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Abstract. One of the starting points of propositional proof complexity is the
seminal paper by Cook and Reckhow [6], where they defined propositional proof
systems as poly-time computable functions which have all propositional tautolo-
gies as their range. Motivated by provability consequences in bounded arith-
metic, Cook and Kraj́ıček [5] have recently started the investigation of proof
systems which are computed by poly-time functions using advice. While this
yields a more powerful model, it is also less directly applicable in practice.
In this note we investigate the question whether the usage of advice in proposi-
tional proof systems can be simplified or even eliminated. While in principle, the
advice can be very complex, we show that proof systems with logarithmic advice
are also computable in poly-time with access to a sparse NP-oracle. In addition,
we show that if advice is ”not very helpful” for proving tautologies, then there
exists an optimal propositional proof system without advice. In our main result,
we prove that advice can be transferred from the proof to the formula, leading
to an easier computational model. We obtain this result by employing a recent
technique by Buhrman and Hitchcock [4].

1 Introduction

Propositional proof complexity studies the question how difficult it is to prove
propositional tautologies. In the classical Cook-Reckhow model, proofs are veri-
fied in deterministic polynomial time [6]. While this is certainly the most useful
setting for practical applications, it is nevertheless interesting to ask if proofs
can be shortened when their verification is possible with stronger computational
resources. In this direction, Cook and Kraj́ıček [5] have recently initiated the
study of proof systems which use advice for the verification of proofs. Their re-
sults show that, like in the classical Cook-Reckhow setting, these proof systems
enjoy a close connection to theories of bounded arithmetic.

Subsequently, in [2, 3] we studied the questions whether there exist polyno-
mially bounded or optimal proof systems with advice. For the first question,
one of the major motivations for proof complexity [6], we obtained a complete
complexity-theoretic characterization [2]. Unlike in the classical model, the sec-
ond question receives a surprising positive answer: optimal proof systems exist
when a small amount of advice is allowed [5, 3].

Unfortunately, proof systems with advice do not constitute a feasible model
for the verification of proofs in practice, as the non-uniform advice can be very
complex (and even non-recursive). In this short paper we therefore investigate
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the question whether the advice can be simplified or even eliminated while still
preserving the same upper bounds on the lengths of proofs. Our first result
shows that proving propositional tautologies does not require complicated ad-
vice: every propositional proof system with up to logarithmic advice is simulated
by a propositional proof system computable in polynomial time with access to
a sparse NP-oracle. Thus in propositional proof complexity, computation with
advice can be replaced by a more realistic computational model.

While this first result holds unconditionally, our next two results explore
consequences of a positive or negative answer to our question in the title. As-
sume first that advice helps to prove tautologies in the sense that proof systems
with advice admit non-trivial upper bounds on the lengths of proofs. Then we
show that the same upper bound can be achieved in a proof system with a
simplified advice model. On the other hand, if the answer is negative in the
sense that advice does not help to shorten proofs even for simple tautologies,
then we obtain optimal propositional proof systems without advice.

2 Proof Systems with Advice – and without

We start with a general semantic definition of proof systems:

Definition 1. A proof system for a language L is a (possibly partial) surjective
function f : Σ∗ → L. For L = TAUT, f is called a propositional proof system.

A string w with f(w) = x is called an f-proof of x. Proof complexity studies
lengths of proofs, so we use the following notion: for a function t : N → N, a
proof system f for L is t-bounded if every x ∈ L has an f -proof of size ≤ t(|x|).
If t is a polynomial, then f is called polynomially bounded.

In the classical framework of Cook and Reckhow [6], proof systems are
additionally required to be computable in polynomial time. Recently, Cook and
Kraj́ıček [5] have started to investigate propositional proof systems that are
computable in polynomial time with the help of advice. This can be formalized
as follows:

Definition 2 ([2]). For a function k : N→ N, a proof system f for L is a proof
system with k bits of advice, if there exist a polynomial-time Turing transducer
M , an advice function h : N→ Σ∗, and an advice selector function ` : Σ∗ → 1∗

such that

1. ` is computable in polynomial time,
2. M computes the proof system f with the help of the advice h, i.e., for all

π ∈ Σ∗, f(π) = M(π, h(|`(π)|)), and
3. for all n ∈ N, the length of the advice h(n) is bounded by k(n).

We say that f uses k bits of input advice if ` has the special form `(π) = 1|π|.
On the other hand, in case `(π) = 1|f(π)|, then f is said to use k bits of output
advice. The latter notion is only well-defined if we assume that the length of
the output f(π) (in case f(π) is defined) does not depend on the advice. By
this definition, proof systems with input advice use non-uniform information
depending on the length of the proof, while proof systems with output advice
use non-uniform information depending on the length of the proven formula.
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In [2] we have shown that every proof system with advice is equivalent to
a proof system with the same amount of input advice, whereas output advice
seems to yield a strictly less powerful model. Yet, even output advice can be
arbitrarily complex and thus computing proofs with advice does not form a
feasible model to use in practice. Our first result shows that instead of possibly
complex non-uniform information we can also use sparse NP-oracles to achieve
the same proof lengths as in proof systems with advice. The qualification “same
proof length” is made precise by the notion of simulation [8]: a proof system g
simulates a proof system f , denoted f ≤ g, if there is a polynomial p such that
for every f -proof π there exists a g-proof π′ of size ≤ p(|π|) with f(π) = g(π′).

Theorem 3.

1. Every propositional proof system with logarithmic advice is simulated by a
propositional proof system computable in polynomial time with access to a
sparse NP-oracle.

2. Conversely, every propositional proof system computable in polynomial time
with access to a sparse NP-oracle is simulated by a propositional proof system
with logarithmic advice.

Proof. For the first claim, let f be a propositional proof system computed
by the polynomial-time Turing transducer Mf with advice function hf where
|hf (n)| ≤ c·logn for some constant c. Without loss of generality, we may assume
that f uses input advice (cf. [2]). We choose a length-injective polynomial-time
computable pairing function 〈·〉 and consider the set

A =
{
〈1n, a〉 | a ∈ Σ≤c·log n and for some π ∈ Σn, Mf (π, a) 6∈ TAUT

}
,

where Mf (π, a) denotes the computation of Mf on input π under advice a.
Intuitively, A collects all incorrect advice strings for Mf on length n. By con-
struction, A is sparse. Further, A ∈ NP because on input 〈1n, a〉 we can guess
π ∈ Σn and nondeterministically verify Mf (π, a) 6∈ TAUT by guessing a satis-
fying assignment for ¬Mf (π, a).

We now construct a polynomial-time oracle Turing transducer Mg which
under oracle A computes a proof system g ≥ f . Proofs in g will be of the
form 〈π, ϕ〉. On such input, Mg queries all strings 〈1|π|, a〉, a ∈ Σ≤c·log |π|. For
each negative answer, Mg simulates Mf on input π using a as advice. If any
of these simulations outputs ϕ, then Mg also outputs ϕ, otherwise g(〈π, ϕ〉)
is undefined. Because Mg performs at most polynomially many simulations of
Mf , the machine Mg runs in polynomial time. Correctness and completeness of
g follow from the fact that Mf is simulated with all correct advice strings, and
the original advice used by Mf is among these (as also other advice strings are
used, g might have shorter proofs than f , though).

For the second claim, let f be a propositional proof system computed by the
oracle transducer Mf under the sparse NP-oracle A. Let MA be an NP-machine
for A and let p(n) be a polynomial bounding the cardinality of A∩Σ≤n as well
as the running times of MA and Mf . With these conventions, there are at most
q(n) = p(p(n)) many strings in A that Mf may query on inputs of length n.
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We now define a machine Mg, an advice function hg, and an advice selector
`g which together yield a propositional proof system g ≥ f with logarithmic
advice. The advice function will be hg(n) = |A ∩ Σ≤p(n)|. As A is sparse this
results in logarithmic advice. Proofs in the system g are of the form

πg =
〈
a1, w1, . . . , aq(n), wq(n), πf

〉

where πf ∈ Σn (an f -proof), a1, . . . , aq(n) ∈ Σ≤p(n) (elements from A), and
w1, . . . , wq(n) ∈ Σ≤q(n) (computations of MA). At such a proof πg, the advice
selector chooses the advice corresponding to |πf |, i.e., we set `g(πg) = |πf |.
The machine Mg works as follows: it first uses its advice to obtain the number
m = hg(|πf |) and checks whether a1, . . . , am are pairwise distinct and for each
i = 1, . . . ,m, the string wi is an accepting computation of MA on input ai. If
all these simulations succeed, then we know that A ∩ Σ≤p(n) = {a1, . . . , am}.
Hence Mg can now simulate Mf on πf and give correct answers to all oracle
queries made in this computation. ut

Let us remark that Balcázar and Schöning [1] have shown a similar trade-
off between advice and oracle access in complexity theory: coNP ⊆ NP/log if
and only if coNP ⊆ NPS for some sparse S ∈ NP. We complete the picture by
showing that the simulations in the previous theorem cannot be strengthened
to a full equivalence between the two concepts:

Proposition 4. There exist propositional proof systems with constant advice
which cannot be computed with access to a recursive oracle.

Proof. Let f be a polynomial-time computable propositional proof system.
With each infinite sequence a = (ai)i∈N, ai ∈ {0, 1}, we associate the system

fa(π) =

{
f(π′) if either π = 0π′ or (π = 1π′ and a|π| = 0)
undefined if π = 1π′ and a|π| = 1.

As different sequences a and b yield different proof systems fa and fb, there exist
uncountably many different propositional proof systems with one bit of advice.
On the other hand, there are only countably many proof systems computed by
oracle Turing machines under recursive oracles. Hence the claim follows. ut

3 Optimal Proof Systems

A propositional proof system which simulates every other propositional proof
system is called optimal. While in the classical setting, the existence of optimal
proof systems is a prominent open question [8], Cook and Kraj́ıček [5] have
shown that there exists a propositional proof system with one bit of input
advice which simulates all classical Cook-Reckhow proof systems. Combining
this result with Theorem 3 yields:

Corollary 5. There exists a propositional proof system f which simulates ev-
ery polynomial-time computable propositional proof system. The system f is
computable in polynomial time under a sparse NP-oracle.
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Our next result shows that if advice does not help to shorten proofs even
for easy languages, then optimal propositional proof systems exist.

Theorem 6. If every polynomially bounded proof system with logarithmic out-
put advice for some L ∈ coNP can be simulated by a proof system without
advice, then the class of all polynomial-time computable propositional proof sys-
tems contains an optimal system.

Proof. The classical Cook-Reckhow Theorem characterizes the existence of poly-
nomially bounded proof systems: a language L has a polynomially bounded
poly-time computable proof system if and only if L ∈ NP. This result also holds
in the presence of advice (cf. [5, 2]): L has a polynomially bounded proof system
with logarithmic output advice if and only if L ∈ NP/log. For languages from
coNP, this equivalence even holds for input instead of output advice [2]. There-
fore, we can restate the hypothesis of the theorem as (coNP ∩ NP/log) ⊆ NP.

Now we can apply a result of Balcázar and Schöning [1] who have shown that
(coNP ∩ NP/log) ⊆ NP holds if and only if NE = coNE. The latter condition,
however, is known to imply the existence of optimal propositional proof systems
in the classical sense, as shown by Kraj́ıček and Pudlák [8] (cf. also [7]). ut
Let us remark that the hypothesis in Theorem 6 does not refer to TAUT, but
only to some of its subsets which are easy to prove with the help of advice.

4 Simplifying the Advice

There are two natural ways to enhance proof systems with advice by either
supplying non-uniform information to the proof (input advice) or to the proven
formula (output advice). Intuitively, input advice is the stronger model: proofs
can be quite long and formulas of the same size typically require proofs of differ-
ent size. Hence, supplying advice depending on the proof size is not only more
flexible, but also results in more advice per formula. This view is also supported
by previous results: there exist optimal proof systems with input advice [5, 2],
whereas for output advice a similar result cannot be obtained by current tech-
niques [3]. Further evidence is provided by the existence of languages that have
polynomially bounded proof systems with logarithmic input advice, but do not
have such systems with output advice [2].

In our next result we show how input advice can be transformed into output
advice. We obtain this simplification of advice under the assumption of weak,
but non-trivial upper bounds to the proof size. More precisely, from a proof
system which uses logarithmic input advice and has sub-exponential size proofs
of all tautologies, we construct a system with polynomial output advice which
obeys almost the same upper bounds. For the proof we use a new technique by
Buhrman and Hitchcock [4] who show that sets of sub-exponential density are
not NP-hard unless coNP ⊆ NP/poly.

Theorem 7. Let t(n) ∈ 2O(
√

n) and assume that there exists a t(n)-bounded
propositional proof system f with polylogarithmic input advice. Then there exists
an s(n)-bounded propositional proof system g with polynomial output advice
where s(n) ∈ O(t(d · n2)) with some fixed constant d independent of f .
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Proof. Let t(n) ≤ 2c·√n for some constant c and let f be a t(n)-bounded propo-
sitional proof system with polylogarithmic input advice. We say that π is a
conjunctive f-proof for a tautology ϕ if there exist tautologies ψ1, . . . , ψn with
|ψi| = |ϕ| = n such that f(π) = ψ1 ∧ · · · ∧ ψn and ϕ is among the ψi. For a
number m ≥ 1, we denote by ]nm the number of tautologies ϕ ∈ TAUT=n which
have conjunctive f -proofs of size exactly m. By counting we obtain

(]nm)n ≥ |{(ϕ1, . . . , ϕn) | ϕ1 ∧ · · · ∧ ϕn has an f -proof of size m and
|ϕi| = n for 1 ≤ i ≤ n }| . (1)

As f is t-bounded, every ϕ ∈ TAUT=n has a conjunctive f -proof of size at
most t(d · n2) where d is a constant such that for each sequence ψ1, . . . , ψn of
formulas of length n, |ψ1 ∧ · · · ∧ψn| ≤ d · n2. Let ]n = max{]nm | m ≤ t(d · n2)}.
Using (1) we obtain

|TAUT=n|n ≤
t(d·n2)∑

m=1

(]nm)n ≤ (]n)n · t(d · n2)

≤ (]n)n · 2c·
√

d·n2
= (]n · 2c·

√
d)n .

Thus, setting δ = 2−c·
√

d, we get ]n ≥ δ · |TAUT=n|. Therefore, by definition of
]n there exists a number mn,0 ≤ t(d ·n2) such that ]nmn,0

≥ δ · |TAUT=n|, i.e., a
δ-fraction of all tautologies of length n has a conjunctive f -proof of size mn,0.

Consider now the set TAUT=n
0 of all tautologies of length n which do

not have conjunctive f -proofs of size mn,0. Repeating the above argument for
TAUT=n

0 yields a proof length mn,1 such that ]nmn,1
≥ δ · |TAUT=n

0 |. Iterating
this argument we obtain a sequence

mn,0,mn,1, . . . ,mn,`(n) with `(n) =
⌈

log |TAUT=n|
log(1− δ)−1

⌉
≤

⌈
n

log(1− δ)−1

⌉

such that every ϕ ∈ TAUT=n has a conjunctive f proof of size mn,i for some
i ∈ {0, . . . , `(n)}.

We will now define a proof system g which uses polynomial output advice
and obeys the same proof lengths as f . Assume that f is computed by the
polynomial-time Turing transducer Mf with advice function hf . The system g
will be computed by a polynomial-time Turing transducer Mg using the advice
function

hg(n) =
〈
mn,0, hf (mn,0), . . . ,mn,`(n), hf (mn,`(n))

〉
.

The machine Mg works as follows: first Mg checks whether the proof has the
form

〈ϕ,ψ1, . . . , ψn, π, i〉
where ϕ,ψ1, . . . , ψn are formulas of length n such that ϕ ∈ {ψ1, . . . , ψn}, π is a
string (an f -proof), and i is a number ≤ `(n). If this test fails, then Mg outputs
>n (an easy tautology of length n). Then Mg uses its advice to check whether
|π| = mn,i. If so, then Mg simulates Mf on input π using advice hf (mn,i) (which
is available through the advice function hg). If the output of this simulation is
ψ1 ∧ · · · ∧ ψn, then Mg outputs ϕ, otherwise it outputs >n.
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By our analysis above, g is a propositional proof system (it is correct and
complete). The advice only depends on the length n of the proven formula, so
g uses output advice. To estimate the advice length, let |hf (m)| ≤ logam for
some constant a. Then

|hg(n)| ≤
`(n)∑

i=0

(|mn,i|+ |h(mn,i|) ≤ (`(n) + 1)
(
c
√
n+ loga(2c

√
n)

)
∈ nO(1) .

The size of a g-proof 〈ϕ,ψ1, . . . , ψn, π, i〉 for ϕ ∈ TAUT=n is dominated by
|π| ≤ t(d ·n2), and therefore g is s(n)-bounded for some s(n) ∈ O(t(d ·n2)). ut

5 Conclusion

Does advice help to prove propositional tautologies? In this generality, we leave
open the question – but our results provide partial answers. On the one hand,
when proving tautologies “very complicated” advice is not necessary – it suffices
to use a “small amount of simple” advice (Theorem 3). Further, if advice is
helpful to prove tautologies in the sense that proofs become shorter in general,
then again the advice can be simplified (Theorem 7).

On the other hand, if advice is not at all useful to prove tautologies, then
optimal propositional proof systems exist (Theorem 6), a consequence which is
considered unlikely by many researchers (cf. [7]). For further research, it seems
interesting to explore how natural proof systems like resolution can facilitate
advice. Is it possible to shorten proofs in such systems by using advice?

Acknowledgement. The first author wishes to thank Uwe Schöning for sug-
gesting to apply results from [1] in the context of proof systems with advice.
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