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Abstract. We show that partial 2-tree canonization, and hence isomor-
phism testing for partial 2-trees, is in deterministic logspace. Our algo-
rithm involves two steps: (a) We exploit the “tree of cycles” property of
biconnected partial 2-trees to canonize them in logspace. (b) We analyze
Lindell’s tree canonization algorithm and show that canonizing general
partial 2-trees is also in logspace, using the algorithm to canonize bicon-
nected partial 2-trees.

1 Introduction

Computing canonical forms for graphs is a fundamental algorithmic problem.
The problem is closely related to the graph isomorphism problem GI. Let G
be a class of (encodings of) graphs closed under isomorphism. We say that f
computes a complete invariant for G, if VG,H € G : G =2 H < f(G) = f(H). A
complete invariant f for G that computes for any graph G € G a graph f(G) that
is isomorphic to G is called a canonization for G. We call the graph f(G) the
canonical form of G (w.r.t. f) and denote it by canon(G). E.g. we could define
f(G) as the lexicographically least graph isomorphic to G. This canonizing func-
tion is computable in FpNP by prefix search, but it is NP-hard [SII8]. Whether
there is some canonizing function for graphs that is polynomial-time computable
is a long-standing open question. No better bound than FPNP is known for general
graphs (for any canonizing function). Clearly, GI is polynomial-time reducible
to graph canonization. It is an open question if the converse reduction holds.
The seminal paper of Babai and Luks [8] takes a general group-theoretic
approach to graph canonization. However, combinatorial methods have worked
well in various special cases. For example, for random graphs the Weisfeiler-
Lehman method [7J6] produces a canonical form with high probability. From
a complexity-theoretical viewpoint, a key result [L7UT4] we recall is that tree
canonization is complete for deterministic logspaceﬂ Indeed, Lindell’s logspace
upper bound for tree canonization is our main motivation for the present paper

! Provided that the tree is given in the pointer notation; using the parenthesis notation
the problem is NC'-complete (see [14]).
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and, more generally, our motivation for studying the space bounded complexity
of Graph Isomorphism for partial k-trees.

The recent TC! upper bound for isomorphism of partial k-trees by Grohe and
Verbitsky [10] raises the question about a tight complexity-theoretic classification
of the problem. In the present paper, we give a deterministic logspace algorithm
for canonizing partial 2-trees. The algorithm is based on ideas from Lindell’s tree
canonization algorithm and uses the combinatorial characterizations of partial
2-trees. This tightly classifies partial 2-tree isomorphism. The class of partial 2-
trees coincides with the class of series-parallel graphs and contains all outerplanar
graphs. Thus, we obtain logspace canonization algorithms for these graph classes.
Furthermore, partial 2-trees are planar graphs. However, we do not know if
planar graph isomorphism is in logspace (or in NL). In that direction, recently
Thierauf and Wagner gave a UL N co-UL upper bound for planar $-connected
graph isomorphism [20]. They also provide an NL algorithm for oriented graphs.

We note that Arnborg and Proskurowski gave a linear time and quadratic
spaceﬁ canonization algorithm for both partial 2-trees and partial 3-trees [5].
Their algorithm is based on a graph reduction technique and uses labels to
canonically record the reductions. However, this technique does not appear useful
for showing a logspace upper bound.

For partial k-trees in general, we don’t know of any better bound than TC.
We do not know of any hardness result that would indicate that partial k-tree
isomorphism is not in deterministic logspace. However, the TC' upper bound
suggests that we can put perhaps the problem in a natural complexity class
contained in TC' like LOGCFL or DET, or in the logspace counting hierarchy
[312]. Recently, in [I] we have shown for full k-trees that isomorphism testing is
in the strongly unambiguous logspace class StUL C UL. The bound follows from
an FLStUt canonizing algorithm for full k-trees.

Due to lack of space, some proofs are omitted from this extended abstract.

1.1 Preliminaries

The class L consists of all languages accepted by a deterministic O(logn) space
bounded Turing machine. NL is defined in the same way by using nondetermin-
istic machines. FL contains all functions computable by deterministic O(logn)
space bounded Turing machines.

By graphs we mean finite simple graphs. For a graph G = (V, E), let V(G)
denote its vertex set V and E(G) denote its edge set E. For a vertex v € V(G),
the set {w € V(G) | {v,w} € E(G)} of all neighbors of v is denoted by N (v).
For a subset U C V(G), we use G[U] to denote the induced subgraph of G, where
V(GU]) = U and E(G[U]) = {e € E(G) | e C U}. For the graph G[V — U] we
also use the notation G — U. We say that U separates two vertices v and w, if
v # w and there is no path in G — U from v to w.

Two graphs G and H are isomorphic (in symbols G = H) if there is a bi-
jection 7 : V(G) — V(H), such that for all u,v € V(G), {u,v} € E(G) if and

2 They also have an O(nlogn) time algorithm which they refer to as log-linear time
and space in their paper.
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only if {7(u),7(v)} € E(H). In case the vertices of G and H are labeled (or
colored), then the isomorphism 7 must also preserve the labels (resp. colors).
An automorphism of a (possibly vertex/edge colored) graph G = (V,E) is a
bijection £ : V. — V that is an isomorphism from G to itself. The set Aut(G)
of all automorphisms of a graph G is a group under permutation composition.
The Graph Isomorphism problem, denoted GI, is to decide if two input graphs
G and H are isomorphic. Further, we consider the following problems:

— AuT (automorphism group): On input a graph G, compute a generating set

for Aut(G).
— PGA (partially specified graph automorphism): Given a graph G and a list
of pairs of vertices (u1,v1),. .., (u;,v;), does G have an automorphism £ such

that {(u;) = v; for i =1,...,1? Let SGA denote the search version of PGA.

An isomorphism ¢ : V(G) — V(canon(G)) from a graph G to its canon-
ical form canon(G) is called a canonical labeling. We assume V (canon(G)) =
{1,2,...,|V(G)|}. Hence, the canonical labeling actually gives an ordering of
the vertices of G. For a canonical form, the set of isomorphisms from G to
canon(Q) is the canonical labeling coset CL(G). Clearly, CL(G) = Aul(G)¢, for
some isomorphism £ from G to canon(G). Thus, CL(G) can be represented by
some £ € CL(G) together with a generating set for Aut(G). As shown by Gure-
vich, canonization of general graphs is polynomial-time equivalent to computing
a complete invariant [9]. We define two closely related problems on canonization.

— CL-CosET: Given a graph G compute the canonical labeling coset CL(G)
of G.

— COLOR-CL: Given a colored graph G, compute some isomorphism from G
to canon(@), i.e., compute a member of the canonical labeling coset CL(G)
of the colored graph G.

Notice that COLOR-CL is a search problem (i.e. there might exist more than
one solution for a given graph G). We assume that an oracle for COLOR-CL is
actually a functional oracle that returns for any query G some canonical labeling

in CL(G).

2 Relative Complexity of Computing Canonical Forms,
Canonical Labelings, and Labeling Cosets

It is well-known (see, e.g., [LIII6]) that the problems AuT, PGA, and sGA are
all polynomial-time equivalent to Graph Isomorphism. Similarly, the problem
of computing canonical forms is easily seen to be polynomial-time equivalent to
the problem CL-COSET of computing the corresponding canonical labeling coset
as well as to COLOR-CL [8]. However, it is not clear whether these reductions
can also be performed in logspace. In the following we compare the different
problems w.r.t. logspace Turing reductions (denoted by <) and show that all
these problems reduce to the canonical labeling problem for colored graphs.
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Lemma 1. PGA S% Aut S% sGA §% CoLoRr-CL.
As AuT <E CoLOR-CL we easily get the following consequence.
Corollary 2. CL-CoseT <k CoLor-CL.

In order to canonize a given partial 2-tree GG, we decompose G into its biconnected
components Gy, ...,G,.. Since G is a tree T of its biconnected components, we
will essentially canonize T using the biconnected component canonization as a
subroutine. Now, for this entire procedure to work in logspace, we design a de-
terministic logspace base machine that makes calls to subroutines that canonize
the biconnected partial 2-trees G, ..., G, and T'. As suggested by the reductions
in this section, it suffices to solve the COLOR-CL problem for Gy,...,G, and T
in order to be able to compute a canonical labeling of G.

3 Canonizing Biconnected Partial 2-Trees

First we recall the definition of (partial) k-trees (cf. [12]).

Definition 3. The class of k-trees is inductively defined as follows.

— A clique with k vertices (k-clique for short) is a k-tree.

— Gwen a k-tree G' with n wvertices, a k-tree G with n + 1 vertices can be
constructed by introducing a new verter v and picking a k-clique C in G’
and then joining v to each vertex w in C. Thus, V(G) = V(G') U {v},
E(G)=EG)U{{u,v}|ueC}.

A partial k-tree is a subgraph of a k-tree.

In this section we give a logspace algorithm for biconnected partial 2-tree can-
onization. But first we state a useful characterization of partial 2-trees [I5].

Definition 4. Let G = (V, E) be a graph. A vertex v € V is an articulation
point if G — v has more connected components than G. G is biconnected if it
has no articulation point. A cell of G is a set of edges in a chordless cycle of G.
The cell-completion of G = (V, E) is the graph G = (V, E') where E' is obtained
from E by adding all edges {x,y} C V for which G — {z,y} has at least three
connected components.

Definition 5. A tree of cycles is a member of the class TC of graphs defined
inductively as follows:

— Bvery chordless cycle is an element of TC.

— Given a graph G in TC and a chordless cycle C, the graph obtained by
identifying an edge and its two end vertices of C' with an edge and its two
end-vertices of G is also in TC.

Theorem 6. [I5] A biconnected graph G is a partial 2-tree if and only if its
cell-completion G is a tree of cycles.
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We first consider COLOR-CL for colored biconnected partial 2-trees GG. For this,
we exploit the special structure of G as explained in Definition Bl and Theorem [6l
More precisely, we now give logspace algorithms for computing the tree comple-
tion G of G and its decomposition into the “tree of cycles”. This will allow us to
again use ideas from Lindell’s tree canonization algorithm to solve the problem.

A logspace algorithm can check for each pair {z,y} C V if G — {z,y} has
three connected components. If this is the case and if {z,y} is not an edge in G
then the algorithm outputs {x,y} as a “red” edge in the cell-completion G. We
color {z,y} red to indicate that the edge is not present in G.

Lemma 7. Let G = (V, E) be a tree of cycles. Two distinct edges ey = {z,y}
and ez = {a,b} are in the same cell if and only if either of the following condi-
tions holds true:

1. The set {x,b} separates y from a and the set {y,a} separates x from b but
{y,b} does not separate x from a and {x,a} does not separate y from b.

2. The set {x,a} separates y from b and the set {y,b} separates x from a but
{y,a} does not separate x from b and {x,b} does not separate y from a.

Notice that the conditions stated in Lemma [1 can be verified by querying an
oracle for s-t connectivity and hence is in logspace [19]. As a consequence, for
any tree of cycles G we can compute the cells C1, Co, ..., C,, of G in logspace.

Definition 8. Let G = (V, E) be a tree of cycles with cells Cy,...,Cy,. The
skeleton of G is the tree S(G) = (V', E') with verter set V' ={Cy,...,C, }JUE
and {C;,e} € E' if and only if e € C;.

Notice that the bipartite graph S(G) = (V’, E’) is a tree when G is a tree of
cycles. For two cells C; and Cj in a tree of cycles G we have C; N C; = {e}
precisely when {C}, e} and {C};,e} are edges in the skeleton S(G). Since we can
find the cells C1,Cs, ..., Cy, of G in deterministic logspace, it follows that S(G)
can be computed in deterministic logspace.

Definition 9. Let e = {a,b} be an edge of a tree of cycles G. Suppose we orient
e as the ordered pair (a,b). This orientation naturally induces an orientation of
every edge on any cycle C containing e, by walking along C' in the (a,b) direction.
Applying this step repeatedly yields a unique orientation of all edges. We call this
the orientation of G induced by (a,b).

The following symmetry property clearly holds for orientations: Let e = {a, b}
and e’ = {a’,V'} be two edges in a tree of cycles G. Then the orientation (a,b)
induces the orientation (a’, ') if and only if the orientation (a’,’) induces the
orientation (a, b).

Lemma 10. Let G be a tree of cycles and let eg = {a, b} be an edge in G. Then
the orientation of any edge e’ = {x,y} of G induced by (a,b) can be computed
in deterministic logspace.
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Proof. Let C1,...,C,, be the cells of G and suppose that eg € C and ¢’ € C".
Let 2d be the distance of C’" from C in the skeleton S(G) of G and let C' =
Ciys€1,Ciy,€2,Ciyy ... eq,Ci, = C' be the path form C to C’ in S(G), where
Ci,  NCy, ={e} fort =1,...,d. If d = 0, then the orientation of ¢’ induced by
(a,b) is computable in logspace by traversing the nodes in the cycle C' = C’. If
d > 1, the algorithm determines the orientations of eq, ..., es one after another.
Once it knows the orientation of e4, the orientation of ¢’ can be determined in the
same way as in the case C' = C”. Inductively suppose the algorithm knows Cj,
(i.e., the index 7;), e; and the orientation of e; induced by (a,b). In order to find
Ci,y1» €441 and the orientation of e;1; induced by (a,b) it finds (in logspace) a
vertex C" in the skeleton S(G) such that for some edge ¢’ of G, C;, NC" = {e"}
and the unique path in S(G) from C;, to C’ passes through C”. Since S(G) is a
tree, it is clear that the unique choice for C” is Cj,,, and that ¢” = e;11. Also,
the orientation of e;41 induced by (a,b) can be determined from the orientation
of e; by traversing the nodes in the cycle C;,. O

3.1 The Tree Representation for the Tree of Cycles

Let G be a colored tree of cycles, C' be a given cell in G and let e = (a,b) be
an oriented edge in C. Let C1,...,C), be the cells of G and let eq,...,¢e; be the
oriented edges of G induced by (a,b). The tree representation of G with respect
to the cell C' and the oriented edge (a, b) is a colored ordered tree T'(G, C, a,b) =
(V, E) with root C, where V = {C1,...Cr,} U{e1,...,e} and E = {{e;,C;} |
e; € C;}. We call the nodes C1, ..., Cp, “cell-nodes” and the nodes e, ..., e; are
referred to as “edge-nodes”. Thus, we have cell-nodes and edge-nodes alternating
along any root to leaf path, starting with the cell-node C' as root. The coloring
of T(G,C,a,b) and the ordering of the children of each cell-node C; will be
described below (the children of the edge-nodes e; are unordered). Our goal
is to describe an appropriate canonical labeling (computable in logspace) of
T(G, C,a,b) from which we can extract (in logspace) a canonical labeling of the
colored tree of cycles G (for a given cell C' and oriented edge (a,b)). Once we
do this, we can determine the overall canonical labeling as the one yielding the
lexicographically smallest tree of cycles over all root cells C' as well as all oriented
edges (a,b) on C.

First, we notice certain restrictions on this tree representation enforced by the
cell structure and the orientation of edges. We claim that as soon as a root cell
C' and an oriented edge (a,b) on C are fixed, the children of any cell-node C;
can be totally ordered in a canonical way. To see how, we start with the root C'.
Its children are the edge-nodes corresponding to the edges in the cycle C. We
designate (a,b) as the first child of C' and the remaining children are ordered
by walking along C in the (a,b) direction. For any other cell-node C; let (a;, ;)
be its parent edge-node in T(G, C,a,b). The children of C; are the edge-nodes
corresponding to the remaining edges in C; and they are ordered by walking
from node a; along C' in the (a;,b;) direction.

Since some edges and vertices of G may be colored, we need to add this
information to the nodes of T(G, C, a,b). If {z,y} is an edge of G that is colored
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¢, and (x,y) is the edge-node of T(G,C,a,b) corresponding to {z,y} then we
include the color ¢ to the set of colors for edge-node (x,y). Further, for each
vertex v of G having color ¢, the color (1,c¢) is included in the color set of each
edge-node in T(G, C, a,b) of the form (v,u) and the color (¢,1) is added to the
color set of each edge-node of the form (u,v). This completes the description of
the tree representation T'(G, C, a,b) of a tree of cycles G.

It is easy to see that any tree T isomorphic to T(G, C,a,b) contains enough
information to reconstruct the original tree of cycles G (up to isomorphism) from
T'. In fact, as we will show next, G is even computable in logspace from T'. We first
list a set of conditions that are necessary and sufficient for the existence of a tree
of cycles G having T as its tree representation. For a node v in T" whose children
are totally ordered as uy,...,u;—1, the orientation-order of the neighbors of v
is defined as follows. If v is the root node r of T', then the orientation-order is
(u1,...,u;—1). If v # r, then the orientation-order is (ug,u1,...,u;—1), where
ug is the parent of v. In either case we say that the neighbors of v are color-
consistent, if u; has a color (¢, 1) in its color set if and only if succ(u;) has the
color (1,¢) in its color set, where succ(u;) denotes the cyclic successor to u; in
the orientation-order. Now it is not hard to prove the following lemma.

Lemma 11. Let G be a tree of cycles, C' be a cell of G and let (a,b) be an
oriented edge on C. Then the tree representation T = T(G,C,a,b) fulfills the
following properties:
1. Fvery node at even distance from the root v of T has degree at least three.
2. The children of each node v at even distance from r are totally ordered and
the neighbors of v are color-consistent with respect to their orientation-order.
3. The nodes at odd distance from r are colored by a set of colors of the form
¢, (1,¢) or (¢,1) containing at most one color of the form c.

Further, for each tree T fulfilling these properties, a tree of cycles G', a cell C
in G’ and an oriented edge (a,b) on C fulfilling T(G’,C,a,b) = T is computable
in FL.

3.2 Isomorphism Ordering

We use colored tree canonization to canonize the tree representation 7' of a tree
of cycles. For that we encode the orientation-order using special colors c1, ca, . . .
where we assume that ¢; < ¢;41. Let (ug, u1,...,u;—1) be the orientation-order
of the neighbors of a node v in T. If v is the root r» of T' then we color u;
with color ¢;11 for i = 0,...,1 — 1. If v # r, then we color u; with color ¢; for
1 =1,...,1 — 1. Notice that in the latter case the parent ug of v does not get
any color due to the orientation-order of the neighbors of v (though wy may get
some color due to the orientation-order of the neighbors of some other node).
We denote the (unordered) tree obtained from T by adding these special colors
by T.

For an ordered set C' of colors let 7¢ denote the class of all rooted trees whose
nodes are colored with colors from C. We denote the color of a node v by col(v)
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and the number of its children by #v. The number of nodes in a graph G is
denoted as |G|. First we inductively define an ordering < on 7¢.

Definition 12. Let T,T' € Tc with roots r and ', respectively. We say that
T <X T if either of the following conditions is fulfilled:
1. col(r) < col(r").

2. col(r) = col(r") and |T| < |T"|.

3. col(r) = col(r"), |T| = |T"| and #r < #r'.

4.

col(r) = col(r'), |T| = |T'|, #r = #r'" and (Ty,,...,T;,) = (T},...,T},)
in the lexicographic sense, where Ty, ..., Ty are the subtrees rooted at the
children of v, Ty, ..., T} are the subtrees rooted at the children of r’, and

inductively Ty, = -+ 2 T;, and ijl < ... = T]’k

For any two trees T, T’ € T¢ at least one of T < T” and T < T holds. Further,
T' and T are isomorphic if and only if both T < T” and T’ < T hold. The
ordering defined in Definition [[2is similar to the one defined in [I7] except that
we give highest priority to colors of nodes to distinguish the subtrees rooted at
them. This isomorphism ordering of colored trees gives an isomorphism ordering
of the tree representations of the trees of cycles when we encode the orientation-
orders by colors. We can easily modify Lindell’s algorithm to take into account
the priority due to coloring and get a logspace algorithm for computing the
isomorphism order of colored trees in 7¢. By applying this algorithm we get
a deterministic logspace algorithm for computing the isomorphism order of the
tree representations of the trees of cycles.

3.3 Canonical Labeling of Biconnected Partial 2-Trees

We first explain how a colored tree T' € 7¢ is traversed using the isomorphism
order defined above. The traversal starts at the root of T'. Suppose we arrive at
a node v. Then the algorithm tries to move to the first child in the isomorphism
order, i.e., the child with minimal isomorphism order. Ties are broken using the
input order. If it fails to move to the first child (if v is a leaf node), it tries to go
back to the parent of v. When it comes back to the parent from a child it tries to
move to the next sibling in the isomorphism order. Again ties are broken using
the input order. If it fails to move to the next sibling (if it comes back from the
last child) then it tries to move to the parent (if the node has no parent, the
traversal stops).

To determine the canonical labeling of a tree T' € 7¢, the algorithm traverses
T and when it discovers a new node it outputs the node. Note that a node is new
if it comes through a successful first-child or next-sibling move. The list of nodes
in the traversal order serves as the canonical labeling of T'. To find the canonical
labeling of the tree representation 7' of a tree of cycles G we first encode the
orientation-order using colors and then find the canonical labeling of the colored
tree as just described.

Now we can compute the canonical labeling of a tree of cycles G as follows.
The algorithm computes for any cell C'in G and each oriented edge (a,b) of C
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the tree representation T(G, C, a,b). Then it determines the canonical labeling
for T'(@, C, a,b) and reconstructs from the relabeled tree representation in deter-
ministic logspace a tree of cycles G’ as stated in Lemma [[I} G’ is our canonical
form canon(G, C, a,b) of G with respect to C and (a, b). The canonical form of G
is the lexicographically least such canon.Notice that also the canonical labeling
can be recovered by keeping track of the original vertices from the canonical
labeling of T(G, C, a,b).

Clearly, the canonical labeling of the cell-completion G of a biconnected partial
2-tree GG can serve as a canonical labeling of G because in G the edges that are
not present in G are colored “red”.

Theorem 13. For colored biconnected partial 2-trees a canonical labeling can
be computed in logspace.

4 Canonizing Partial 2-Trees

In this section we show that the problem COLOR-CL for partial 2-trees is in
logspace. We show this by designing a logspace canonical labeling algorithm
for partial 2-trees that is a combination of Lindell’s tree canonization algorithm
with the logspace canonization algorithm of Section [Blfor the class of biconnected
partial 2-trees.

Theorem 14. The problem COLOR-CL for partial 2-trees is in logspace. I.e.
colored partial 2-trees are canonizable in logspace.

Proof (sketch). Let G = (V, E) be a colored input partial 2-tree for our can-
onization algorithm. Using Reingold’s logspace s-t connectivity algorithm for
undirected graphs [I9] we can compute its biconnected components G, ..., G,
and the set A of its articulation points. Consider the tree T(G) = (V', E')
of biconnected components and articulation points defined as follows: V' =
{v1,...,v.} U A, where v; corresponds to G; for each i and E' = {{a,v;} |
a is an articulation point in G;}. We can assume that G,Gq,...,G, and T(G)
are given as input.

By distinguishing some articulation point a € A as the root, the tree T(G)
becomes a rooted tree T'(G, a) with root a, defined as follows. Based on Lindell’s
canonization method [I7], given G with a vertex v € V specially marked as
root, in the following steps we describe an inductive definition of an ordering
on such rooted trees T(G). Using this inductive definition we will be able to
compute a canonical labeling (and hence a canonical form) of G. We use #r(v)
to denote the number of children of the root r(v) in T'(G,v). Further, for a
node v € V' we denote the subgraph of G corresponding to the subtree of
T(G,v) originating from node v’ by G(v'). In case v = v; corresponds to some
biconnected component G;, we assume that the parent a; € A of v; in T(G,v)
(if it exists) is colored with the special color “red” in G(v;).
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Let G,G’ € G with vertices v and v' marked as root, respectively. We define
G =< G if one of the following conditions holds:

size(G) < size(G').

size(G) = size(G') and #r(v) < #r(v').

3. size(G) = size(G'), #r(v) = #r(v') and v is an articulation point in G but
v’ is not an articulation point in G'.

4. size(G) = size(G), #r(v) = #r(v'), either both or neither of v and v’
are articulation points in G and G’, respectively, and (G(v1),...,G(vs)) <
(G'(v}),...,G'(v))) in the lexicographic sense (G < G’ means that G < G’
holds but not G’ < G), where vy, ...,vs and v], ..., v} are the children of r(v)
and r(v") in T(G,v) and T(G',v"), respectively, and the corresponding graphs
are inductively ordered as G(v1) < -+ = G(vs) and G'(v]) = -+ X G'(v)).

5. If in item 4 we have G(v;) =~ G'(v}) for ¢ = 1,...,s (where G ~ G’ means

that both G < G’ and G’ < @ hold) and if r(v) and r(v’) correspond

to biconnected components G; and G’; of G and G, respectively, then let
ai,...,as and af,...,a} be the children of r(v) and r(v') in T(G,v) and

T(G',v"), respectively. Inductively find the indices 0 = ip < i1 < -+ <

ip—1 < ip = s such that G(a1) = - = G(a;,) < G(ai+1) = -+ =~ G(a;,) <

G(aiy+1) = -+ =~ G(ai,) < Glaj,+1) =~ -+ =~ G(as). In the biconnected

component (G; color v with the special color “red” and color the articulation

point a; with color r if and only if 4,1 +1 < ¢ < 4,. Similarly color the
vertices v',ay,...,a; in G’;. Now canonize the colored biconnected graphs

N —

G; and G; (using the oracle for canonizing graphs in B(G)) and if G; < G
then order G < G'.

We claim that this inductive ordering defines a canonical form for the graph
G. It remains to argue that the canonical form can be computed in logspace,
basically using Lindell’s algorithm. As shown in Section Bl we can compute a
tree representation for biconnected partial 2-trees. If GG is a partial 2-tree with
more than one biconnected component, then in the rooted tree defined above
each biconnected component B of G will have a fixed red node r (which is
an articulation point of G). Using this property, we can give a modified tree
representation T'(B, r) for B in which r is the root, its children are the cells of B
containing r, for each such cell C its children will be an ordered list of vertices
(where the ordering is either forward or backward determined by orienting a fixed
edge incident on r), and so on. The vertices of B that are other articulation points
of G will be initially colored blue. In the overall tree structure, these blue nodes
will have as children the red nodes which are roots of the tree representation of
other biconnected components. An overview of the algorithm is now as follows:
We start Lindell’s algorithm on the tree T'(G, a) rooted at articulation point a.
Every time we need to compare two trees rooted at two biconnected components
as in Step 5 of the inductive definition, we will essentially have to compare two
trees of the form T'(B,r) and T(B’,r"). We will again use Lindell’s method here.
We classify the blue nodes into blocks, using the level numbers and the sizes of the
subgraphs rooted at them. We first recusively compare nodes that are identical
blocks of size 1 (crucially, we do not need any storage to do this recursion similar
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to Lindell) and order T'(B, r) and T'(B’, ) as per this outcome. If all single blocks
turn out to have same isomorphism order, as recursively computed, we proceed
to run Lindell on the trees T'(B,r) and T'(B’,r"), where we need to orient an
edge on roots 7 and 7’ and remember the orientation (in all 2 bits of space). The
rest of the computation proceeds exactly as in Lindell, where blocks of larger size
are recursively compared and the space is managed to be logarithmic. Finally,
notice that to canonize G we can run the above procedure to canonize T(G, a)
for each articulation point a and choose the lexicographically smallest amongst
them. Details of the algorithm and correctness proof will be given in the full
version. O

5 Recognizing Partial 2-Trees

Jakoby and Liskiewicz [13] proved that recognition of partial 2-trees is in SL.
Hence, it is in L by Reingold’s result [19]. Here we give a simple logspace al-
gorithm for recognizing partial 2-trees is based on Theorem [6 and Lemma [7
By Theorem [0l it suffices to check that the cell-completion of each biconnected
component B of G is a tree of cycles. Clearly, the cell-completion B of B can be
computed in logspace as described in Section[3 In order to check that B = (V, E)
is a tree of cycles, the algorithm computes for each edge e = {x,y} in B a set C,
consisting of all edges e’ = {a, b} for which either of the two conditions stated in
Lemmal7lis satisfied. Next it removes all duplicate occurrences of the sets C,. Let
C4,...,Cy be the remaining sets. If |C; N C;| > 1 for some 1 <4 < j < m, then
we know that G' cannot be a tree of cycles. Otherwise the algorithm checks for
i =1,2,...,m that the graph G[V;] induced by the vertex set V; of C; is actually
a cycle by verifying that each node has degree 2 and the graph G[V;] is connected.
Finally, the algorithm checks that the bipartite graph S(B) = (V', E’) is a tree,
where V' = {C4,...,Cpp,} UE and E' = {{C;,e} | e € C;}. Recall from Defini-
tion [ that S(B) is just the skeleton of B in case B is a tree of cycles. Now it is
easy to see that G is a partial 2-tree if and only if the cell-completion B of each
biconnected component B of G passes all the tests described above.

Theorem 15. Given a graph G there is a deterministic logspace algorithm to
decide if G is a partial 2-tree.
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