Einführung in die Theoretische Informatik

Johannes Köbler

Institut für Informatik Humboldt-Universität zu Berlin

WS 2016/17

Zeitkomplexität von Turingmaschinen

Die Laufzeit einer NTM M bei Eingabe x ist die maximale Anzahl an Rechenschritten, die M(x) ausführt.

Definition

ullet Die Laufzeit einer NTM M bei Eingabe x ist definiert als

$$time_{M}(x) = \sup\{t \geq 0 \mid \exists K : K_{x} \vdash^{t} K\},\$$

wobei sup $\mathbb{N} = \infty$ ist.

- Sei $t : \mathbb{N} \to \mathbb{N}$ eine monoton wachsende Funktion.
- Dann ist M t(n)-zeitbeschränkt, falls für alle Eingaben x gilt:

$$time_M(x) \le t(|x|).$$

Die Zeitschranke t(n) beschränkt also die Laufzeit bei allen Eingaben der Länge n (worst-case Komplexität).

Zeitkomplexitätsklassen

Wir fassen alle Sprachen und Funktionen, die in einer vorgegebenen Zeitschranke t(n) entscheidbar bzw. berechenbar sind, in folgenden Komplexitätsklassen zusammen.

Definition

ullet Die in deterministischer Zeit t(n) entscheidbaren Sprachen bilden die Sprachklasse

$$\mathsf{DTIME}(t(n)) = \{L(M) \mid M \text{ ist eine } t(n)\text{-zeitbeschränkte DTM}\}.$$

ullet Die in nichtdeterministischer Zeit t(n) entscheidbaren Sprachen bilden die Sprachklasse

$$NTIME(t(n)) = \{L(M) | M \text{ ist eine } t(n)\text{-zeitbeschränkte NTM}\}.$$

ullet Die in deterministischer Zeit t(n) berechenbaren Funktionen bilden die Funktionenklasse

$$\mathsf{FTIME}(t(n)) = \left\{ f \middle| \begin{array}{c} \mathsf{es\ gibt\ eine}\ t(n)\text{-}\mathsf{zeitbeschr\"{a}nkte} \\ \mathsf{DTM}\ M,\ \mathsf{die}\ f\ \mathsf{berechnet} \end{array} \right\}.$$

Die wichtigsten Zeitkomplexitätsklassen

• Die wichtigsten deterministischen Zeitkomplexitätsklassen sind

$$\begin{aligned} \mathsf{LINTIME} &= \bigcup_{c \geq 1} \mathsf{DTIME}(cn+c) & \text{"Linearzeit"} \\ \mathsf{P} &= \bigcup_{c \geq 1} \mathsf{DTIME}(n^c+c) & \text{"Polynomialzeit"} \\ \mathsf{E} &= \bigcup_{c \geq 1} \mathsf{DTIME}(2^{cn+c}) & \text{"Lineare Exponentialzeit"} \\ \mathsf{EXP} &= \bigcup_{c \geq 1} \mathsf{DTIME}(2^{n^c+c}) & \text{"Exponentialzeit"} \end{aligned}$$

- Die nichtdeterministischen Klassen NLINTIME, NP, NE, NEXP und die Funktionenklassen FLINTIME, FP, FE, FEXP sind analog definiert.
- Für eine Klasse \mathcal{F} von Funktionen sei $\mathsf{DTIME}(\mathcal{F}) = \bigcup_{t \in \mathcal{F}} \mathsf{DTIME}(t(n))$ (die Klassen $\mathsf{NTIME}(\mathcal{F})$ und $\mathsf{FTIME}(\mathcal{F})$ sind analog definiert).

Asymptotische Laufzeit und Landau-Notation

Definition

Seien f und g Funktionen von \mathbb{N} nach $\mathbb{R}^+ \cup \{0\} = [0, \infty)$.

 $\forall n \geq n_0 : f(n) \leq c \cdot g(n).$

• Wir schreiben $f(n) = \mathcal{O}(g(n))$, falls es Zahlen n_0 und c gibt mit

Bedeutung: "f wächst nicht wesentlich schneller als g."

ullet Formal bezeichnet der Term $\mathcal{O}(g(n))$ die Klasse aller Funktionen f, die obige Bedingung erfüllen, d.h.

$$\mathcal{O}(g(n)) = \{f \colon \mathbb{N} \to [0, \infty) \mid \exists n_0, c \in \mathbb{N} \ \forall n \ge n_0 \colon f(n) \le c \cdot g(n)\}.$$

- Die Gleichung $f(n) = \mathcal{O}(g(n))$ drückt also in Wahrheit eine Element-Beziehung $f \in \mathcal{O}(g(n))$ aus.
- O-Terme können auch auf der linken Seite vorkommen. In diesem Fall wird eine Inklusionsbeziehung ausgedrückt.
- So steht $n^2 + \mathcal{O}(n) = \mathcal{O}(n^2)$ für die Aussage $\{n^2 + f \mid f \in \mathcal{O}(n)\} \subseteq \mathcal{O}(n^2)$.

Asymptotische Laufzeit und Landau-Notation

Beispiel

- $7 \log(n) + n^3 = \mathcal{O}(n^3)$ ist richtig.
- $7 \log(n) n^3 = \mathcal{O}(n^3)$ ist falsch.
- $2^{n+\mathcal{O}(1)} = \mathcal{O}(2^n)$ ist richtig.
- $2^{\mathcal{O}(n)} = \mathcal{O}(2^n)$ ist falsch (siehe Übungen).

Mit der *O*-Notation lassen sich die wichtigsten deterministischen Zeitkomplexitätsklassen wie folgt charakterisieren:

LINTIME = DTIME(
$$\mathcal{O}(n)$$
) "Linearzeit"
$$P = DTIME(n^{\mathcal{O}(1)})$$
 "Polynomialzeit"

$$E = \mathsf{DTIME}(2^{\mathcal{O}(n)})$$
 "Lineare Exponentialzeit"

$$\mathsf{EXP} = \mathsf{DTIME}(2^{n^{\mathcal{O}(1)}})$$
 "Exponentialzeit"

- Wie wir gesehen haben, sind NTMs nicht mächtiger als DTMs, d.h. jede NTM kann von einer DTM simuliert werden.
- Die Frage, wieviel Zeit eine DTM zur Simulation einer NTM benötigt, ist eines der wichtigsten offenen Probleme der Informatik.
- Wegen $\mathsf{NTIME}(t) \subseteq \mathsf{DTIME}(2^{\mathcal{O}(t)})$ erhöht sich die Laufzeit im schlimmsten Fall exponentiell.
- Insbesondere die Klasse NP enthält viele für die Praxis überaus wichtige Probleme, für die kein Polynomialzeitalgorithmus bekannt ist.
- Da jedoch nur Probleme in P als effizient lösbar angesehen werden, hat das so genannte P-NP-Problem, also die Frage, ob alle NP-Probleme effizient lösbar sind, eine immense praktische Bedeutung.

Die Polynomialzeitreduktion

Definition

• Eine Sprache $A \subseteq \Sigma^*$ ist auf $B \subseteq \Gamma^*$ in Polynomialzeit reduzierbar $(A \leq^p B)$, falls eine Funktion $f : \Sigma^* \to \Gamma^*$ in FP existiert mit

$$\forall x \in \Sigma^* : x \in A \Leftrightarrow f(x) \in B.$$

Eine Sprache A heißt ≤^p-hart für eine Sprachklasse C (kurz: C-hart oder C-schwer), falls gilt:

$$\forall\,L\in\mathcal{C}:L\leq^pA.$$

- Eine C-harte Sprache A, die zu C gehört, heißt C-vollständig (bzgl. \leq^p).
- NPC bezeichnet die Klasse aller NP-vollständigen Sprachen.

Lemma

- Aus $A \leq^p B$ folgt $A \leq B$.
- Die Reduktionsrelation \leq^p ist reflexiv und transitiv (s. Übungen).

Die Polynomialzeitreduktion

Satz

Die Klassen P und NP sind unter \leq^p abgeschlossen.

Beweis

- Sei $B \in P$ und gelte $A \leq^p B$ mittels einer Funktion $f \in FP$.
- Seien M und T DTMs mit L(M) = B und T(x) = f(x).
- Weiter seien p und q polynomielle Zeitschranken für M und T.
- Betrachte die DTM M', die bei Eingabe x zuerst T simuliert, um f(x) zu berechnen, und danach M bei Eingabe f(x) simuliert.
- Dann gilt

$$x \in A \Leftrightarrow f(x) \in B \Leftrightarrow f(x) \in L(M) \Leftrightarrow x \in L(M').$$

• Also ist L(M') = A und wegen

$$time_{M'}(x) \le time_{T}(x) + time_{M}(f(x)) \le q(|x|) + p(q(|x|))$$

ist M' polynomiell zeitbeschränkt und somit A in P.

Satz

- **1** $A \leq^p B$ und A ist NP-hart $\Rightarrow B$ ist NP-hart.
- 2 $A \leq^p B$, A ist NP-hart und $B \in NP \Rightarrow B \in NPC$.

Beweis

- **1** Da A NP-hart ist, ist jede NP-Sprache L auf A reduzierbar. Da zudem $A \leq^p B$ gilt und \leq^p transitiv ist, folgt $L \leq^p B$.
- Klar, da B mit (1) NP-hart und nach Voraussetzung in NP ist.
- **③** Sei *B* eine NP-vollständige Sprache in P. Dann ist jede NP-Sprache *A* auf *B* reduzierbar und da P unter ≤ p abgeschlossen ist, folgt *A* ∈ P.

Platzkomplexität von Turingmaschinen

- Als nächstes definieren wir den Platzverbrauch von NTMs.
- Intuitiv ist dies die Anzahl aller besuchten Bandfelder.
- Wollen wir auch sublinearen Platz sinnvoll definieren, so dürfen wir hierbei das erste Band offensichtlich nicht berücksichtigen.
- Um sicherzustellen, dass eine NTM M das erste Band nur zum Lesen der Eingabe und nicht auch zum Speichern von weiteren Informationen benutzt, verlangen wir, dass M
 - die Felder auf dem Eingabeband nicht verändert und
 - sich höchstens ein Feld von der Eingabe entfernt.

Definition

Eine NTM M heißt offline-NTM (oder NTM mit Eingabeband), falls für jede von M bei Eingabe x erreichbare Konfiguration

$$K = (q, u_1, a_1, v_1, \dots, u_k, a_k, v_k)$$

gilt, dass $u_1 a_1 v_1$ ein Teilwort von $\sqcup x \sqcup$ ist.

Definition

ullet Der Platzverbrauch einer offline-NTM M bei Eingabe x ist definiert als

$$space_{M}(x) = \sup \left\{ s \ge 1 \middle| \begin{array}{l} \exists K = (q, u_1, a_1, v_1, \dots, u_k, a_k, v_k) \\ \text{mit } K_x \vdash^* K \text{ und } s = \sum\limits_{i=2}^k |u_i a_i v_i| \end{array} \right\}.$$

- Sei $s: \mathbb{N} \to \mathbb{N}$ eine monoton wachsende Funktion.
- M heißt s(n)-platzbeschränkt, falls für alle Eingaben x gilt:

$$space_M(x) \le s(|x|)$$
 und $time_M(x) < \infty$.

Wir fassen alle Sprachen, die in einer vorgegebenen Platzschranke s(n) entscheidbar sind, in folgenden Platzkomplexitätsklassen zusammen.

Definition

ullet Die auf deterministischem Platz s(n) entscheidbaren Sprachen bilden die Klasse

$$\mathsf{DSPACE}(s(n)) = \{ L(M) \mid M \text{ ist eine } s(n) \text{-platzb. offline-DTM} \}.$$

• Die auf nichtdeterministischem Platz s(n) entscheidbaren Sprachen bilden die Klasse

```
\mathsf{NSPACE}(s(n)) = \{ L(M) \mid M \text{ ist eine } s(n) \text{-platzb. offline-NTM} \}.
```

Die wichtigsten Platzkomplexitätsklassen

• Die wichtigsten deterministischen Platzkomplexitätsklassen sind

```
\mathsf{L} = \mathsf{DSPACE}(\mathcal{O}(\log n)) \qquad \mathsf{"Logarithmischer Platz"} \mathsf{LINSPACE} = \mathsf{DSPACE}(\mathcal{O}(n)) \qquad \mathsf{"Linearer Platz"} \mathsf{PSPACE} = \mathsf{DSPACE}(n^{\mathcal{O}(1)}) \qquad \mathsf{"Polynomieller Platz"}
```

 Die nichtdeterministischen Klassen NL, NLINSPACE und NPSPACE sind analog definiert.

Frage

Welche elementaren Beziehungen gelten zwischen den verschiedenen Zeitund Platzklassen?

Satz

- Für jede Funktion $t(n) \ge n + 2$ gilt
 - $\mathsf{DTIME}(t) \subseteq \mathsf{NTIME}(t) \subseteq \mathsf{DSPACE}(\mathcal{O}(t)).$
- Für jede Funktion $s(n) \ge \log n$ gilt

$$\mathsf{DSPACE}(s) \subseteq \mathsf{NSPACE}(s) \subseteq \mathsf{DTIME}(2^{\mathcal{O}(s)}) \text{ und}$$

 $NSPACE(s) \subseteq DSPACE(s^2)$. (Satz von Savitch)

Korollar

 $\mathsf{L} \subseteq \mathsf{NL} \subseteq \mathsf{P} \subseteq \mathsf{NP} \subseteq \mathsf{PSPACE} = \mathsf{NPSPACE} \subseteq \mathsf{EXP} \subseteq \mathsf{NEXP} \subseteq \mathsf{EXPSPACE}.$

Komplexität der Stufen der Chomsky-Hierarchie

 $REG = DSPACE(\mathcal{O}(1)) = NSPACE(\mathcal{O}(1)) \subseteq L$

```
RE
DCFL⊊ LINTIME,
                                                                            REC
  CFL \subseteq NLINTIME \cap DTIME(\mathcal{O}(n^3)) \subseteq P,
                                                                            EXP
DCSL = LINSPACE \subseteq CSL,
                                                                                 PSPACE
                                                                 Ε
  CSL = NLINSPACE \subseteq PSPACE \cap E,
                                                              CSL
                                                                                  NP
  REC = \bigcup_f DSPACE(f(n))
                                                            DCSL
       = \bigcup_f \mathsf{NSPACE}(f(n))
                                                              CFL
                                                                                  NΙ
       = \bigcup_f \mathsf{DTIME}(f(n))
                                                            DCFL
       = \bigcup_f \mathsf{NTIME}(f(n)),
wobei f alle (oder äquivalent: alle berechenbaren)
Funktionen f: \mathbb{N} \to \mathbb{N} durchläuft.
```

- Die Menge der booleschen (oder aussagenlogischen) Formeln über den Variablen x_1, \ldots, x_n , $n \ge 0$, ist induktiv wie folgt definiert:
 - Die Konstanten 0 und 1 sind boolesche Formeln.
 - Jede Variable x_i ist eine boolesche Formel.
 - Mit G und H sind auch die Konjunktion $(G \land H)$ und die Disjunktion $(G \lor H)$ von G und H sowie die Negation $\neg G$ von G Formeln.
- Eine Belegung von x_1, \ldots, x_n ist ein Wort $a = a_1 \ldots a_n \in \{0, 1\}^n$.
- Der Wert F(a) von F unter a ist induktiv wie folgt definiert:

• Durch die Formel F wird also eine n-stellige boolesche Funktion $F: \{0,1\}^n \to \{0,1\}$ definiert, die wir ebenfalls mit F bezeichnen.

Aussagenlogische Formeln

Notation

Wir benutzen die Implikation $G \to H$ als Abkürzung für die Formel $\neg G \lor H$ und die Äquivalenz $G \leftrightarrow H$ als Abkürzung für $(G \to H) \land (H \to G)$.

Beispiel (Wahrheitswerttabelle)

Die Formel $F = (G \to H)$ mit $G = (\neg x_1 \lor \neg x_2)$ und $H = (x_2 \land x_3)$ berechnet folgende boolesche Funktion $F : \{0,1\}^3 \to \{0,1\}$:

а	G(a)	H(a)	F(a)
000	1	0	0
001	1	0	0
010	1	0	0
011	1	1	1
100	1	0	0
101	1	0	0
110	0	0	1
111	0	1	1
	·		

<

Definition

- Zwei Formeln F und G heißen (logisch) äquivalent (kurz $F \equiv G$), wenn sie dieselbe boolesche Funktion berechnen.
- Eine Formel F heißt erfüllbar, falls es eine Belegung a mit F(a) = 1 gibt.
- Gilt sogar für alle Belegungen a, dass F(a) = 1 ist, so heißt F Tautologie.

Beispiel

- Die Formel $F = (G \rightarrow H)$ mit $G = (\neg x_1 \lor \neg x_2)$ und $H = (x_2 \land x_3)$ ist erfüllbar, da F(111) = 1 ist.
- F ist aber keine Tautologie, da F(000) = 0 ist.

<

Aussagenlogische Formeln

Präzedenzregeln zur Klammerersparnis

- Der Junktor ∧ bindet stärker als der Junktor ∨ und dieser wiederum stärker als die Junktoren → und ↔.
- Formeln der Form $(x_1 \circ (x_2 \circ (x_3 \circ \cdots \circ x_n)\cdots)))$, $\circ \in \{\land, \lor\}$, kürzen wir durch $(x_1 \circ \cdots \circ x_n)$ ab.

Beispiel (Formel für die mehrstellige Entweder-Oder Funktion)

• Folgende Formel nimmt unter einer Belegung $a = a_1 \dots a_n$ genau dann den Wert 1 an, wenn $\sum_{i=1}^{n} a_i = 1$ ist:

$$G(x_1,\ldots,x_n)=(x_1\vee\cdots\vee x_n)\wedge\bigwedge_{1\leq i< j\leq n}\neg(x_i\wedge x_j)$$

- D.h. es gilt genau dann G(a) = 1, wenn genau eine Variable x_i mit dem Wert $a_i = 1$ belegt ist.
- Diese Formel wird im Beweis des nächsten Satzes benötigt.

Das aussagenlogische Erfüllbarkeitsproblem

Erfüllbarkeitsproblem für boolesche Formeln (satisfiability, SAT):

Gegeben: Eine boolesche Formel F.

Gefragt: Ist *F* erfüllbar?

Dabei kodieren wir boolesche Formeln F durch Binärstrings w_F und ordnen umgekehrt jedem Binärstring w eine Formel F_w zu.

Um die Notation zu vereinfachen, werden wir zukünftig jedoch ${\it F}$ anstelle von ${\it w_F}$ schreiben.

Satz (Cook, Karp, Levin)

SAT ist NP-vollständig.

SAT ist NP-vollständig

SAT ∈ NP

Eine NTM kann bei Eingabe einer booleschen Formel F zunächst eine Belegung a nichtdeterministisch raten und dann in Polynomialzeit testen, ob F(a) = 1 ist (guess and verify Strategie).

SAT ist NP-hart

- Sei L eine beliebige NP-Sprache und sei $M = (Z, \Sigma, \Gamma, \delta, q_0)$ eine durch ein Polynom p zeitbeschränkte k-NTM mit L(M) = L.
- Da sich eine t(n)-zeitbeschränkte k-NTM in Zeit $t^2(n)$ durch eine 1-NTM simulieren lässt, können wir k = 1 annehmen.
- Unsere Aufgabe besteht nun darin, zu einer beliebigen Eingabe $w = w_1 \dots w_n \in \Sigma^*$ eine Formel F_w zu konstruieren mit
 - $w \in L(M) \iff F_w \in SAT$,
 - die Reduktionsfunktion $w \mapsto F_w$ ist in FP berechenbar.
- O.B.d.A. sei $Z = \{0, ..., m\}, E = \{m\} \text{ und } \Gamma = \{a_1, ..., a_l\}.$
- Zudem gelte $\delta(m, a) = \{(m, a, N)\}$ für alle $a \in \Gamma$.

Idee:

Konstruiere F_w so, dass F_w unter einer Belegung a genau dann wahr wird, wenn a eine akzeptierende Rechnung von M(w) beschreibt.

 \bullet Wir bilden F_w über den Variablen

$$\begin{aligned} x_{t,q}, & & \text{für } 0 \leq t \leq p(n), q \in Z, \\ y_{t,i}, & & \text{für } 0 \leq t \leq p(n), -p(n) \leq i \leq p(n), \\ z_{t,i,a}, & & \text{für } 0 \leq t \leq p(n), -p(n) \leq i \leq p(n), a \in \Gamma. \end{aligned}$$

• Diese Variablen stehen für folgende Aussagen:

 $x_{t,q}$: zum Zeitpunkt t befindet sich M im Zustand q, $y_{t,i}$: zur Zeit t besucht M das Feld mit der Nummer i, $z_{t,i,a}$: zur Zeit t steht das Zeichen a auf dem i-ten Feld.

• Konkret sei $F_w = R \wedge S_w \wedge \ddot{U}_1 \wedge \ddot{U}_2 \wedge E$.

- Konkret sei $F_w = R \wedge S_w \wedge \ddot{U}_1 \wedge \ddot{U}_2 \wedge E$.
- Dabei stellt die Formel $R = \bigwedge_{t=0}^{p(n)} R_t$ (Randbedingungen) sicher, dass wir jeder erfüllenden Belegung von F_w eindeutig eine Folge von Konfigurationen $K_0, \ldots, K_{p(n)}$ zuordnen können:

$$R_{t} = G(x_{t,0}, \dots, x_{t,m}) \wedge G(y_{t,-p(n)}, \dots, y_{t,p(n)})$$

$$\wedge \bigwedge_{i=-p(n)}^{p(n)} G(z_{t,i,a_{1}}, \dots, z_{t,i,a_{l}}).$$

- Die Teilformel R_t sorgt also dafür, dass zum Zeitpunkt t
 - genau ein Zustand $q \in \{0, ..., m\}$ eingenommen wird,
 - genau ein Bandfeld $i \in \{-p(n), \dots, p(n)\}$ besucht wird und
 - auf jedem Feld i genau ein Zeichen $a_j \in \Gamma$ steht.

• Die Formel S_w (wie Startbedingung) stellt sicher, dass zum Zeitpunkt 0 tatsächlich die Startkonfiguration vorliegt:

$$S_{w} = x_{0,0} \wedge y_{0,0} \wedge \bigwedge_{i=-p(n)}^{-1} z_{0,i,\sqcup} \wedge \bigwedge_{i=0}^{n-1} z_{0,i,w_{i+1}} \wedge \bigwedge_{i=n}^{p(n)} z_{0,i,\sqcup}$$

• Die Formel \ddot{U}_1 sorgt dafür, dass der Inhalt von nicht besuchten Feldern beim Übergang von K_t zu K_{t+1} unverändert bleibt:

$$\ddot{U}_{1} = \bigwedge_{t=0}^{p(n)-1} \bigwedge_{i=-p(n)}^{p(n)} \bigwedge_{a \in \Gamma} \left(\neg y_{t,i} \land z_{t,i,a} \rightarrow z_{t+1,i,a} \right)$$

SAT ist NP-hart

• \ddot{U}_2 achtet darauf, dass sich bei jedem Rechenschritt der Zustand, die Kopfposition und das gerade gelesene Zeichen gemäß einer Anweisung in δ verändern:

$$\ddot{U}_2 = \bigwedge_{t=0}^{p(n)-1} \bigwedge_{i=-p(n)} \bigwedge_{a \in \Gamma} \bigwedge_{q \in Z} \left(X_{t,q} \wedge y_{t,i} \wedge Z_{t,i,a} \rightarrow \bigvee_{(q',b,D) \in \delta(q,a)} X_{t+1,q'} \wedge y_{t+1,i+D} \wedge Z_{t+1,i,b} \right),$$
 wobei

 $i + D = \begin{cases} i - 1, & D = L \\ i, & D = N \\ i + 1, & D = R \end{cases}$

• Schließlich überprüft E, ob M zur Zeit p(n) den Endzustand m erreicht hat:

$$E = x_{p(n),m}$$

- Da der Aufbau der Formel $f(w) = F_w$ einem einfachen Bildungsgesetz folgt und ihre Länge polynomiell in n ist, folgt $f \in FP$.
- Es ist klar, dass F_w im Fall $w \in L(M)$ erfüllbar ist, indem wir die Variablen von F_w gemäß einer akz. Rechnung von M(w) belegen.
- Umgekehrt führt eine Belegung a mit $F_w(a) = 1$ wegen R(a) = 1 eindeutig auf eine Konfigurationenfolge $K_0, \ldots, K_{p(n)}$.
- Für diese gilt:
 - K_0 ist Startkonfiguration von M(w)

(wegen
$$S_w(a) = 1$$
)

K_i ⊢ K_{i+1} für i = 0,..., p(n) - 1
 der Zustand von K_{p(n)} ist m

(wegen
$$\ddot{U}_1(a) = \ddot{U}_2(a) = 1$$
)
(wegen $E(a) = 1$)

• Also gilt für alle $w \in \Sigma^*$ die Äquivalenz

$$w \in L(M) \Leftrightarrow F_w \in SAT$$
,

d.h. die FP-Funktion $f: w \mapsto F_w$ reduziert L(M) auf SAT.

Als nächstes betrachten wir das Erfüllbarkeitsproblem für Schaltkreise.

Definition

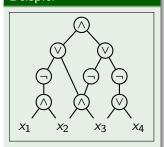
• Ein boolescher Schaltkreis über den Variablen x_1, \ldots, x_n ist eine Folge $S = (g_1, \ldots, g_m)$ von Gattern

$$g_l \in \{0, 1, x_1, \dots, x_n, (\neg, j), (\land, j, k), (\lor, j, k)\} \text{ mit } 1 \le j, k < l.$$

- Jedes Gatter g_l berechnet eine n-stellige boolesche Funktion $g_l: \{0,1\}^n \to \{0,1\}.$
- Für $a = a_1 \dots a_n \in \{0,1\}^n$ ist $g_l(a)$ induktiv wie folgt definiert:

- S berechnet die boolesche Funktion $S(a) = g_m(a)$.
- S heißt erfüllbar, wenn eine Eingabe $a \in \{0,1\}^n$ ex. mit S(a) = 1.

Beispiel



Graphische Darstellung des Schaltkreises $S = (x_1, x_2, x_3, x_4, (\land, 1, 2), (\land, 2, 3), (\lor, 3, 4), (\neg, 5), (\neg, 6), (\neg, 7), (\lor, 6, 8), (\lor, 9, 10), (\land, 11, 12)).$

Bemerkung

- Die Anzahl der Eingänge eines Gatters g wird als Fanin von g bezeichnet,
- die Anzahl der Ausgänge von g (also die Anzahl der Gatter, die g als Eingabe benutzen) als Fanout.
- Boolesche Formeln entsprechen also genau den booleschen Schaltkreisen $S = (g_1, \ldots, g_m)$, bei denen jedes Gatter g_i , $1 \le i \le m-1$, Fanout 1 hat.
- Eine boolesche Formel F kann somit leicht in einen äquivalenten Schaltkreis S mit S(a) = F(a) für alle Belegungen a transformiert werden.

Das Erfüllbarkeitsproblem für boolesche Schaltkreise

Erfüllbarkeitsproblem für boolesche Schaltkreise (CIRSAT):

Gegeben: Ein boolescher Schaltkreis *S*. Gefragt: Ist *S* erfüllbar?

Klar, da SAT \leq^p CIRSAT und CIRSAT \in NP gilt.

Satz

CIRSAT ist NP-vollständig.

Beweis

Bemerkung

- Da Sat NP-vollständig ist, ist CIRSat auf Sat reduzierbar.
- Dies bedeutet, dass sich jeder Schaltkreis S in Polynomialzeit in eine erfüllbarkeitsäquivalente Formel F_S überführen lässt.
 F_S und S müssen aber nicht logisch äquivalent sein.
- CIRSAT ist sogar auf eine spezielle SAT-Variante reduzierbar.

Formeln in konjunktiver Normalform (KNF)

- Ein Literal ist eine Variable x_i oder eine negierte Variable $\neg x_i$, die wir auch kurz mit \bar{x}_i bezeichnen.
- Eine Klausel ist eine Disjunktion $C = \bigvee_{i=1}^{k} I_i$ von Literalen I_1, \ldots, I_k .
- Hierbei ist auch k = 0 zulässig, d.h. die leere Klausel repräsentiert die Konstante 0 und wird üblicherweise mit \square bezeichnet.
- Eine boolesche Formel F ist in konjunktiver Normalform (kurz KNF), falls $F = \bigwedge_{i=1}^{m} C_i$ eine Konjunktion von Klauseln C_1, \ldots, C_m ist.
- Auch hier ist m = 0 zulässig, wobei die leere Konjunktion die Konstante 1 repräsentiert.
- Enthält jede Klausel höchstens k Literale, so heißt F in k-KNF.
- Klauseln werden oft als Menge $C = \{l_1, ..., l_k\}$ ihrer Literale und KNF-Formeln als Menge $F = \{C_1, ..., C_m\}$ ihrer Klauseln dargestellt.
- Enthält F die leere Klausel, so ist F unerfüllbar.
- Dagegen ist die leere Formel eine Tautologie.

Beispiel

Der 3-KNF Formel $F = (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor x_3) \land (x_2 \lor \bar{x}_3 \lor x_4)$ entspricht die Klauselmenge $F = \{\{x_1, \bar{x}_2\}, \{\bar{x}_1, x_3\}, \{x_2, \bar{x}_3, x_4\}\}.$

Erfüllbarkeitsproblem für k-KNF Formeln (k-SAT):

Gegeben: Eine boolesche Formel F in k-KNF. Gefragt: Ist F erfüllbar?

Not-All-Equal-SAT (NAESAT):

Gegeben: Eine Formel *F* in 3-KNF.

Gefragt: Hat F eine (erfüllende) Belegung, unter der in keiner Klausel alle Literale denselben Wahrheitswert haben?

Beispiel (Fortsetzung)

Offenbar ist F(0000) = 1, d.h. $F \in 3$ -SAT. Zudem gilt $F \in NAESAT$.

Komplexität von Erfüllbarkeitsproblemen

Satz

- 1-SAT und 2-SAT sind in P entscheidbar.
- 3-SAT und NAESAT sind NP-vollständig.

Reduktion von CIRSAT auf 3-SAT

- Wir transformieren einen Schaltkreis $S = (g_1, ..., g_m)$ mit n Eingängen in eine Formel F_S über den Variablen $x_1, ..., x_n, y_1, ..., y_m$.
- F_S enthält die Klausel $\{y_m\}$ und für jedes Gatter g_i die Klauseln einer 3-KNF F_i , die zu folgender Formel G_i äquivalent ist:

Gatter g _i	G _i	Klauseln von F_i
0	$y_i \leftrightarrow 0$	$\{ar{y}_i\}$
1	$y_i \leftrightarrow 1$	$\{y_i\}$
x_j	$y_i \leftrightarrow x_j$	$\{\bar{y}_i,x_j\},\{\bar{x}_j,y_i\}$
(\neg, j)	$y_i \leftrightarrow \bar{y}_j$	$\{\bar{y}_i,\bar{y}_j\},\{y_j,y_i\}$
(\wedge, j, k)	$y_i \leftrightarrow y_j \wedge y_k$	$\{\bar{y}_i, y_j\}, \{\bar{y}_i, y_k\}, \{\bar{y}_j, \bar{y}_k, y_i\}$
(\vee,j,k)	$y_i \leftrightarrow y_j \vee y_k$	$\{\bar{y}_j, y_i\}, \{\bar{y}_k, y_i\}, \{\bar{y}_i, y_j, y_k\}$

$3\text{-}\mathrm{SAT}$ ist NP-vollständig

Reduktion von CIRSAT auf 3-SAT

• Wir zeigen, dass für alle $a \in \{0,1\}^n$ folgende Äquivalenz gilt:

$$S(a) = 1 \Leftrightarrow \exists b \in \{0,1\}^m : F_S(ab) = 1.$$

• Ist nämlich $a \in \{0,1\}^n$ eine Eingabe mit S(a) = 1. Dann erhalten wir mit

$$b_i = g_i(a)$$
 für $i = 1, \ldots, m$

eine erfüllende Belegung $ab_1 \dots b_m$ für F_S .

- ullet Ist umgekehrt $ab_1 \dots b_m$ eine erfüllende Belegung für F_S , so muss
 - $b_m = 1$ sein, da $\{y_m\}$ eine Klausel in F_S ist, und
 - durch Induktion über i = 1, ..., m folgt

$$g_i(a) = b_i,$$

d.h. insbesondere folgt $S(a) = g_m(a) = b_m = 1$.

Reduktion von CIRSAT auf 3-SAT

• Wir wissen bereits, dass für alle $a \in \{0,1\}^n$ die Äquivalenz

$$S(a) = 1 \Leftrightarrow \exists b \in \{0,1\}^m : F_S(ab) = 1.$$

gilt.

 Dies bedeutet, dass der Schaltkreis S und die 3-KNF-Formel F_S erfüllbarkeitsäguivalent sind, d.h.

$$S \in CIRSAT \Leftrightarrow F_S \in 3$$
-SAT.

 Da zudem die Reduktionsfunktion S → F_S in FP berechenbar ist, folgt CIRSAT ≤^p 3-SAT.

Notation – ungerichtete Graphen

- Ein (ungerichteter) Graph ist ein Paar G = (V, E), wobei
 - V eine endliche Menge von Knoten/Ecken und
 - E die Menge der Kanten ist.

Hierbei gilt

$$E\subseteq \binom{V}{2}\coloneqq \big\{\big\{u,v\big\}\subseteq V\mid u\neq v\big\}.$$

- Die Knotenzahl von G ist n(G) = ||V||.
- Die Kantenzahl von G ist m(G) = ||E||.
- Die Nachbarschaft von $v \in V$ ist $N_G(v) = \{u \in V \mid \{u, v\} \in E\}$ und die Nachbarschaft von $U \subseteq V$ ist $N_G(U) = \bigcup_{u \in U} N_G(u)$.
- Der Grad von $v \in V$ ist $\deg_G(v) = ||N_G(v)||$.
- Der Minimalgrad von G ist $\delta(G) := \min_{v \in V} \deg_G(v)$ und
- der Maximalgrad von G ist $\Delta(G) := \max_{v \in V} \deg_G(v)$.

Falls G aus dem Kontext ersichtlich ist, schreiben wir auch einfach n, m, N(v), $\deg(v)$, δ usw.

Beispiel

- Der vollständige Graph (V, E) mit ||V|| = n und $E = {V \choose 2}$ wird mit K_n und der leere Graph (V, \emptyset) wird mit E_n bezeichnet.
 - K_1 : K_2 : K_3 : K_4 : K_5 :
- Der vollständige bipartite Graph (A, B, E) auf a + b Knoten, d.h. $A \cap B = \emptyset$, ||A|| = a, ||B|| = b und $E = \{\{u, v\} \mid u \in A, v \in B\}$ wird mit $K_{a,b}$ bezeichnet.

$$K_{1,1}$$
: $K_{1,2}$: $K_{2,2}$: $K_{2,3}$: $K_{3,3}$:

- Der Pfadgraph (oder lineare Graph) mit n Knoten heißt P_n :
- P_2 : $\bullet \bullet$ P_3 : $\bullet \bullet \bullet$ P_5 : $\bullet \bullet \bullet$
- Der Kreisgraph (kurz Kreis) mit n Knoten heißt C_n :

$$C_3$$
: C_4 : C_5 :

- Ein Graph H = (V', E') heißt Sub-/Teil-/Untergraph von G = (V, E), falls $V' \subseteq V$ und $E' \subseteq E$ ist.
- Ein Weg ist eine Folge von Knoten v_0, \ldots, v_j mit $\{v_i, v_{i+1}\} \in E$ für $i = 0, \ldots, j-1$.

Ein Weg heißt einfach oder Pfad, falls alle durchlaufenen Knoten verschieden sind.

Die Länge des Weges ist die Anzahl der Kanten, also j.

Ein Weg v_0, \ldots, v_j heißt auch v_0 - v_j -Weg.

- Ein Zyklus ist ein u-v-Weg der Länge $j \ge 2$ mit u = v.
- Ein Kreis ist ein Zyklus $v_0, v_1, \dots, v_{j-1}, v_0$ der Länge $j \ge 3$, für den v_0, v_1, \dots, v_{j-1} paarweise verschieden sind.

Cliquen, Stabilität und Matchings

• Eine Knotenmenge $U \subseteq V$ heißt Clique, wenn jede Kante mit beiden Endpunkten in U in E ist, d.h. es gilt $\binom{U}{2} \subseteq E$.

Die Cliquenzahl ist

$$\omega(G) := \max\{||U|| \mid U \text{ ist Clique in } G\}.$$

• Eine Knotenmenge $U \subseteq V$ heißt stabil oder unabhängig, wenn keine Kante in G beide Endpunkte in U hat, d.h. es gilt $E \cap \binom{U}{2} = \emptyset$.

Die Stabilitätszahl ist

$$\alpha(G) \coloneqq \max\{\|U\| \mid U \text{ ist stabile Menge in } G\}.$$

• Zwei Kanten $e, e' \in E$ heißen unabhängig, falls $e \cap e' = \emptyset$ ist.

Eine Kantenmenge $M \subseteq E$ heißt Matching in G, falls alle Kanten in M paarweise unabhängig sind.

Die Matchingzahl von G ist

$$\mu(G) = \max\{\|M\| \mid M \text{ ist ein Matching in } G\}.$$

• Eine Knotenmenge $U \subseteq V$ heißt Knotenüberdeckung (engl. *vertex cover*), wenn jede Kante $e \in E$ mindestens einen Endpunkt in U hat, d.h. es gilt $e \cap U \neq \emptyset$ für alle Kanten $e \in E$.

Die Überdeckungszahl ist

$$\beta(G) = \min\{\|U\| \mid U \text{ ist eine Knotenüberdeckung in } G\}.$$

• Eine Abbildung $f: V \to \mathbb{N}$ heißt Färbung von G, wenn $f(u) \neq f(v)$ für alle $\{u, v\} \in E$ gilt.

G heißt k-färbbar, falls eine Färbung $f: V \to \{1, \dots, k\}$ existiert.

Die chromatische Zahl ist

$$\chi(G) = \min\{k \in \mathbb{N} \mid G \text{ ist } k\text{-färbbar}\}.$$

Eulerlinien und -touren

Definition

Sei $s = (v_0, v_1, \dots, v_l)$ ein Weg in einem Graphen G = (V, E), d.h. $\{v_i, v_{i+1}\} \in E$ für $i = 0, \dots, l-1$.

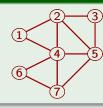
• Dann heißt s Eulerlinie (auch Eulerzug oder Eulerweg) in G, falls s jede Kante in E genau einmal durchläuft, d.h. es gilt I = ||E|| und

$$\{\{v_i, v_{i+1}\} \mid i = 0, \ldots, l-1\} = E.$$

• Ist s zudem ein Zyklus, d.h. es gilt $v_i = v_0$, so heißt s Eulerkreis (auch Eulerzyklus oder Eulertour).

Beispiel (Eulerlinie)

$$s = (4, 1, 2, 3, 5, 7, 6, 4, 5, 2, 4, 7)$$



Definition

Sei $s = (v_0, v_1, \dots, v_l)$ ein Pfad in einem Graphen G = (V, E), d.h. $\{v_i, v_{i+1}\} \in E$ für $i = 0, \dots, l-1$ und v_0, \dots, v_l sind paarweise verschieden.

• Dann heißt s Hamiltonpfad in G, falls s jeden Knoten in V genau einmal durchläuft, d.h. es gilt

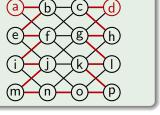
$$V = \{v_0, \dots, v_I\}$$
 und $I = ||V|| - 1$.

• Ist zudem $\{v_0, v_l\} \in E$, d.h. $s' = (v_0, v_1, \dots, v_l, v_0)$ ist ein Kreis, so heißt s' Hamiltonkreis.

Hamiltonpfade und -kreise

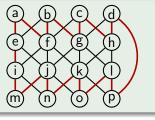
Beispiel (Hamiltonpfad)

$$s = (a, b, e, f, i, j, m, n, o, p, k, l, g, h, c, d)$$



Beispiel (Hamiltonkreis)

$$s = (a, f, b, g, c, h, d, p, l, o, k, n, j, m, i, e, a)$$



Algorithmische Graphprobleme

Seien ein Graph G und eine Zahl $k \ge 1$ gegeben.

CLIQUE:

Gefragt: Hat G eine Clique der Größe k?

MATCHING:

Gefragt: Hat *G* ein Matching der Größe *k*?

INDEPENDENT SET (IS):

Gefragt: Hat G eine stabile Menge der Größe k?

VERTEX COVER (VC):

Gefragt: Hat G eine Knotenüberdeckung der Größe k?

FÄRBBARKEIT (COLORING):

Gefragt: Ist *G k*-färbbar?

Algorithmische Graphprobleme

Zudem betrachten wir für einen gegebenen Graphen ${\it G}$ folgende Probleme:

```
k-Färbbarkeit (k-Coloring):
```

Gefragt: Ist *G k*-färbbar?

DAS EULERKREISPROBLEM (EULERCYCLE):

Gefragt: Hat G einen Eulerkreis?

DAS HAMILTONKREISPROBLEM (HAMCYCLE):

Gefragt: Hat G einen Hamiltonkreis?

und für einen Graphen G und zwei Knoten s und t folgende Probleme:

DAS EULERLINIENPROBLEM (EULERPATH):

Gefragt: Hat G eine Eulerlinie von s nach t?

DAS HAMILTONPFADPROBLEM (HAMPATH):

Gefragt: Hat G einen Hamiltonpfad von s nach t?