
Ulf Leser

Datenbanksysteme II:
Storage, Discs, and Raid

Ulf Leser: Implementation of Database Systems 2

Tasks

Query optimization
Access control
Integrity constraints

Physical record manager
Index manager
Lock manager
Log / Recovery

Sort
Transaction processing

Cursor management

Block management
Caching

External memory

Data Model

Logical Access

Data Structures

Buffer Management

Operating System

Ulf Leser: Implementation of Database Systems 3

Content of this Lecture

• Discs
• RAID level
• Some guidelines

Ulf Leser: Implementation of Database Systems 4

Magnetic Discs

• Preferred mass-storage since ~1970
– Multiple rotating discs, each with a separate head
– Discs: Tracks, sectors, blocks
– Formatting: Determining (fixed) block size
– Blocks with fixed size, tracks do not have fixed number of blocks
– Discs are more and more replaced by SSD

• Error-correcting codes: Single bit errors can be corrected

Ulf Leser: Implementation of Database Systems 5

Reading from Discs

• Seek time: ts
– 5-20ms: Move head to right track

• Wait time: tw
– 3-10ms: Wait for sector to rotate to head
– On average: ½ rotation
– Typical speed: 6.000 – 10.000 rotations / minute

• Reading blocks: At rotation speed
– Beware caching within disc controller

• Transfer rate: u
– Data volume read per time and put into main memory
– Typical today: 100-300MB/sec (sequential reads)

Latency

Ulf Leser: Implementation of Database Systems 6

Development

Source: https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte/

Ulf Leser: Implementation of Database Systems 7

Random versus Sequential IO

• Task: Read 1000 blocks each 32KB (=32MB)
• Parameter: Ts= 10ms, Tw = 6ms, u = 100MB/s
• Random I/O

– For each block: Latency
– t = 1000 * (10 ms + 6 ms) + 1000*32KB/100MB*1000 ms
– t= 16000 ms + 320ms ~ 16s

• Sequential I/O
– Once latency
– 10 ms + 6ms + 1000*32KB/100MB*1000 ms
– T= 16ms + 320 ms ~ 1/3 s

• One can read a lot sequentially before RA makes sense
• Reading few large files much faster than many small ones

Ulf Leser: Implementation of Database Systems 8

Recent Technologies: SSD

• Solid state disks (SSD)
– No moving objects, no mechanics

• Smaller SSD (~500GB) at almost same per-GB price than
HDD, but large SSD (TB) still expensive

• Five to ten times faster read/writes than HDD
– Depending on interface, SATA* versus PCI*
– Latency is close to zero (<0.1ms)
– No defragementation, random access as fast as sequential reads

• Assume 500MB/s, lat=0.1ms, previous example
– t = 1000 * 0.1 + 1000*32KB/500MB*1000 ms = 164ms ~ 1/6 sec

• Consume less energy
• Roughly same error rate, SSD probably with longer lifetime

Ulf Leser: Implementation of Database Systems 9

Recent Technologies: NVA, RDMA

• Non-volatile memory (NVM, or storage-class memory)
– Roughly same read speed as DRAM, same write speed as SSD

• Different technologies
– Still not available commercially (?)
– Many implications for database systems

• Difference in read/write quite unusual for main memory
• What is a reboot if all memory is non-volatile?
• Arulraj/Pavlo. "How to build a non-volatile memory database

management system.“, SIGMOD 2017

• Remote direct memory access (RDMA)
– CPU’s read remote DRAM at network speed without network stack
– Combined with high-speed networks, remote access as fast as local

• E.g. Infiniband (very expensive)
– Beware: External processes are writing into your DRAM!

Ulf Leser: Implementation of Database Systems 10

How to get Faster with HDD?

• Fast IO is vital for an DBMS: Avoid SAN, NFS, HDFS, …
• Parallelize storage access (read and write)

– Distribute files over multiple disks
– Needs proper infrastructure: Controller, memory access channels

• RAID: Redundant Array of Independent Discs
– Or: „Redundant array of inexpensive discs“
– Idea: Buy many yet cheap disks

• In contrast to more expensive disk with faster rotations and less errors
– Different RAID level
– May allow faster access (parallelization)
– May allow higher fault tolerance (redundancy)
– Always reduces net space

• The space available for application data

Ulf Leser: Implementation of Database Systems 11

Architectures

Software-Raid

Hardware-Raid

Ulf Leser: Implementation of Database Systems 12

Measuring Fault Tolerance

• One disc: If a head crashes, data is gone
• With n non-redundant independent disks

– Let d be the average number of days until a disk crashes
• When will a disk fail (one is enough for data loss)?
• If bought at the same time - after ~d days – all crash “at once”

– Let p be the probability per day that a disk crashes
• What is the probability per day that at least one disk crashes?
• 1-(1-p)n

– Example: 500 discs, p=1/1000: ~40% of at least one crash / day
• If we introduce redundancy, probability of faults changes

– May reduce latency, read throughput, write throughput
– Increases total space

Ulf Leser: Implementation of Database Systems 13

Content of this Lecture

• Discs
• RAID level
• Some guidelines

Ulf Leser: Implementation of Database Systems 14

• Up to double throughput for sequential reads and writes
– If a large file is perfectly distributed and completely read

• Small files not accelerated much, single blocks not at all
– Latency dominate

• Decreased fault tolerance
– Distributed files (for throughput) are at risk from two discs

• Same net space

A

C

B

D
A B C D

RAID 0: Striping

File

Ulf Leser: Implementation of Database Systems 15

• Doubled throughput for sequential file reads
• Writes are not accelerated
• Single block read might be slightly better

– Read from both disks, faster disk wins
• Increased fault tolerance
• 50% net space

A

C

B

D

A

C

B

D

RAID 1: Mirroring

Ulf Leser: Implementation of Database Systems 16

RAID0 versus RAID1

• Abbreviations
– MTTF = Mean time to (between) failure of a disk
– MTTDL = Mean time to data loss of a system (fatal crash)

• Data needs to be restored from backup

• Example: MTTF = 3650 days
– RAID0 with 2 disks bought at arbitrary points in time

• Every crash destroys data
• Expected MTTDL1 = 3650/2 = 1825 days

– RAID1 with 2 disks bought at arbitrary points in time
• Both must crash at the same time to destroy data
• MTTDL2 = MTTDL1*MTTDL1 ~ 9.000 years

– Assuming statistical independence of events (disks)
– But: Shared room (fire, flood), shared power (outage), shared

building (earthquake), shared age, …

Ulf Leser: Implementation of Database Systems 17

• Quadruple speed for sequential read
• Doubled speed for sequential writes
• 50% net space
• Increased fault tolerance

A

C

A

C

B

D

B

D

RAID 0+1: Striping and Mirroring

Ulf Leser: Implementation of Database Systems 18

RAID 2: Striping Bits (not Blocks)

• Much disadvantage compared to RAID0
– On block devices, reading a byte is as expensive as reading a block

• And more complex management
– OS / DBs cache blocks, not parts of blocks

• Irrelevant for disks

1010 1101 1011 0110 0011 1100....

111001... 010101... 101110... 011010...

Ulf Leser: Implementation of Database Systems 19

RAID 3: RAID2 + Parity

• Increased fault tolerance: One disk crash can be tolerated
– Crashed data can be restored from other disks
– Flipped bits can be detected, but not repaired
– Same robustness, but much better space utilization than RAID1

• (n-1) times faster for sequential reads of large files
– But not if flipped bits should be detected: parity disk is bottleneck

• Writes unchanged (parity disk) or even slower
– If multiple processes write, parity disk becomes bottleneck

1010 1101 1011 0110 0011 1100....

111001... 010101... 101110... 011010... 011000...

⊕

Parity disk:
Bit-wise XOR

Ulf Leser: Implementation of Database Systems 20

RAID 4: Block Striping + Parity

• Same idea as RAID 3, but striping at block, not bit, level
• Easier management
• Parity remains bottleneck for controlled reads and writes

– Every net block write incurs one parity write
– Additional: Leads to locking if multiple processes write concurrently

• Practically irrelevant

A E B F C G D H PA-D PE-H

Ulf Leser: Implementation of Database Systems 21

RAID 5: RAID4 with distributed Parity

• Parity blocks are evenly spread over disks
• Many benefits

– Parity accesses distributed among all disks – no more bottleneck
– Up to (n-1) times faster reads of large files
– Writes slightly slower than RAID0 (still some synch work)
– Not much space wasted: Net space is (n-1) times capacity
– One disk crash can be repaired

A E B F C G D HPA-DPE-H

I M J O LN K PPI-LPM-P

Ulf Leser: Implementation of Database Systems 22

Summary

• Further RAID Level defined, e.g.: 6=5+1, …
• Typical scenarios

– Increase write speed needs striping (e.g. RAID 0)
– RAID1: Simple, fast, safe, but needs lots of space
– RAID5: More complex, safe, fast, requires more space, requires at

last three disks

Ulf Leser: Implementation of Database Systems 23

Oracle: Options without RAID

• Parallelization by distributing
tablespaces
– System tablespace on separate disk

• Or: Tablespace-managed data dict.
– Separate tablespaces for data / index
– Separate disk for REDO Logs

• .. by distributing one tablespace over multiple disks
• … by distributing a single table

– Extends in different, distributed files of the same tablespace
– Partitioning – value-based distribution of data

• All sales prior to 2005 on one disk, all younger sales on another disk
• One disk for sales in 2005, 2004, 2003, …

Database

Tablespace

Segment

Extent

Block OS Block

Data file

Ulf Leser: Implementation of Database Systems 24

Interference with RAID

• File layout and RAID interfere
• Multi-file distributed tablespace

might not have an effect if files are
RAID-distributed over the same
physical disks

• Proper RAID design might make file distribution obsolete
• Need to consider both to prevent advantage-cancelling

effects
• Note: Parallel reads must be consumed on upper levels –

parallel memory access, parallel processing units, …

Database

Tablespace

Segment

Extent

Block OS Block

Data file

Ulf Leser: Implementation of Database Systems 25

Some guidelines (Oracle handbooks)

• „Tsps should stripe over at least as many devices as CPUs“
• “You should stripe tablespaces for tables, indexes, rollback

segments, and temporary tablespaces. You must also
spread the devices over controllers, I/O channels, and
internal buses“
– Queries can run in parallel (inter-query parallelization)
– Single disk is bottleneck – multiple processors become useless
– Ideally, each disk becomes a “feed” for one processor (thread)

• Disadvantages
– Data spread over multiple disks leads to higher failure chances –

use redundant RAID levels
– Recovery (hot swap) of a disk might stop operations

• All disks must be access at the same time for repair

Ulf Leser: Implementation of Database Systems 26

Guidelines 2

• „In high-update OLTP systems, the redo logs are write-
intensive. Moving the redo log files to disks that are
separate from other disks and from archived redo log files
has … benefits …“
– Every transaction generates REDO information
– REDO is written in batches before commit, data blocks are written

sporadically with mostly random access
– Both should not interfere (too many seeks)

• Hence: Put REDO log files away from data files
• Disk crash can only effect REDO or only data files – built in redundancy

– Redo data is extremely important (rollback, roll-forward)
• Hence: Spread REDO itself redundantly over many disks
• By system (RAID) or by database (REDO groups)

– REDO disks are good places to invest in RAID10

Ulf Leser: Implementation of Database Systems 27

Other Typical Bottlenecks

• Temporary tablespace – used especially for large SORTS
– And sorting is everywhere – sort-merge join, group by, order by,

distinct, ...
– Receives many concurrent accesses from many processes
– Hot spot – fast reads, fast writes, but failure is not critical
– RAID0

• System tablespace
– Holds data dictionary – important for everything
– Required all the time – logs, latches, system log data, ...
– RAID1

• Better: SSD or mem-cached

	Foliennummer 1
	Tasks
	Content of this Lecture
	Magnetic Discs
	Reading from Discs
	Development
	Random versus Sequential IO
	Recent Technologies: SSD
	Recent Technologies: NVA, RDMA
	How to get Faster with HDD?
	Architectures
	Measuring Fault Tolerance
	Content of this Lecture
	RAID 0: Striping
	RAID 1: Mirroring
	RAID0 versus RAID1
	RAID 0+1: Striping and Mirroring
	RAID 2: Striping Bits (not Blocks)
	RAID 3: RAID2 + Parity
	RAID 4: Block Striping + Parity
	RAID 5: RAID4 with distributed Parity
	Summary
	Oracle: Options without RAID
	Interference with RAID
	Some guidelines (Oracle handbooks)
	Guidelines 2
	Other Typical Bottlenecks

