
Applying GRIPP to XML Documents containing XInclude
and XLink Elements

Silke Trißl, Florian Zipser, and Ulf Leser

{trissl, zipser, leser}@informatik.hu-berlin.de

Abstract: XML documents have an inherent tree structure well suited for reflecting hi-
erarchical relationships in data. However, data often alsocontain relationships, which
are not hierarchical but, for instance, cyclic or many to many relationships. These re-
lationships may be modeled by embedding XInclude or XLink elements into an XML
document. Unfortunately, XML query languages usually cannot cope very well with
these references. In this paper, we evaluate the applicability of GRIPP, a graph index-
structure originally developed for indexing large biological networks, for enhancing
XML query processing over XInclude and XLink elements. We show how such XML
queries can be represented as graph queries and how they can be answered efficiently
using GRIPP. Compared to XQuery formulations of such queries on top of the native
XML database eXist, our approach reaches a more than 100-fold speed-up.

1 Introduction

XML today is the predominant format for modeling, storing, and exchanging hierarchical
and / or semi-structured data. However, the nesting of XML elements resembles a tree,
making the format less straight-forward to use for data thatis not tree structured. Consider
the DBLP1 data set for example. DBLP uses XML to store information about publica-
tions. A publication contains a title, the authors, and the journal or conference the paper
is published at. To store and query this information the hierarchical structure of XML is
sufficient. But DBLP also provides cross-references to other publications. The W3C pro-
vides two possibilities to reference other parts of an document or other documents, namely
XLink and XInclude elements. If we want to know if the publication with title ”Extensi-
ble Markup Language (XML) 1.0”2 is directly or indirectly referenced by the publication
with the title ”Accelerating XPath evaluation in any RDBMS.”3 we first have to look at
the cross-references in the second paper and then recursively traverse the XML document
to retrieve all cross-referenced publications. Clearly, to answer this query efficiently we
should index the XML document before we start querying it. Inthis paper, we evaluate the
applicability of the GRIPP index structure (GRaph Indexingbased on Pre- and Postorder
numbering), originally developed for indexing biologicalnetworks, to XML documents
containing XInclude and XLink elements. We will index generated XML documents in

1See http://www.informatik.uni-trier.de/∼ley/db/
2by Tim Bray et al., Technical Report W3C.
3by Torsten Grust et al.ACM Trans. Database Syst, 2004.

the size between one and 160 MB and varying number of XLink or XInclude elements. In
addion we use the DBLP data set to show that GRIPP indeed is a very efficient option for
certain types of queries on XML documents.

The reminder of the paper is organized as follows. In the nextsection we provide some
background and related work. In Section 3 we describe GRIPP –our index structure and
in Section 4 how to query GRIPP. Section 5 evaluates our approach compared to a native
XML database and Section 6 concludes the paper.

2 Background

The eXtensible Markup Language (short XML) was developed bythe W3C to store and
exchange data. XML documents contain an implicit structurethat is determined by the
elements it contains. Every XML document contains a single root element and should be
well-formed. An XML document is well formed if all elements of the document are closed
only after all their child elements are closed. If we consider the elements as nodes and the
implicit structure as edges every XML document forms a tree with a single root node.
Figure 1(a) shows the XML document ”a.xml”, while Figure 1(b) shows the resulting tree.

<a>

b

<c>

<d>d</d>

</c>

(a) The XML document ”a.xml”.

a

b c

d

(b) The corresponding tree.

Figure 1: The XML document ”a.xml” and the corresponding tree.

XInclude and XLink elements, which are necessary to expressmore complex relationships,
destroy the inherent tree structure of an XML document. Both, XInclude and XLink ele-
ments address their target elements using XPath or XPointerexpressions. But the semantic
of the concepts is different, as specified by the W3C.

• XInclude [Vei06] allows to include other parts of an XML document, other doc-
uments or even other sources. When processing documents containing XInclude
the included parts of the document are copied to the location, where the XInclude
element is located.

• XLink [Orc01] just creates links either within or to other XML documents or to
other sources with no fixed semantic.

This means, in the case of an XInclude element the specified target elements together with
their successor elements are copied to the location of the XInclude element. Therefore an

XInclude element is only a placeholder for parts of a document as can be seen in Figure 2.
Using XInclude elements, according to the W3C standard, thedocument can only form a
directed, acyclic graph (DAG), i.e., a graph that contains no cycles.

<a xmlns:xi="http://www.w3.org/2001/XInclude/">

b
<xi:include href=a.xml#c>

<c xml:id="c">

<d>d</d>

</c>

(a) The XML document ”a.xml”.

a

b

c

d

c

d

(b) The coresponding tree with
expanded XInclude part (in
gray).

Figure 2: The XML document ”a.xml” containing XInclude elements and the corresponding tree.

In contrast XLink elements only point to elements in the samedocument or in other docu-
ments, but the content of the element is not copied. Therefore, XML documents containing
XLink elements can express much more complex structures, including cycles. But at query
time such XLink elements must be resolved. For a more detailed discussion on the use of
pointers in XML documents see [Beh06].

Figure 3(a) shows an XML document containing XLinks. In Figure 3(b) the document is
displayed as graph. Note, XLink elements are represented asdashed edges in the graph.

2.1 Related Work

For XML documents several strategies to index predecessor /successor axis exist. Grust
et al. [Gru04] proposed to index XML documents using pre- andpostorder values. In-
dexing XML documents using pre- and postorder values has theadvantage that the order
of child nodes is preserved, but has the disadvantage that itonly works for trees. If you
use this strategy for DAGs the index size grows exponentially as nodes with more than
one incoming edge and their successors are labeled multipletimes [Tri05]. Several groups
addressed the problem to index and query XML documents containing XLinks. Schenkel
et al. [Sch04] developed HOPI, a method based on the 2-Hop Cover. But creating the 2-
Hop Cover requiresn3 time (n = number of nodes), which makes it inapplicable to large
and highly interlinked XML documents. Chen and colleagues [Che05] labeled a spanning
tree and stored non-tree edges in an separate index structure. They also proposed an algo-
rithm to efficiently execute XPath queries. Their method works well for DAGs, but is not
applicable to graphs. To address the indexing of graphs we developed the GRIPP index
structure [Tri07] that is also based on the pre- and postorder labeling scheme. We will
describe GRIPP in the following section.

<DBLP xml:id="A" xmlns:xlink="http://www.w3.org/1999/xlink/">

<PAPER xml:id="B">

<TITLE xml:id="E">Accelerating XPath Evaluation in any RDBMS</TITLE>

<AUTHOR xml:id="F">Torsten Grust

<ORGANIZATION xml:id="L">University of Konstanz<ORGANIZATION>

</AUTHOR>

<CROSSREF xml:id="G">

<xlink:simple xlink:href="dblp.xml#C />

</CROSSREF>

</PAPER>

<PAPER xml:id="C">

<TITLE xml:id="H">Accelerating XPath location Steps</TITLE>

<AUTHOR xml:id="I">

<xlink:simple xlink:href="dblp.xml#F />

</AUTHOR>

</PAPER>

<TECHNICAL REPORT xml:id="D">

<TITLE xml:id="J">Extensible Markup Language</TITLE>

<AUTHOR xml:id="K">Tim Bray</AUTHOR>

</TECHNICAL REPORT>

...
</DBLP>

(a) XML document ’dblp.xml’ containing XLinks

A

B C D ...

E F G H I J K

L

(b) Graph,G

Figure 3: XML document ’dblp.xml’ and its graph representation G. Solid lines represent the inher-
ent tree edges, dashed lines the edges introduced by XLink elements.

3 Indexing XML documents

We use GRIPP (GRaph Indexing based on Pre- and Postorder numbering) [Tri07] to index
predecessor and successor relationships in XML documents containing XLink and XIn-
clude elements. The basic idea of GRIPP is as follows. For now, we assume that the
elements and relationships between elements of an XML document are stored as nodes
and edges, i.e., as graphG in the database, which can be achieved easily when parsing the
XML document. In GRIPP every node inG receives at least one pre- and postorder value
during a depth-first traversal. The node together with the pre- and postorder value and the
instance type (tree or non-tree instance) is stored asinstance in the GRIPP index table,
IND(G). Clearly, in a graph a nodev can be reached multiple times over different edges.
During index creation, whenv is traversed for the first time, we create atree instance in
IND(G) and proceed the traversal. At any successive traversal ofv we create anon-tree
instance in IND(G) and do not traverse any child nodes ofv again. This means, in GRIPP

a nodev has as many instances inIND(G) asv has incoming edges inG. Therefore the
size of the indexIND(G) is linear in the size of the indexed graph. The GRIPP index
tableIND(G) for the XML document in Figure 3(a) is given in Figure 4(a).

node pre post type
A 0 27 tree
B 1 18 tree
E 2 3 tree
F 4 7 tree
L 5 6 tree
G 8 17 tree
C 9 16 tree
H 10 11 tree
I 12 15 tree
F 13 14 non-tree
C 19 20 non-tree
D 21 26 tree
J 22 23 tree
K 24 25 tree

(a) Index table,IND(G).

-

6

pre

post

5 10 15 20 25

5

10

15

20

25
�
A

�
B

�E

�
B

�
F
�

L

�
B

�
G
�

C

�
H

�
C
�

I
�F

�
A

�

C

�
A

�
D

�
J

�
D
�
K

�

�

(b) O(G), in grayRIS(C)

Figure 4: The GRIPP index tableIND(G) and the order tree,O(G).

UsingIND(G) we can create the order tree,O(G) as displayed in Figure 4(b). Every tree
instance is an inner or leaf node, while non-tree instances are always leaf nodes inO(G).
The non-tree instancev′′ of a nodev has no child nodes inO(G), butv has possibly child
nodes inG. We therefore have to deploy a search strategy to answer reachability queries
on XML documents using GRIPP.

4 Querying XML documents

We can use GRIPP to answer the XPath expression ’//v//w’ for arbitrarily shaped XML
documents. To answer this XPath expression we use the GRIPP index tableIND(G). If
you look at the resulting order treeO(G) all reachable instancesw of a nodev must have
a preorder value between the pre- and postorder value ofv, i.e.,prev < prew < postv.
This condition can be evaluated in an RDBMS with a single query.

But we face two problems when we use GRIPP. First, a nodev may have many instances
in IND(G). But recall, every non-tree instancev′′ of v is a leaf node inO(G). We
therefore always use the tree instancev′ for querying. The second problem is that in the
pre-/ postorder range ofv′ (also calledreachable instance set of v, RIS (v)) we will only
find instances of nodes that are reachable fromv′ in O(G). We will miss nodes reachable
from v in G, as during index creation we do not traverse child nodes whenwe insert a
non-tree instance inIND(G). To account for that we have to extend the search using the
hop technique. To find all reachable nodes ofv in G we basically perform a depth-first

search over the index using non-tree instances in reachableinstance sets. In Figure 4(b)
RIS(C) contains a non-tree instance of nodeF , i.e., that node is a hop node forC.

To make the search more efficient we developed three pruning strategies, namely the sim-
ple, the skip, and the stop strategy. The simple and skip strategy avoid the repeated retrieval
of a reachable instance set that has already been used duringthe execution of the query.
For the stop strategy we have to precompute a list of stop nodes. If we reach a stop node
s during the search we do not have to evaluate all non-tree instances inRIS (s), which
makes the search more efficient. For more details on the pruning strategies see [Tri07].

To answer ’//v//w’ we proceed as follows. We first find the tree instancev′ of v and
retrieveRIS (v). If w ∈ RIS (v) we finish and returnTRUE, otherwise we have to use
non-tree instances inRIS (v) as hop nodes. We extend the search until we find an instance
of w or no further usable hop nodes are available. Consider Figure 4(b) and ’//C//L’. We
first retrieveRIS (C). We do not find an instance ofL, but we find a non-tree instance of
nodeF . We useF as hop node. InRIS (F) we find an instance ofL, therefore ’//C//L’
is TRUE. In [Tri07] we showed that this method is superior to other systems for many
types of graphs, and especially for very large graphs.

5 Evaluation

We created XML documents of various sizes using ToXgene [Bar02]. All XML documents
have a maximum depth of 5. As ToXgene can not create documentswith XLinks or
XIncludes we additionally inserted between 5 % and 20 % XLinkand XInclude elements,
respectively. We reference to other elements using XPointer with shorthand pointer. In our
setting every XPointer points to exactly one XML element in adocument. Before inserting
an XInclude element we have to test, if the newly inserted XInclude element introduces a
cycle, which would contradict the requirements of the W3C standard, and therefore should
not be inserted. In addition, we used the DBLP dataset with a size of 345 MB containing
8.1 million elements and some 5,400 XLink elements.

To evaluate GRIPP applied to XML documents we compare it to the native XML database
eXist4. For GRIPP we store the index table in a commercial database management system.
We evaluate two different approaches to fill the GRIPP index table. In the first method we
add pre- and postorder labels to elements while reading the document (called GRIPPread).
For every non-XInclude or XLink element in the XML document we insert a tree instance
to the GRIPP index table, while for every Xinclude or XLink element we insert a non-tree
instance of the target element. In the second method (calledGRIPPdb) we create a graph
corresponding to the structure of the XML document when reading the document. For the
creation of the GRIPP index table we start the traversal at the node with the highest degree
and traverse nodes according to their node degree as explained in [Tri07]. Both database
systems are installed on a Dell dual Xeon machine with 4 GB RAM. For query times we
compiled a set of 1,000 randomly chosen node pairs (for eXistonly 100 due to memory
restrictions) and averaged over query times.

4See http://exist.sourceforge.net/

5.1 Storing and indexing XML documents

Tables 1 and 2 show the time required to read, index, and storeXML documents. For both,
GRIPPread, where elements are labeled during reading, and eXist the time is dominated
by reading the XML document. According to eXist the XML documents are also indexed
during reading. GRIPPdb requires more time due to the index creation inside the RDBMS.
eXist can not read XML documents that are 60 MB or larger as a main memory exception
occurs. We also did not test GRIPPdb for huge documents (over 150 MB). The figures for
documents containing XInclude elements are equivalent (data not shown).

Size Nodes Edges GRIPPread GRIPPdb eXist
1.2 MB 13,210 13,869 5.11 59.08 3.51
7.1 MB 64,693 67,926 17.46 674.80 69.78

13.2 MB 144,775 152,013 32.65 2,758.81 97.16
61.1 MB 644,240 676,451 157.38 55,489.54 –

152.4 MB 1,600,683 1,680,716 560.13 – –

Table 1: Time in seconds to read, index, and store XML documents with increasing number of
elements that contain 5 % XLink elements.

Size Nodes Edges GRIPPread GRIPPdb eXist
7.1 MB 64,693 67,926 17.46 674.80 69.78
7.3 MB 64,693 71,161 18.50 861.37 74.06
7.6 MB 64,693 77,630 19.88 1,057.69 94.98

Table 2: Time in seconds to read, index, and store XML documents with increasing number of XLink
elements (5 %, 10 %, and 20 %).

5.2 Querying XML documents

To answer reachability queries we use user defined functionsto query the GRIPP index in
the database. For that we use the strategy described in Section 4. To query data stored in
eXist we use XQuery.

Figure 5 show that the time required to query GRIPPread and GRIPPdb is considerably
faster than the time required to execute XQuery in eXist. Forthe document containing
13.2 MB GRIPPread requires 2.24 ms and GRIPPdb 2.11 ms. In contrast, executing
XQuery on eXist requires on average over 2,000 ms. Therefore, both GRIPP-based meth-
ods are for that size of the graph three orders of magnitude faster than eXist. In addition,
the query times for eXist increases with increasing document size. In contrast, the query
times of both GRIPP-based methods increases only slightly with increasing document size.

Figure 6 shows the average time required to query both GRIPP based approaches and to
execute an XQuery on the eXist database for//v//w. The figures show that the query
time for both GRIPP-based approaches as well as the times foreXist remain almost con-
stant with increasing number of XLink elements.

 1

 10

 100

 1000

 10000

1.2MB
7.1 MB

13.2 MB

61.1 MB

152.4 MB

A
vg

. q
ue

ry
 ti

m
e

in
 m

s
(lo

g)

Document size (log)

GRIPPread
GRIPPdb

eXist

Figure 5: Average time in ms to answer//v//w on XML documents with increasing number of
XLink elements.

For increasing document size as well as for increasing number of XLink elements query-
ing GRIPPdb is about 5 % faster than querying GRIPPread. The reason for this is, that
the pruning strategies described in Section 4 are more efficient on the index created by
GRIPPdb than on that created by GRIPPread. The order treeO(G) created by GRIPPread
will only have a depth of 6, i.e., the depth of the XML documentplus one level for the non-
tree edges introduced by XLinks or XIncludes. In contrast during the creation of GRIPPdb
we will follow an XLink or XInclude when we reach the XIncludeor XLink element for
the first time and traverse all child nodes of the target node.Therefore the depth of the or-
der tree in GRIPPdb is much deeper. When querying the GRIPPdb index with a node close
to the root of such a long branch we cover more of the XML document immediately and
can prune more hop nodes. The figures for XML documents containing XInclude elements
are similar (data not shown). But the slight improvement of query times using GRIPPdb
compared to GRIPPread may not account for the big overhead in indexing time.

Indexing DBLP takes 21 minutes using GRIPPread. The average query time to answer
reachability queries is 3.4 ms. With the size of 345 MB the DBLP XML document can not
even be read into eXist, not to mention querying.

Concerning the comparison between GRIPP and eXist we have tonote that executing
XQuery//v//w on eXist does not result inTRUE or FALSE, but in the subtree of the
query element and if XLinks were followed, in the subtrees ofthose as well. In contrast,
GRIPP only returnsTRUE or FALSE. But queries on GRIPP that have this feature of re-
turning subtrees would take only marginally longer, as during querying we already search
following nodes of query and hop nodes (the reachable instance sets).

 1

 10

 100

 1000

 10000

7.1 MB
7.3 MB

7.6 MB

A
vg

. q
ue

ry
 ti

m
e

in
 m

s
(lo

g)

Document size (in MB)

GRIPPread
GRIPPdb

eXist

Figure 6: Average time in ms to answer//v//w on XML documents with increasing number of
XLink elements.

6 Conclusion

This work presents a first step towards using graph indexes for XML queries with refer-
ences. We showed how a graph index, such as GRIPP, can be used to index and query
certain XPath axes in XML documents containing XLink and/orXInclude elements. In
our experiments, such queries are evaluated up to three orders of magnitude faster than in
the native XML database system eXist. However, there remaina bunch of open questions
which we shall address in future work.

First, GRIPP is an index implemented in a relational database management system. Thus,
integrating it into a native XML implementation such as eXist, Natix, or Tamino5 is very
difficult and probably not the right way to go. On the other hand, native XQuery implemen-
tations inside relational engines, such as the Viper enginein DB2 or the XQuery engine
of Oracle, are still in an early stage and do not yet support user-defined extensions as they
do for relational queries. Fortunately, a third class of XQuery systems translates XQueries
into a sequence of normal SQL queries and execute those on topof a relational represen-
tation of XML data. Examples of such systems are Pathfinder [Rit07] or PPF [Geo07],
both of which recently have been shown to outperform the other approaches despite the
seeming overhead incurred by translating the XQuery into SQL. For those systems GRIPP
is a perfect choice for indexing XML documents containing XInclude or XLink elements,
since they anyway need a relational representation of the XML document. From this rep-
resentation, the specific model expected by GRIPP capturingonly the topological structure
of the document can easily be extracted and, in a second step,indexed.

Other issues include updating of the index. Here techniquesas described in [Wei05] may
be used. Finally, for optimal performance a cost-based model for choosing when to use

5See http://www.softwareag.com/de/products/tamino/.

GRIPP and when to use a ”normal” traversal must be developed and integrated into an
XQuery optimizer.

References

[Bar02] D. Barbosa, A. O. Mendelzon, J. Keenleyside, and K. A. Lyons. ToXgene: a template-
based data generator for XML. InProc. of the SIGMOD conference, page 616, 2002.
ACM.

[Beh06] E. Behrends, O. Fritzen, and W. May. Querying Along XLinks in XPath/XQuery: Situa-
tion, Applications, Perspectives. InProc. of the EDBT Workshop, volume 4254 ofLecture
Notes in Computer Science, pages 662–674, 2006. Springer

[Che05] L. Chen, A. Gupta, and M. E. Kurul. Stack-based Algorithms for Pattern Matching on
DAGs. InProc. of the VLDB conference, pages 493–504, 2005. ACM.

[Geo07] H. Georgiadis, V. Vassalos. XPath on Steroids: Exploiting Relational Engines for XPath
Performance InProc. of the ACM SIGMOD conference, pages 317–328, 2007. ACM.

[Gru04] T. Grust, M. van Keulen and J. Teubner. AcceleratingXPath evaluation in any RDBMS.
ACM Trans. Database Syst., 29:91–131, 2004.

[Orc01] D. Orchard, S. DeRose, and E. Maler. XML Linking Language (XLink). Technical report,
W3C, June 2001.

[Rit07] J. Rittinger, J. Teubner, and T. Grust. Pathfinder: ARelational Query Optimizer Explores
XQuery Terrain. BTW, pages 617–620, 2007.

[Sch04] R. Schenkel, A. Theobald, and G. Weikum. HOPI: An Efficient Connection Index for
Complex XML Document Collections. InProc. of the EDBT conference, volume 2992 of
Lecture Notes in Computer Science, pages 237–255, 2004. Springer.

[Tri05] S. Trißl and U. Leser. Querying Ontologies in Relational Database Systems. InProc. of the
DILS workshop, volume 3615 ofLecture Notes in Computer Science, pages 63–79, 2005.
Springer.

[Tri07] S. Trißl and U. Leser. Fast and Practical Indexing and Querying of Very Large Graphs. In
Proc. of the ACM SIGMOD conference, pages 845–856, 2007. ACM.

[Vei06] D. Veillard, J. Marsh, and D. Orchard. XML Inclusions (XInclude). Technical report,
W3C, Nov 2006.

[Wei05] F. Weigel, K. U. Schulz, and H. Meuss. The BIRD Numbering Scheme for XML and
Tree Databases - Deciding and Reconstructing Tree Relations Using Efficient Arithmetic
Operations. InProc. of the XSym conference, pages 49–67, 2005.

