Runtime negligible since we assume P being short

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Concluding Remarks

e \Worst-case complexity of Boyer-Moore is O(|P|*|T])
— WC complexity can be reduced to linear (not this lecture)

e Empirical runtime is sub-linear

— The larger the alphabet (with roughly equal character frequencies),
the faster

e Faster variants
— Often, using the GSR does not pay off

— BM-Horspool: Instead of looking at the mismatch character X,
always look at the symbol in T aligned to the last position of P

e Generates longer shifts on average (i is maximal)
e In practice, also naive algorithm is quite competitive for
random strings and non-trivial alphabets (not for DNA)
— Empirical results much better than worst-case estimations

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Example

[Eecrins] | CIIEICETS

= BB s - Bl

=rm

. Match . Good suffix clabjaabjghb aE

. Mismatch . Ext. Bad character

Johannes Starlinger: Bioinformatics, Summer Semester 2017

This Lecture

e Exact substring search

e Searching with profiles
— Splicing
— Position Specific Weight Matrices
— Likelihood scores

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Approximate Search (First Step)

e Requiring an exact match is too strict in most
bioinformatics applications
— Sequencing errors, mutations, individual differences, ...

e More often, one Is Interested in matches similar to P
e Many definitions of “similar” are possible

e Now: Position Specific Weight Matrices (PSWM)
— Also called profiles
— Powerful tool with many bioinformatics applications

— We develop the idea using an example taken from Spang et al.
“Genome Statistics”, Lecture 2004/2005, FU Berlin

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Splicing

 Not all DNA of a “gene” Is translated into amino acid
e Splicing: Removal of introns
e Alternative splicing: Removal of some exons

Introns Gene

mRNA
Transcription, elimi-
nation of intron
transcript segments,
and splicing of exons
MRNA 1 i)] mBNA
Figure 13.3 Protein A Protein B

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Diversity

[
[
[
T
—

e From a gene with n exons, alternative
splicing can create 2"-1 proteins

e Example: Troponin T (muscle protein)
— 18 exons
— 64 different known isoforms
— 10 exons present in all isoforms

1111 IEEARERR L] [[BERNREaE
IR RRARAAREN CEe e i

[
[
B
[1L
[
I
[1
[I[_|
[
[
[1
[I[_|
T
[1
[
]
B
[1L
]
[[
T
[I[__]
]
[
[1
[I[_|
]
[
[
=
—— —

e Source: Eurasnet, ,Alternative Splicing*

(A A (10T R | R

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Recognizing Splice Sites

e A special enzyme (spliceosome) very precisely recognizes
exon-intron boundaries in MRNA

e Spliceosome recognizes certain sequence motifs

e How are these motifs characterized? Can we find them?
— Very often, introns start with GT and end with AG
— But that is not specific enough - why?
— In random sequences, we expect a GT (AG) at every 16t position

— Thus, the average distance between a GT and an AG is 16, and we
find such pairs very often

— But: Introns typically are larger than 100 bases

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Context of a Splice Site

CTCCGAAGTAGGATT CTCCGRAAGTAGCATT
TCAGAAGGTGAGGGC TCAGAAGGTGAGGGC
TTGGAAGGTTCGCAG TTGGAAGGTTCGCAG
TACTCAGGTACTCAC TACTCAGGTACTCAC
CGCCCAGGTGACCGG CGCCCLGGTGACCGG
AGAAAGAGTAAGCTC AGAAAGAGTAAGCTC
CAATGCTGTATGTGT CAATGCTGTATCETGT
GGTCTCGGTAACTGC GGTCTCGGTAACTGC
CCTGCTGGTAAGGCC CCTGCTGGTAACGCC
TGTTGCGGTAGGTCC TGTTGCGGTAGETCC

e Observing real splice sites, we find no crisp context
e But: columns are not composed at random
e How can we capture and quantify this knowledge?

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Vizualization: Sequence Logos

e Very popular

e Based on information content of each base at each position
— Which, in turn, is based on the entropy of the columns

CTCCGAAGTAGGATT
TCAGAAGGTGAGGGC
TTGGAAGGTTCGCAG
TACTCAGGTACTCAC
CGCCCAGGTGACCGG

AGAAAGAGTAAGCTC A C
o

CAATGCTGTATGTGT e _ e

GGTCTCGGTAACTGC 5

weblogo. berusley. adu

CCTGCTGGTAAGGCC

TGTTGCGGTAGGTCC

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Position-Specific Weight Matrices

DONOR FREQUENCY MATRIX from http://gencmic.sanger.ac.uk/spldb/SpliceDB.html
1 2 3 4 5 6 7 8 9

34.08 60.386 9.14 0.00 0.00 52,57 71.26 7.08 15.98
36.24 12.90 3.27 0.00 0.00 2.82 7.56 5.50 16.46
18.31 12.48 80.34 100.00 0.00 41.94 11.76 B1.35 20.90
11.38 14.25 7.24 0.00 100.00 2.55 9.29 5.88 46.16

H @ 0 e

e Count in every column the frequencies of all bases
e Store the relative frequencies in an array of size |P|*|2]|
— With |P| being the size of the context around the splice sites

e At “GT”, all values except one are 0% and one is 100%
— Actually, GT is not perfectly conserved in real sequences

e In random sequences, all values should be 25%

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Scoring with a PSWM

e Eventually, we want to find potential splice sites in a
genome G (e.g. to do gene prediction)

e \We need a way to decide, given a sequence S and a PSWM
A (both of the same length): Does S match A?
— We devise a function assigning a score to S given A
— With this function, we score all subsequences of length |A] in G
— Subsequences above a given threshold are considered candidates

e \We give this question a probabillistic interpretation

— Assume, for each column, a dice with four faces; each face is
thrown with probability equal to the relative frequencies as given in
the PSWM A for this column

— What is the probability that this dice generates S?

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Examples

e |In random sequences, all values in A are 25%, and all
possible S would get the same probability: ¥lS|

® Ealjt 1 2 3 4 5 & 7 B 8

34.08 60.36 9.14 0.00 0.00 52.57 71.26 7.08 15.98
36.24 12.90 3.27 0.00 0.00 2.82 7.56 5.50 16.46
18.31 12.48 80.34 100.00 0.00 41.94 11.78 81.35 20.90
11.38 14.25 T.24 0.00 100.00 2.55 9.29 5.88 46.16

= I 7 I B

— P(AAGGTAAGT) ~ 0.3*0.6*0.8*1*1*0.5*0.7*0.8*0.5 ~ 0.023
— P(CCCGTCCCC) ~ 0.4*0.1*0.03*1*1*0.02*0.08*0.05*0.2 ~ 3E-8
— P(AGTCTGAAG) ~ 0.3*0.1*0.1*0*1*0.4*0.7*0.07*0.2 =0

— 18t sequence matches A much better than the second
— 3" sequence hints towards overfitting

Johannes Starlinger: Bioinformatics, Summer Semester 2017

This Lecture

e Exact substring search

e Searching with profiles
— Splicing
— Position Specific Weight Matrices
— Likelihood scores

Johannes Starlinger: Bioinformatics, Summer Semester 2017

| am not Convinced (yet)

e |s S actually a match for A?

 We need to quantify the “goodness” of a score
— By comparing it to other / best / worst scores
e QObservations

— The first match on the previous slide is about as good as it can get:
Best possible sequence has a score of 0.025 (compared to 0.023)

— If match S is not a splice site, it is an “ordinary” sequence. How
likely is it that S is generated under the zero model (2)?

e “Zero model” often means: Equal probability for all bases

— Could include species bias, coding region bias, CpG island bias, ...
e p(S|’zero”) = ¥4° ~ 3.8E-6

— Thus, is it much more likely (app. 6000 times more likely) that S

was generated under the A model than that is was generated
under the Z model

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Likelihood (Odds) Ratios

e Glven two models A, Z. The likelihood ratio score of a
sequence S is the ratio of p(S|A) / p(S|2)

1 2 3 4 5 6 7 8 9

— Score(AAGGTACGT) —_~ 6000 A 34.08 60.36 9.14 0.00 0.00 52.57 71.26 7.08 15.98
C 36.24 12.90 3.27 0.00 0.00 2.82 7.56 5.50 16.46

_ SCOre(CCCGTCCCC) —_ 1/140 G 18.31 12.48 80.34 100.00 0.00 41.94 11.76 81.35 20.90
T 11.38 14.25 7.24 0.00 100.00 2.55 9.29 5.88 46.16

— score(CTGGTCCGA) ~ 3
— score(TCCGTCCCC) <1

P (AAGGTACGT) = 0.34%0.6*0.8*1*1*0.53*0.71*0.81*0.46 =0.023

P (CCCGTCCCC) =~ 0.360.13*0.03*1*1*0.03*0.08*0.05*0.16 =2.7e-08
P (CTGGTCCGA) ~0.36*0.14*0.8*1*1*0.03*0.08*0.81*0.16 =1.25¢-05
P (TACCTCCGT) =0

B wh o=

e Also called odds score
— This is just one (popular) method for computing a “goodness”

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Matching with a PSWM

e Glven genome G, models A and Z, and a threshold t: Find
all S in G with likelihood(S)>t

e Method: For all S with |S|=]A|, compute likelihood (S)
— This requires ~|G|*|A| divisions and multiplications
— Divisions can be saved on easily (how?)

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Numeric trick

e Values get quite small (close to 0) for longer A
e This yields problems with numeric stability in programs

e Better: Compute log-likelihood score s’=log,(score(...))
— Also faster: Replaces multiplication with addition
— Pre-compute divisions

(S = log p(S|A)j=Iog[p(sl|A1>*...*p<sn|An))

= log P, A) +ot Iog[PES, | A”)]
p(S; 1Z:) p(S.1Z,)

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Beware

e Assume a highly conserved motif A of length 8
— The chance that an arbitrary S, |S|=8, matches A is only 0.000015
— But: |G]=3.000.000.000
— Only by chance, we will have ~45,000 perfect matches
— This applies even if we set the threshold at maximum
— Help: For |A|=16, we expect less than 1 match by chance

e Generally: Number of false hits depend on the threshold t
— Higher t: Stricter search, less false hits, but may incur misses
— Lower t: Less strict, less misses, but more false hits

e Note: A match is a hypothesis calling for further analysis
— By additional knowledge (e.g.: is S part of a gene?)
— By experimentation (e.g.: can we find an isoform spliced at S)?

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Pattern Matching

e \We discussed exact matching and matching with a PSWM

e But motifs also may look quite differently
— Motifs (domains) in protein sequences
— Some important positions and much “glue” of unspecified length
— Pattern here may be: [AV].*FGKG[SIV]2.*[LI]...
— Which positions in S should we compare to which columns in P?
— How can we derive a specific pattern P from S;-S;?

1 | I —
S,z M--—-AIDE----NKQKALAAAL GQ--KQFGKGS IMRLGEDR-SMDVET I STGSLISLDI
S,z MSDN-—----—- KKQQALELALKQI-KQFGKGS IMKLGDG-ADHS IEAIPSGS IIALD
S,z M--——AINTDTSGKQKALTMVINQIERSFGKGV IMRLGDA-TRMRVET I STGALTLDL
TR | —— DRQKALEAAYSQ--RAFGKGS IM-LGGKD---ETEVVSTRILGLDV
Ser M—————- DE---NKKRALAAALGQ I -KQFGKGVIMRMGDHE-RQAIPAISTGSLGLDI
Sgz MD=———————mmmmmm | K-EKSFGKGS IMRMGEE-VVEQVEV IPTGS IA——-

[| B

Johannes Starlinger: Bioinformatics, Summer Semester 2017

Further Reading

e On string matching algorithms
— Gusfield

e On sequence logos and TFBS-identification
— Christianini & Hahn, chapter 10
— Merkl & Waack, chapter 10

Johannes Starlinger: Bioinformatics, Summer Semester 2017

	Slide Number 1
	This Lecture
	Searching / Comparing Strings
	Applications
	Strings
	Exact Matching
	How to do it?
	Examples
	Other Algorithms
	This Lecture
	Boyer-Moore Algorithm
	Bad Character Rule
	Bad Character Rule 2
	Bad Character Rule 3
	Preprocessing 1
	(Extended) Bad Character Rule
	(Extended) Bad Character Rule
	Good-Suffix Rule
	Good-Suffix Rule – One Improvement
	Complete Algorithm
	GSR Preprocessing
	Concluding Remarks
	Example
	This Lecture
	Approximate Search (First Step)
	Splicing
	Diversity
	Recognizing Splice Sites
	Context of a Splice Site
	Vizualization: Sequence Logos
	Position-Specific Weight Matrices
	Scoring with a PSWM
	Examples
	This Lecture
	I am not Convinced (yet)
	Likelihood (Odds) Ratios
	Matching with a PSWM
	Numeric trick
	Beware
	Pattern Matching
	Further Reading

