Applying GRIPP to XML Documents containing XInclude
and XLink Elements

Silke Tri3l, Florian Zipser, and Ulf Leser
{trissl, zipser, lesé@informatik.hu-berlin.de

Abstract: XML documents have an inherent tree structure well suiteddfibecting hi-
erarchical relationships in data. However, data often edsdain relationships, which
are not hierarchical but, for instance, cyclic or many to ynatationships. These re-
lationships may be modeled by embedding XInclude or XLirdognts into an XML
document. Unfortunately, XML query languages usually carmope very well with
these references. In this paper, we evaluate the appliyadfilGRIPP, a graph index-
structure originally developed for indexing large biolea)i networks, for enhancing
XML query processing over Xinclude and XLink elements. Wewvgtnow such XML
queries can be represented as graph queries and how theg easwered efficiently
using GRIPP. Compared to XQuery formulations of such gaesietop of the native
XML database eXist, our approach reaches a more than 16G{&ed-up.

1 Introduction

XML today is the predominant format for modeling, storingdaxchanging hierarchical
and / or semi-structured data. However, the nesting of XMimants resembles a tree,
making the format less straight-forward to use for dataithabt tree structured. Consider
the DBLP data set for example. DBLP uses XML to store information alpuiblica-
tions. A publication contains a title, the authors, and thejal or conference the paper
is published at. To store and query this information thedrigrical structure of XML is
sufficient. But DBLP also provides cross-references torghélications. The W3C pro-
vides two possibilities to reference other parts of an damuror other documents, namely
XLink and XInclude elements. If we want to know if the publica with title "Extensi-
ble Markup Language (XML) 1.@"is directly or indirectly referenced by the publication
with the title "Accelerating XPath evaluation in any RDBMSwe first have to look at
the cross-references in the second paper and then redyitsaxerse the XML document
to retrieve all cross-referenced publications. Cleadyanswer this query efficiently we
should index the XML document before we start querying ithis paper, we evaluate the
applicability of the GRIPP index structure (GRaph Indexiaged on Pre- and Postorder
numbering), originally developed for indexing biologicatworks, to XML documents
containing XInclude and XLink elements. We will index gesiteid XML documents in

1See http://www.informatik.uni-trier.defley/db/
2py Tim Bray et al., Technical Report W3C.
Spy Torsten Grust et #ACM Trans. Database Syst, 2004.

the size between one and 160 MB and varying number of XLinklackide elements. In
addion we use the DBLP data set to show that GRIPP indeed iy &ffecient option for
certain types of queries on XML documents.

The reminder of the paper is organized as follows. In the segtion we provide some
background and related work. In Section 3 we describe GRIBE index structure and
in Section 4 how to query GRIPP. Section 5 evaluates our agproompared to a native
XML database and Section 6 concludes the paper.

2 Background

The eXtensible Markup Language (short XML) was developethieyWW3C to store and
exchange data. XML documents contain an implicit structhet is determined by the
elements it contains. Every XML document contains a singé element and should be
well-formed. An XML document is well formed if all elementstbe document are closed
only after all their child elements are closed. If we consitie elements as nodes and the
implicit structure as edges every XML document forms a tréth & single root node.
Figure 1(a) shows the XML document "a.xml”, while Figure L¢hows the resulting tree.

)/@\\

<a>
b @ G
<c>d d</d
<d>d</d>
</c> (d)
<l a>
() The XML document "a.xml”. (b) The corresponding tree.

Figure 1: The XML document "a.xml” and the correspondingtre

Xlnclude and XLink elements, which are necessary to expness complex relationships,
destroy the inherent tree structure of an XML document. Bxthclude and XLink ele-
ments address their target elements using XPath or XP@rpeessions. But the semantic
of the concepts is different, as specified by the W3C.

e Xlnclude [Vei06] allows to include other parts of an XML document, etldoc-
uments or even other sources. When processing documernttsréog Xinclude
the included parts of the document are copied to the locatibere the Xinclude
element is located.

e XLink [Orc01] just creates links either within or to other XML dauants or to
other sources with no fixed semantic.

This means, in the case of an XInclude element the specifigdttalements together with
their successor elements are copied to the location of thelXde element. Therefore an

Xlnclude element is only a placeholder for parts of a docurasrcan be seen in Figure 2.
Using XlInclude elements, according to the W3C standardgtioeiment can only form a
directed, acyclic graph (DAG), i.e., a graph that contaimsycles.

<a xnml ns: xi ="http://ww. w3. or g/ 2001/ XI ncl ude/ " > ?
b
<xi:include href=a.xm #c>

<c xm :id="c" >
<d>d</d>
</c> @
<la>
(a) The XML document "a.xml". (b) The coresponding tree with
expanded Xinclude part (in

gray).
Figure 2: The XML document "a.xml” containing XInclude elems and the corresponding tree.

In contrast XLink elements only point to elements in the salm@iment or in other docu-
ments, but the content of the element is not copied. ThezefaviL documents containing
XLink elements can express much more complex structurelsiding cycles. But at query
time such XLink elements must be resolved. For a more deltdicussion on the use of
pointers in XML documents see [Beh06].

Figure 3(a) shows an XML document containing XLinks. In Fg8(b) the documentis
displayed as graph. Note, XLink elements are representddsised edges in the graph.

2.1 Related Work

For XML documents several strategies to index predecessardessor axis exist. Grust
et al. [Gru04] proposed to index XML documents using pre- pastorder values. In-
dexing XML documents using pre- and postorder values haadkiantage that the order
of child nodes is preserved, but has the disadvantage thatyitworks for trees. If you
use this strategy for DAGs the index size grows exponewntadl nodes with more than
one incoming edge and their successors are labeled multipgs [Tri05]. Several groups
addressed the problem to index and query XML documents congeXLinks. Schenkel
et al. [Sch04] developed HOPI, a method based on the 2-HoprC8ut creating the 2-
Hop Cover requires? time (» = number of nodes), which makes it inapplicable to large
and highly interlinked XML documents. Chen and colleagu&sd05] labeled a spanning
tree and stored non-tree edges in an separate index sguctuey also proposed an algo-
rithm to efficiently execute XPath queries. Their methodkgowell for DAGs, but is not
applicable to graphs. To address the indexing of graphs welalged the GRIPP index
structure [Tri07] that is also based on the pre- and postdedeling scheme. We will
describe GRIPP in the following section.

<DBLP xml:id="A" xmns:xlink="http://ww.w3.org/1999/xlink/" >
<PAPER xni :i d="B">
<TITLE xnml :id="E">Accel erating XPath Eval uation in any RDBMS</TI TLE>
<AUTHOR xml :id="F">Torsten G ust

<ORGANI ZATI ON xnl :id="L">University of Konstanz<ORGAN ZATI ON>
</ AUTHOR>
<CROSSREF xmi :id="G'>
<xlink:sinple xlink:href="dbl p.xml #C />
</ CROSSREF>
</ PAPER>
<PAPER xml :id="C">
<TITLE xm :id="H'>Accel erating XPath | ocation Steps</TITLE>
<AUTHOR xm :id="1">
<xl'ink:sinple xlink:href="dbl p. xml #F / >
</ AUTHOR>
</ PAPER>
<TECHNI CAL_REPORT xml :id="D"'>
<TITLE xm :id="J" >Extensi bl e Markup Language</ Tl TLE>
<AUTHOR xml @i d="K">Ti m Bray </ AUTHOR>
</ TECHNI CAL_REPORT>

</'DBLP>
(a) XML document 'dblp.xml’ containing XLinks

(b) Graph,G

Figure 3: XML document 'dblp.xml” and its graph represeiuat. Solid lines represent the inher-
ent tree edges, dashed lines the edges introduced by Xlenhegits.

3 Indexing XML documents

We use GRIPP (GRaph Indexing based on Pre- and Postordeenmg)]Tri07] to index
predecessor and successor relationships in XML documentsiaing XLink and XIn-
clude elements. The basic idea of GRIPP is as follows. For, m@vassume that the
elements and relationships between elements of an XML dentiare stored as nodes
and edges, i.e., as graphin the database, which can be achieved easily when parsng th
XML document. In GRIPP every node @ receives at least one pre- and postorder value
during a depth-first traversal. The node together with tlee @nd postorder value and the
instance typetfee or non-tree instance) is stored asstance in the GRIPP index table,
IND(G). Clearly, in a graph a nodecan be reached multiple times over different edges.
During index creation, when is traversed for the first time, we creatéree instance in
IND(G) and proceed the traversal. At any successive traversalef create aon-tree
instancein IND(G) and do not traverse any child nodesiafgain. This means, in GRIPP

a nodev has as many instancesiVD((G) asv has incoming edges i&¥. Therefore the
size of the indexXXND(G) is linear in the size of the indexed graph. The GRIPP index
tableIND(G) for the XML document in Figure 3(a) is given in Figure 4(a).

node | pre post type
A 0 27 tree
B 1 18 tree
E 2 3 tree
F 4 7 tree
L 5 6 tree
G 8 17 tree
C 9 16 tree
H 10 11 tree
| 12 15 tree
F 13 14 non-tree
C 19 20 non-tree
D 21 26 tree
J 22 23 tree
K 24 25 tree

(a) Index table/ND(G).

Figure 4: The GRIPP index tabléVD (G) and the order tree)(G).

post

25

20F

15f
10F

5

E‘A—— D
x______ib‘J<
D B w)
\ ~. C
~a

rgB_ G
T\ i G
Loy v uF
P WH
o

F

|i'L

oE

(b) O(G), ingray RIS(C)

Using IND(G) we can create the order tre@(G) as displayed in Figure 4(b). Every tree
instance is an inner or leaf node, while non-tree instancealways leaf nodes i@ (G).
The non-tree instanc€’ of a nodev has no child nodes i®(G), butv has possibly child
nodes inGG. We therefore have to deploy a search strategy to answehnabgity queries
on XML documents using GRIPP.

4 Querying XML documents

We can use GRIPP to answer the XPath expressibu/ / w for arbitrarily shaped XML
documents. To answer this XPath expression we use the GRtRR tableIND(G). If
you look at the resulting order treé(G) all reachable instances of a nodev must have
a preorder value between the pre- and postorder valugid., pre, < pre, < post,.
This condition can be evaluated in an RDBMS with a single guer

But we face two problems when we use GRIPP. First, a notay have many instances

in IND(G).

But recall, every non-tree instancé of v is a leaf node inO(G).

We

therefore always use the tree instamtéor querying. The second problem is that in the
pre-/ postorder range of (also calledeachableinstance set of v, RIS (v)) we will only

find instances of nodes that are reachable frdin O(G). We will miss nodes reachable
from v in G, as during index creation we do not traverse child nodes wieimsert a
non-tree instance iMVD (G). To account for that we have to extend the search using the
hop technique. To find all reachable nodes ofin G we basically perform a depth-first

search over the index using non-tree instances in reachadténce sets. In Figure 4(b)
RIS(C) contains a non-tree instance of nddgi.e., that node is a hop node for.

To make the search more efficient we developed three prutiaggies, namely the sim-
ple, the skip, and the stop strategy. The simple and skifeglyavoid the repeated retrieval
of a reachable instance set that has already been used dheirgecution of the query.
For the stop strategy we have to precompute a list of stopsidfiere reach a stop node
s during the search we do not have to evaluate all non-treannss inRIS(s), which
makes the search more efficient. For more details on the mystiategies see [Tri07].

To answer// v/ /| w we proceed as follows. We first find the tree instant®f v and
retrieve RIS(v). If w € RIS(v) we finish and returimRUE, otherwise we have to use
non-tree instances iRZS(v) as hop nodes. We extend the search until we find an instance
of w or no further usable hop nodes are available. Consider &) and/ / G/ / L. We

first retrieveRIS(C). We do not find an instance df, but we find a non-tree instance of
nodeF. We useF as hop node. IRIS(F') we find an instance df, therefore/ / C/ / L’

is TRUE. In [Tri07] we showed that this method is superior to othestsyns for many
types of graphs, and especially for very large graphs.

5 Evaluation

We created XML documents of various sizes using ToXgeneJBaAll XML documents
have a maximum depth of 5. As ToXgene can not create documetitsXLinks or
Xlncludes we additionally inserted between 5 % and 20 % Xlan& Xinclude elements,
respectively. We reference to other elements using XPoivite shorthand pointer. In our
setting every XPointer points to exactly one XML element doaument. Before inserting
an XlInclude element we have to test, if the newly insertedcKide element introduces a
cycle, which would contradict the requirements of the W3dard, and therefore should
not be inserted. In addition, we used the DBLP dataset witheaaf 345 MB containing
8.1 million elements and some 5,400 XLink elements.

To evaluate GRIPP applied to XML documents we compare iteémtitive XML database
eXist*. For GRIPP we store the index table in a commercial databasagement system.
We evaluate two different approaches to fill the GRIPP indé¥et In the first method we
add pre- and postorder labels to elements while readingadbendent (called GRIR®Ead).
For every non-XInclude or XLink element in the XML documerd imsert a tree instance
to the GRIPP index table, while for every Xinclude or XLinlerlent we insert a non-tree
instance of the target element. In the second method (c@lRiPRIb) we create a graph
corresponding to the structure of the XML document whenirgathe document. For the
creation of the GRIPP index table we start the traversaleattite with the highest degree
and traverse nodes according to their node degree as explaiffiTri07]. Both database
systems are installed on a Dell dual Xeon machine with 4 GB REM query times we
compiled a set of 1,000 randomly chosen node pairs (for edtist 100 due to memory
restrictions) and averaged over query times.

4See http://exist.sourceforge.net/

5.1 Storingand indexing XML documents

Tables 1 and 2 show the time required to read, index, and Xtdtedocuments. For both,
GRIPRead, where elements are labeled during reading, and eXist e i8 dominated
by reading the XML document. According to eXist the XML doocemts are also indexed
during reading. GRIPdb requires more time due to the index creation inside the RDBMS
eXist can not read XML documents that are 60 MB or larger asia mamory exception
occurs. We also did not test GRI&for huge documents (over 150 MB). The figures for
documents containing XInclude elements are equivalena (oat shown).

Size Nodes Edges GRIPRead GRIPRIb eXist
1.2 MB 13,210 13,869 511 59.08 3.51
7.1 MB 64,693 67,926 17.46 674.80 69.78
13.2 MB 144,775 152,013 32.65 2,758.81 97.16

61.1 MB 644,240 676,451 157.38 55,489.54 -
152.4MB 1,600,683 1,680,716 560.13 - -

Table 1: Time in seconds to read, index, and store XML docusnesith increasing number of
elements that contain 5 % XLink elements.

Size Nodes Edges GRIPRead GRIPRIb eXist
71MB 64,693 67,926 17.46 674.80 69.78
73MB 64,693 71,161 18.50 861.37 74.06
7.6 MB 64,693 77,630 19.88 1,057.69 94.98

Table 2: Time in seconds to read, index, and store XML docusngith increasing number of XLink
elements (5 %, 10 %, and 20 %).

5.2 Querying XML documents

To answer reachability queries we use user defined functioggery the GRIPP index in
the database. For that we use the strategy described im&dctiTo query data stored in
eXist we use XQuery.

Figure 5 show that the time required to query GR¥2d and GRIPHb is considerably

faster than the time required to execute XQuery in eXist. tARerdocument containing
13.2 MB GRIPPead requires 2.24 ms and GRIEP 2.11 ms. In contrast, executing
XQuery on eXist requires on average over 2,000 ms. Therdfota GRIPP-based meth-
ods are for that size of the graph three orders of magnitusterféhan eXist. In addition,
the query times for eXist increases with increasing docursige. In contrast, the query
times of both GRIPP-based methods increases only sliglittyimcreasing document size.

Figure 6 shows the average time required to query both GR#BBdapproaches and to
execute an XQuery on the eXist database/fobv/ / w. The figures show that the query
time for both GRIPP-based approaches as well as the times<ist remain almost con-
stant with increasing number of XLink elements.

GhIPPrelad KXX%
GRIPPdb ¥&xom]
eXist m——

1000 | E

10000 ¢ ;

100 3

Avg. query time in ms (log)

(L RERRENBENER R,

N > 2 6, N
'\3/]7 4 U?e g4 7 %
s M 4
73 /17@ % %

Document size (log)

Figure 5: Average time in ms to answef v/ / won XML documents with increasing number of
XLink elements.

For increasing document size as well as for increasing nuwféLink elements query-
ing GRIPRIb is about 5 % faster than querying GRIfe&d. The reason for this is, that
the pruning strategies described in Section 4 are moreeafficn the index created by
GRIPRIb than on that created by GRIR#Rd. The order tre€®(G) created by GRIPfad
will only have a depth of 6, i.e., the depth of the XML documgluis one level for the non-
tree edges introduced by XLinks or XIncludes. In contrasirdythe creation of GRIPdb
we will follow an XLink or XInclude when we reach the Xinclude XLink element for
the first time and traverse all child nodes of the target ndtierefore the depth of the or-
der tree in GRIP#bis much deeper. When querying the GRiBhdex with a node close
to the root of such a long branch we cover more of the XML doaurmamediately and
can prune more hop nodes. The figures for XML documents agntpXInclude elements
are similar (data not shown). But the slight improvementwény times using GRIR#I®
compared to GRIPRead may not account for the big overhead in indexing time.

Indexing DBLP takes 21 minutes using GRHe&l. The average query time to answer
reachability queries is 3.4 ms. With the size of 345 MB the PB{ML document can not
even be read into eXist, not to mention querying.

Concerning the comparison between GRIPP and eXist we hawettothat executing
XQuery/ /vl I won eXist does not result ifRUE or FALSE, but in the subtree of the
query element and if XLinks were followed, in the subtreethaise as well. In contrast,
GRIPP only return§ RUE or FALSE. But queries on GRIPP that have this feature of re-
turning subtrees would take only marginally longer, asmyiuerying we already search
following nodes of query and hop nodes (the reachable instaets).

10000 ¢ , : . i

E GRIPPread kxxx]

GRIPPdb &gz

L eXist m—]

S 1000 .

%] F E

€ r]

£ I]
(]

j= 100 | _:

Fal F]

g [4
>

o [4

2 10 | _:

< E E

C mel gel B

1 \X)\ \; vxi
. '\? ‘6‘
e Ty g

Document size (in MB)

Figure 6: Average time in ms to answef v/ / won XML documents with increasing number of
XLink elements.

6 Conclusion

This work presents a first step towards using graph indexe¥Ni queries with refer-
ences. We showed how a graph index, such as GRIPP, can beouisex and query
certain XPath axes in XML documents containing XLink anddnclude elements. In
our experiments, such queries are evaluated up to threesarfimagnitude faster than in
the native XML database system eXist. However, there remaimnch of open questions
which we shall address in future work.

First, GRIPP is an index implemented in a relational datalbasnagement system. Thus,
integrating it into a native XML implementation such as eXiatix, or Tamino® is very
difficult and probably not the right way to go. On the otherdharative XQuery implemen-
tations inside relational engines, such as the Viper enigi#B2 or the XQuery engine
of Oracle, are still in an early stage and do not yet supp@nt-dsfined extensions as they
do for relational queries. Fortunately, a third class of X@usystems translates XQueries
into a sequence of normal SQL queries and execute those @f topelational represen-
tation of XML data. Examples of such systems are Pathfindé®@TRor PPF [Geo07],
both of which recently have been shown to outperform theradperoaches despite the
seeming overhead incurred by translating the XQuery intb.$Qr those systems GRIPP
is a perfect choice for indexing XML documents containingilude or XLink elements,
since they anyway need a relational representation of thé ¥dtument. From this rep-
resentation, the specific model expected by GRIPP captarilyghe topological structure
of the document can easily be extracted and, in a secondistiExed.

Other issues include updating of the index. Here technigaatescribed in [Wei05] may
be used. Finally, for optimal performance a cost-based hfodehoosing when to use

5See http://www.softwareag.com/de/products/tamino/.

GRIPP and when to use a "normal” traversal must be developddrdaegrated into an
XQuery optimizer.

References

[Bar02] D. Barbosa, A. O. Mendelzon, J. Keenleyside, and KLyons. ToXgene: a template-
based data generator for XML. Proc. of the SGMOD conference, page 616, 2002.
ACM.

[Beh06] E. Behrends, O. Fritzen, and W. May. Querying Alorignks in XPath/XQuery: Situa-
tion, Applications, Perspectives. Rroc. of the EDBT Workshop, volume 4254 of_ecture
Notes in Computer Science, pages 662—674, 2006. Springer

[Che05] L. Chen, A. Gupta, and M. E. Kurul. Stack-based Aithons for Pattern Matching on
DAGs. InProc. of the VLDB conference, pages 493-504, 2005. ACM.

[Geo07] H. Georgiadis, V. Vassalos. XPath on Steroids: &kply Relational Engines for XPath
Performance IProc. of the ACM SSGMOD conference, pages 317—-328, 2007. ACM.

[Gru04] T. Grust, M. van Keulen and J. Teubner. AcceleraXfath evaluation in any RDBMS.
ACM Trans. Database Syst., 29:91-131, 2004.

[Orc01] D. Orchard, S. DeRose, and E. Maler. XML Linking Laiage (XLink). Technical report,
W3C, June 2001.

[RitO7] J. Rittinger, J. Teubner, and T. Grust. PathfindeRélational Query Optimizer Explores
XQuery Terrain. BTW, pages 617-620, 2007.

[Sch04] R. Schenkel, A. Theobald, and G. Weikum. HOPI: Andfit Connection Index for
Complex XML Document Collections. IRroc. of the EDBT conference, volume 2992 of
Lecture Notes in Computer Science, pages 237-255, 2004. Springer.

[Tri05] S. Tri3land U. Leser. Querying Ontologies in Redaidl Database Systems.Pnoc. of the
DILSworkshop, volume 3615 of_ecture Notes in Computer Science, pages 63-79, 2005.
Springer.

[Tri07] S. TriBl and U. Leser. Fast and Practical Indexind &uerying of Very Large Graphs. In
Proc. of the ACM SGMOD conference, pages 845-856, 2007. ACM.

[Vei06] D. Veillard, J. Marsh, and D. Orchard. XML InclusisrfXInclude). Technical report,
W3C, Nov 2006.

[Wei05] F. Weigel, K. U. Schulz, and H. Meuss. The BIRD NumbgrScheme for XML and
Tree Databases - Deciding and Reconstructing Tree Retatiging Efficient Arithmetic
Operations. IrProc. of the XSym conference, pages 49—67, 2005.

