
Datenbank-Spektrum manuscript No.
(will be inserted by the editor)

Data Management Challenges in Next Generation Sequencing

Sebastian Wandelt · Astrid Rheinländer · Marc Bux · Lisa Thalheim · Berit
Haldemann · Ulf Leser

Received: date / Accepted: date

Abstract Since the early days of the Human Genome Pro-
ject, data management has been recognized as a key chal-
lenge for modern molecular biology research. By the end
of the nineties, technologies had been established that ad-
equately supported most ongoing projects, typically built
upon relational database management systems. However, re-
cent years have seen a dramatic increase in the amount of
data produced by typical projects in this domain. While it
took more than ten years, approximately three billion USD,
and more than 200 groups worldwide to assemble the first
human genome, today’s sequencing machines produce the
same amount of raw data within a week, at a cost of approx-
imately 2000 USD, and on a single device. Several national
and international projects now deal with (tens of) thousands
of genomes, and trends like personalized medicine call for
efforts to sequence entire populations. In this paper, we high-
light challenges that emerge from this flood of data, such as
parallelization of algorithms, compression of genomic se-
quences, and cloud-based execution of complex scientific
workflows. We also point to a number of further challenges
that lie ahead due to the increasing demand for translational
medicine, i.e., the accelerated transition of biomedical re-
search results into medical practice.

1 Introduction

Modern biological research is driven by high throughput ex-
periments, i.e., techniques which are able to uncover char-
acteristics of thousands of entities in a single experiment.

Department of Computer Science, Humboldt-Universität zu Berlin,
Unter den Linden 6, 10099 Berlin, Germany
Tel.: +49-30-2093-3902
Fax: +49-30-2093-5484
{wandelt,rheinlae,bux,thalheim,haldeman,leser}@
informatik.hu-berlin.de

Examples of such techniques are gene chips, measuring the
expression levels of all human genes in a given sample on
a single silicon chip, or proteomics using mass spectrome-
try, which is able to detect several thousands of proteins in a
sample. High throughput techniques are inevitable to obtain
comprehensive views into the functioning of a cell, a tissue,
an individual, or a disease. On the downside, they typically
come along with high levels of noise which require com-
plex statistical measures to cope with. Furthermore, they
typically produce large amounts of data whose appropriate
management can be a real challenge [44].

The most prominent high throughput technique is (ge-
nomic) sequencing. The goal of sequencing is to unravel
the ordered sequence of nucleic acids that form the DNA
of a given sample; in genomic sequencing, these sample
sequences are entire chromosomes of living beings. A hu-
man chromosome has between 50 and 250 million nucleic
acids. Revealing the sequence of such a long piece of DNA
until today can only be achieved by first breaking it into
many small overlapping pieces (called reads) which can be
sequenced directly by appropriate devices. The fragmenta-
tion of a chromosome into small reads is best understood
as a stochastic process, i.e., reads are essentially sampled at
random from the chromosome. Heavy over-sampling is re-
quired to ensure that the entire chromosome is covered with
sufficient probability. Sequencing projects striving for high
quality typically over-sample by a factor of ten or more. An-
other important factor is the read length, which for many
years used to be between 500 and 900 base pairs. Accord-
ingly, sequencing even the shortest human chromosome typ-
ically requires the generation of app. 800,000 reads, a labo-
rious and time-consuming undertaking as machines until the
end of the 1990s were able to sequence only 40 – 100 reads
in parallel. Obtaining the sequence of the original chromo-
some requires, in a second step, comparing all these reads

Manuscript
Click here to download Manuscript: Main.pdf
Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

2 Sebastian Wandelt, Astrid Rheinländer, Marc Bux, Lisa Thalheim, Berit Haldemann, Ulf Leser

to each other to compute their most probable order (see Fig-
ure 1). This process is called assembly [33].

The feasibility of this complex process was impressively
demonstrated (and developed) in the Human Genome Pro-
ject, in which hundreds of groups and labs worldwide co-
operated to obtain the first entire, approximately three bil-
lion bases long genome of a human being [14]. This project
lasted for roughly 15 years at an estimated cost of three bil-
lion USD. During the time of this project, sequences from
other species, especially model organisms like mouse of fruit
flies, were obtained as well. Furthermore, also molecules
other than DNA were studied to tackle the complexity of
cells, like partial or complete mRNA. Together, these pro-
jects led to an exponential growth of the international se-
quence databases Genbank, EMBL, and DDBJ.

The main operation performed (and still performed to-
day) on these sequences is approximate matching. Accord-
ingly, approximate matching of a given query sequence to
a database of millions of other sequences has been one of
the main challenges in genomic data management for a long
time [2]. This problem attracted many researchers and has
lead to a family of heuristic algorithms typically executed
on large clusters.

Fig. 1: Sequencing a chromosome. First, short parts of the chromo-
some are sampled in a stochastic process, yielding reads. To recover
the original sequence, reads are compared all-against-all to find signif-
icant overlaps that are used to compute the most probable order. With
NGS data, assembly usually is omitted, but reads are directly aligned
against a known reference sequence from the same species.

Matching is particularly challenging during assembly,
because here millions of reads have to be compared to each
other. Such problems could only be tackled by very few
groups in the world as they required hundreds of machines
running in parallel. However, until recently only very few
groups in the world had the need to perform such assem-
blies as only large, international consortia were able to pro-
duce the necessary data in the first place. Storing genomic
sequences and performing simple operations, like the ap-
proximate matching of a single query sequence mentioned
above, was not so much of a problem, as the total amount of
existing data, though growing fast, for a long time did not
exceed a terabyte. Consequently, research in genomic data
management somewhat declined in the early 2000s, as mod-
estly expensive servers were capable of performing most of
the required analysis in acceptable time.

This situation has changed dramatically in the last three
to four years, which brought a new class of sequencing de-
vices producing sequences at an unprecedented scale. These
so called next-generation sequencing (NGS) machines still
follow the same principles outlined above. However, NGS
machines are capable of sequencing millions to even billions
of reads in parallel, leading to the production of several ter-
abytes of raw signal data, corresponding to several hundreds
of gigabytes of sequence data, in one week on a single ma-
chine [10]. Hundreds of such machines already have been
put in production worldwide. Sequencing thus becomes a
commodity which is not only carried out by large consor-
tia any more, but also by single hospitals or research insti-
tutions. The scale has shifted dramatically and at increas-
ing pace: While a few years ago the most ambitious inter-
national sequencing project was the 1000 Genome Project,
aiming at sequencing large parts of the genomes of 1,000
humans around the world, in 2011 the UK10K project an-
nounced to sequence 10,000 individuals. The International
Cancer Genome Consortium (ICGC) recently started to se-
quence 500 individuals twice (one healthy, one disease sam-
ple) for 50 different types of cancer, which yields 50,000
genomes in total [23]. ”Just” sequencing already has lost its
status as research but became a commercial service offered
by dozens of companies around the world at falling prices.

The leaps in sequencing technology have been far greater
than the advances in computing (see Figure 2) [41], which
lead to a series of novel or re-appearing challenges in ge-
nomic data management. In this survey, we focus on three
such challenges.

First, NGS reads are many, but short. Assembling a ge-
nome from NGS reads is highly complex if not impossible.
However, since humans at the DNA level are more than 99%
identical, ”sequencing” an individual today can be under-
taken by generating these short reads and mapping them to
a known human reference genome. This process is called
read alignment or read mapping; in a nutshell, the task is

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Data Management Challenges in Next Generation Sequencing 3

1990 1992 1994 1996 1998 2000 2003 2004 2006 2008 2010 2012
0

1

10

100

1,000

10,000

100,000

1,000,000

0.1

1

10

100

1000

10,000

100,000

1,000,000

10,000,000

100,000,000

Year

D
is

k
 s

to
ra

g
e

 (
M

b
y
te

s
/$

)

D
N

A
 s

e
q

u
e

n
c
in

g
 (b

p
/$

)

Hard disk storage (MB/$)
Doubling time 14 months

Pre-NGS (bp/$)
Doubling time 19 months

-

NGS (bp/$)
Doubling time 5 months

Fig. 2: Development of cost of storing one byte on hard disk versus
cost for sequencing one base pair (bp). Clearly, sequencing becomes
cheaper than storing sequences. Image from [49], BioMed Central.

to map hundreds of millions short strings onto a reference
string of length three billion in the presence of errors. Ef-
ficiently solving this task requires advanced data structures
and highly parallel algorithms which we will present in Sec-
tion 2.

Second, simply storing or transmitting genomes becomes
a challenge when the numbers rise from one (as in the HGP)
to several thousands (as in the ICGC). The net amount of
space necessary to store 1000 human genomes is three ter-
abytes, but storing real sequences requires much more space
due to attached quality information and other meta data. Fur-
thermore, sequences often need to be transferred to special
infrastructures to allow for their analysis (see next point),
which is severely hampered by bandwidth limitations. Ac-
cordingly, sequence compression has become a hot topic
which we briefly review in Section 3.

Third, the type of questions to the genomes have changed.
While for a long time most data analysis was performed on
a single or a few genomes only, recent research areas such
as personalized medicine or translational medicine require
the analysis of hundreds of genomes in a single ”run”, i.e.,
using a complex pipeline of several tools working in serial
or in parallel on those sequences to produce a certain result.
Such pipelines are often modelled as scientific workflows,
and efficiently executing complex scientific workflows on
large data sets has become an area of intense research which
we discuss in Section 4.

2 Read Mapping

A fundamental task in NGS projects is the mapping of se-
quence reads to a known reference genome (so-called “read
alignment”). Aligning sequences to each other is important
in various scenarios, e.g., for finding structural, functional,
or evolutionary relationships between sequences, or to iden-

tify highly conserved regions in a genome [36]. In this sec-
tion, we introduce the problem of read alignment, describe
basic algorithms, and review state-of-the-art tools which can
be executed in a Cloud. We conclude with a discussion of
open challenges.

2.1 Problem definition and base algorithms

The purpose of read mapping algorithms is to report all near-
exact matches for the given reads in a known reference se-
quence. More formally, read mapping algorithms search for
each given read r all 4-tuples (c,s, p,e), where c is the chro-
mosome, s the positive or negative strand, and p the relative
start position of r on c, such that r matches a substring of
c with e errors. In most cases, the number of maximum al-
lowed errors varies between one and ten percent of the read
length. Depending on read type and application, allowed er-
rors are either only mismatches, or insertions and deletions
(indels) of bases as well.

Basic read alignment algorithms which consider only
mismatches ground on Hamming distance computation and
can be found in linear time. Algorithms that allow gaps in
the alignment usually use some form of dynamic program-
ming, and solving them exactly typically requires O(m ∗ n)
operations, where m is the length of the genome and n is the
length of the read being aligned.

Given these estimates and considering the amount of
data which is being produced by NGS devices, the most
challenging aspect is to design algorithms that achieve sub-
linear alignment speed. This is usually achieved by one of
the following two means. First, one string is indexed; in
read mapping, this is the reference. Frequently used index
structures are variants of suffix trees [51] or hashing of q-
grams [1]. Second, the problem is not solved exactly but
only ”sufficiently” good. Here, most algorithms build upon
the “seed-and-extend” paradigm, exploiting the fact that an
alignment which allows at most e mismatches must contain
at least one exact match (”seed”) of a substring of the read
of length

� n
e+1

�
[4]. A softer, faster, yet less accurate formu-

lation is that in the core of every alignment with few errors
there usually is an area where both strings match exactly.

Seed-and-extend algorithms typically first find such ex-
act matches (called seeds) by comparing the read against
the indexed reference. Next, seeds are elongated both to the
left and the right to find full alignments with at most e mis-
matching bases (”extend”). Such methods are particularly
well suited for short NGS reads (i.e., reads shorter than 100
base pairs) as these seldomly contain many errors or large
gaps. For a comprehensive review of these tools see [50,33].

As sequencing technology is evolving, the length of the
NGS reads increases significantly (“long reads”). Compared
to short reads, long reads have a higher chance to be error-
prone. Particularly, insertions or deletions appear in much

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 Sebastian Wandelt, Astrid Rheinländer, Marc Bux, Lisa Thalheim, Berit Haldemann, Ulf Leser

Fig. 3: Data partitioning strategies of Cloud-based read alignment tools: (a) CloudBurst, (b) Crossbow, (c) SeqMapReduce, (d) CloudAligner.

larger numbers than for short reads [32]. Thus, algorithms
for long read alignment should be able to deal with larger
gaps. Existing short read mapping tools are not well-suited
for this tasks since they only run efficiently for ungapped
alignments or when a very small number of gaps is allowed.
Their performance quickly degrades when the read length
increases or when more errors are allowed [32]. BLAST [1]
and BLAT [25] are very popular tools for long read align-
ment that were initially designed for mapping comparatively
few reads produced with the Sanger-Coulson [43] method.
It has been shown that both tools do not scale well to larger
data sets produced by NGS devices [42]. State-of-the-art ap-
proaches for long read alignment use various techniques for
accelerating the alignment process, such as creating memory
efficient genome indexes [16,32,28], multi-threaded execu-
tion [35], and gapped seeds [54].

2.2 Cloud-based solutions

To further scale up read mapping, as a reaction to the ever
increasing degree of parallelism in sequencing technology,
recently also approaches using a cluster of independent ma-
chines (a cloud) gained some popularity. Most of these build
upon the MapReduce [11] programming paradigm for pro-
cessing embarrassingly parallel [17] problems on huge data
sets. The main feature of MapReduce is that it effectively
and robustly manages the parallelization and distribution of
input data and user code on a large number of compute nodes.
Clearly, read alignment is an embarrassingly parallel prob-
lem, since each read can be aligned individually to the refer-
ence without any dependencies on other reads. Thus, Map-
Reduce-based alignment tools have become popular and we
briefly review the most prominent tools:

CloudBurst [46] is a seed-and-extend based tool that per-
forms short read alignment on Amazon EC21 using Hadoop2.

1 http://http://aws.amazon.com/ec2/
2 http://hadoop.apache.org/

The alignment algorithm is modeled after Rmap [47] and
aligns reads allowing mismatches only. In the Map stage,
CloudBurst computes k-mers both for the reads and the ref-
erence sequence. In an intermediate stage, those k-mers oc-
curring both in the reference and in the reads are shuffled and
grouped together. Finally, the alignment is computed for all
matching k-mers in the Reduce stage (see Figure 3 (a)).

Crossbow [29] performs read mapping and SNP call-
ing3. It provides a web interface and scripts for executing
Bowtie [30] on a Cloud platform, such that Bowtie aligns
independent subsets of the read data set to the entire refer-
ence sequence in the Map stage (cf. Fig. 3 (b)). In an in-
termediate stage, all computed alignments are grouped by
chromosomal region and finally, SNP calling is performed
in the Reduce stage.

SeqMapReduce [34] is based on an in-memory seed-
and-extend algorithm, using early filtering and late align-
ment pair emission to accelerate execution time. As dis-
played in Figure 3 (c), SeqMapReduce computes the align-
ments using Map and builds the final result set in the Re-
duce phase by grouping all alignments by read ID. Signif-
icant performance improvements of SeqMapReduce were
reported over CloudBurst, which are attributed to the early
filtering of reads and the avoidance of the massive I/O oper-
ations performed by CloudBurst during the shuffling phase.
Unfortunately, there are currently no executables accessible.

CloudAligner [37] supports the alignment of both short
and long reads. It also uses the seed-and-extend idea but only
uses Mappers for aligning small parts of the read set to the
reference (see Figure 3 (d)), avoiding any costly shuffling or
repartitioning of the data. CloudAligner has been reported
to be significantly faster than other Cloud-based tools while
achieving comparable accuracy.

3 SNP calling attempts to predict which of the disagreements be-
tween reference and query sequences are due to Single Nucleotide
Polymorphisms.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Data Management Challenges in Next Generation Sequencing 5

Fig. 4: An example of compression with standard compression schemes.

2.3 Open challenges

Although much research has already been carried out to in-
crease the performance of read mapping tools, scalability
remains an open challenge. It is still not clear whether state-
of-the-art parallel or distributed read aligners can process
the amount of data produced in large sequencing projects in
a reasonable amount of time (and space).

Finding alignments exhibiting large gaps demands spe-
cial algorithms as usual heuristics typically produce unsat-
isfying accuracy when faced with such data. Such data es-
pecially appears in transcriptome projects sequencing ma-
ture mRNA. The majority of genes in eukaryotic organisms
contain some non-coding stretches of DNA called introns.
The genes’ transcripts undergo a process called splicing,
where these introns are excised (and sometimes also other
parts which we ignore here). Introns can be several hundred
thousand nucleotides long; thus, aligning back a sequenced
mRNA to a genome has to deal with exceptionally large
gaps. Another area where large gaps appear is cancer re-
search, because cancerous cells often exhibit a high level
of genomic instability leading to significant genomic rear-
rangements. Both of these problems are highly active areas
of research.

Another open question is how to integrate quality scores
into read mapping algorithms. All sequencing machines out-
put quality scores along with each base, indicating the prob-
ability of this particular base being correct. Using these qual-
ity scores during read mapping is known to improve map-
ping accuracy [48], but is not possible with current tools for
large-scale read mapping.

With an ever-increasing number of read mapping soft-
ware packages, it is quite a challenge to pick the best one for
a particular sequencing project, and to gauge the quality of
the resulting alignment. This is further complicated by fre-
quent updates to the software packages, which may change
the performance in terms of both running time and align-
ment quality. Although some papers appeared that compared
the performance of different tools, a widely accepted bench-

mark against which read mapping software could be evalu-
ated has yet to emerge [22].

3 Sequence Compression

The growth of genome data makes it more necessary than
ever to carefully think about economical storage and trans-
mission. Storing a single human genome requires three gi-
gabyte of space; accordingly, 50.000 genomes require 150
terabyte. While storing such amounts of data is possible,
transmitting them, for instance to use cloud resources for
their analysis (see next section), is almost impossible. In
fact, large quantities of sequences today are usually shipped
by hard disc before analysing them on large clusters. It is
an ongoing research challenge how to encode/compress bi-
ological sequences in a way such that they can be 1) eco-
nomically stored and transmitted and 2) accessed easily.

3.1 Traditional compression algorithms

Traditional sequence compression schemes can be separated
into three groups. Naive bit manipulation schemes exploit
encodings of two or more symbols into one byte [6,52].
Dictionary-based or substitutional schemes replace long re-
peated substrings by references to a dictionary, which is usu-
ally built at runtime [3,26]. Statistical or entropy encoding
schemes derive a probabilistic model from the input. Based
on partial matches of subsets of the input, this model pre-
dicts the next symbols in the sequence [15]. High compres-
sion rates are possible if the model always indicates high
probabilities for the next symbol, i.e. if the prediction is re-
liable. One example compression for each group is shown
in Figure 4. The compression ratio of these compression
schemes is 3:1 – 6:1.

3.2 Referential compression schemes

Referential compression schemes recently emerged as a new
compression scheme [7,19,27]. The key idea is to encode

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 Sebastian Wandelt, Astrid Rheinländer, Marc Bux, Lisa Thalheim, Berit Haldemann, Ulf Leser

Fig. 5: Compression with a referential algorithm.

an input sequence with respect to an external (set of) refer-
ence sequence(s). The main differences to dictionary-based
algorithms are that reference sequences are usually fixed be-
forehand and reference sequences are not being added to
the compressed file. Properly fixing the reference sequence
is very important, since biological sequences often undergo
several revisions and many different versions are available
online. Given that the reference sequence is evolutionary
close and available to the decompressor, referential com-
pression schemes allow for compression rates of 400:1 or
higher.

One example for a referentially compressed sequence is
shown in Figure 5. There exist two matching subsequences
with respect to the reference. The interval match (7,4) in-
dicates that the current input matches the reference for four
symbols starting at position seven. In addition, the short se-
quence TA is stored in a raw manner, since there exists no
good match in the reference sequence for TA.

Existing referential compression schemes differ in vari-
ous ways. One issue is encoding of the compressed blocks;
here, especially Golomb or Fibonacci codes are used fre-
quently [20,8]. Efficiently finding long matches in the cho-
sen reference sequence is another challenge. It can be ad-
dressed by indexing the reference (see Section 3.1), but due
to the size of these index structures, they often do not fit
into main memory. Therefore, the access time is restricted
by the hard disk. One solution is to conduct a local search
in the neighbourhood of previous matches. This strategy has
a biological foundation: Often two parts of a genome might
only be different by few bases (base insertion, base removal,
or base mutation). Whenever finding an appropriate match

Fig. 6: Time required for referential compression of a human genome
split into blocks of different size.

in the neighbourhood, one can avoid consulting the index
structure, although it might yield longer matches and there-
fore better compression. Another solution is to split up the
input and reference into blocks of fixed size and handle each
of these blocks separately. Besides having lower main mem-
ory requirements, this strategy also allows for parallelization
of compressor and decompressor implementations.

In Figure 6, compression time for different block sizes
and seven compression threads is shown using an algorithm
we are currently working on (manuscript in preparation). At
a block size of 2 megabyte, which yields a main memory
usage of 50 megabyte in total, the compression of a human
genome takes 250 seconds on an off-the-shelf laptop (Intel
core i7 3610m). Using a block size of 256 megabyte, which
needs roughly 6 gigabyte of main memory, the compression
needs only 31 seconds. If we load the index structures into
main memory beforehand, then compression can be further
speed up to only 7 seconds for compressing an entire human
genome.

3.3 Open challenges

The main challenges for sequence compression are scalabil-
ity and compression rates. Regarding scalability, the ques-
tion is still open how an optimal compression can be ob-
tained in short time. An optimal referential compression is
the one with the least space requirements, which requires
to solve complex optimization problems in order to balance
length of referential matches and length of raw sequences in
between. To the best of our knowledge, no solution to this
problem is known, nor is it known how close current meth-
ods come to this (theoretical) optimum. In any case, com-
pression rate must be balanced with compression speed.

Another open challenge occurs as long as not a single,
but a set S of thousands of sequences should be stored in
compressed form. The higher the compression rates (and
speed), the more similar reference and to-be-compressed se-
quences are. The question now is to find the one sequence s
from S which is most similar to all other sequences, making
s the best candidate to be used as reference. Heuristics for
finding a good reference sequence can be based on k-mer
hashing. High similarity of k-mers indicate high potential
for compression with respect to the reference. However, at
genome scale, k should be chosen higher than 15, in order to
avoid too many random matches.

Another open problem is read compression. While ge-
nome compression typically only considers the sequence it-
self, read compression also must take quality scores into ac-
count (see Section 2.3). The compression rate of reads is
dominated by the compression of these quality scores, since
these scores have a higher entropy than the base symbols.
Future research will have to investigate how quality scores
are actually used in practice and which resolution of scores

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Data Management Challenges in Next Generation Sequencing 7

is necessary. Lossy compression schemes are likely to play
a key role.

Finally, a largely unexplored question is how to ana-
lyze compressed sequences directly, instead of decompress-
ing them before any usage. If 1000 genomes should be com-
pared together, little is gained by compressing them if they
all need to be decompressed again before analysis. There-
fore, there is a need for string search algorithms that can
efficiently make use of the existing index structure of a ref-
erence sequence and referentially compressed files.

Scientific workflows have gained increased interest dur-
ing the last years in computational biology (see next sec-
tion). The integration of referential compression and string
search into these workflows is one further open challenge.

4 Managing Analysis Pipelines

NGS technology promises biologists and clinicians insights
into masses of individual genomes at reasonable speed and
affordable cost. Due to the diversity of research questions
emerging from this potential, hundreds of analysis methods
have been proposed and are employed in practice. In this
section, we discuss some typical research questions and how
analysis pipelines are used to solve them. We also outline the
programming paradigm of scientific workflows, which has
been established as a common way of modeling these anal-
ysis pipelines, and discuss the problem of executing them in
parallel on large clusters to tackle BIG data sets.

4.1 Analysis pipelines

The output generated by high-throughput sequencing ma-
chines is usually available in FASTQ format. FASTQ files
comprise sets of DNA reads, each with their respective iden-
tifier, base sequence and quality scores for each base call.
Quality scores are mostly utilized to assess and filter low
quality reads prior to further analysis.

Reconstructing the underlying genome from the remain-
ing short reads constitutes the first major step of most NGS
analysis pipelines. How this genome reassembly is being
approached largely depends on whether a well-studied and
closely related genome is available as reference. If a refer-
ence genome is present, reads can be mapped onto this refer-
ence (see Section 2). Otherwise, reads have to be assembled
(see Figure 1). Both techniques – an assembly more so than
an alignment – are prone to error and computationally de-
manding. A plethora of tools has been developed for both
approaches, yet no standards have been established. Since
all of these proposed applications produce different results,
a common practice to increase alignment quality involves
running several alignment applications in parallel and merg-
ing the resulting alignments in a final step.

Further steps in the analysis pipeline mostly depend on
the research question at hand. Subsequent to reference align-
ment, detection of variants is a common goal. A variant de-
notes a base that is different between the reference and the
newly sequenced read, hinting towards a mutation with po-
tential consequences for the organism. Besides these single
nucleotide variants (SNVs), smaller indels4 or larger struc-
tural variants are also important. Identified variants undergo
quality assessment, filtering and characterization of func-
tionality and/or specificity. This aggregated information can,
for instance, be utilized to determine associations between
a disease and mutations [31]. See Figure 7 for an abstract
workflow consisting of reference alignment, variant calling,
and disease-gene association.

Other common research questions include the discovery
of differential expressions or splice variants in transcriptome
sequences (RNA-seq), the determination of bindings of pro-
teins to DNA to elucidate regulatory relationships between
genes and transcription factors, or the study of evolutionary
relationships between species or individuals. All these prob-
lems boil down to a series of computationally demanding
base algorithms operating on sequences or derived informa-
tion.

4.2 Parallelizing scientific workflows

Managing these often complex, intertwined and long pipe-
lines of algorithms is a challenge that led to the develop-
ment of scientific workflow management systems [12]. Sci-
entific workflows are high-level compositions of sequential
and concurrent data processing tasks, whose topology is de-
fined by data interdependencies. They differ from business
workflows mostly in the absence of any control structures;
instead, only the data dependencies determine the order in
which tasks may be executed. Most scientific workflow man-
agement systems provide advanced capabilities for design-
ing, executing, and monitoring workflows. Galaxy [18] and
Taverna [39] are two examples with a strong affinity for the
field of bioinformatics. See Figure 8 for a typical Galaxy
workflow in next-generation sequencing.

Due to ever-increasing amounts of data, the computa-
tional effort required to execute a given scientific workflow
is more and more becoming a critical issue, leading to an
increased interest of the community in approaches towards
parallelization and distributed execution of scientific work-
flows. One can differentiate three types of parallelism in sci-
entific workflows: task parallelism, pipelining and data par-
allelism. Task parallelism is achieved when different tasks
on parallel branches of the workflow are distributed over
several independent compute nodes. Pipelining denotes a
form of parallelism in which sequential data processing tasks

4 insertions and deletions

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 Sebastian Wandelt, Astrid Rheinländer, Marc Bux, Lisa Thalheim, Berit Haldemann, Ulf Leser

Fig. 7: An abstract workflow consisting of reference alignment, variant calling, and disease-gene association.

are executed simultaneously on different fragments of input
data, i.e., the data flows through the workflow similar to oil
in a pipeline. In data parallelism, input data is split in ad-
vance and the entire workflow (or parts thereof) is replicated
for each data fragment. Both pipelining and data parallelism
require the scientific workflow to be embarrassingly parallel
[17].

In next-generation sequencing, the most time-consuming
steps of the analysis pipelines are assembly, read alignment,
and variant calling. For the most part, these problems are
embarrassingly parallel and qualify for data parallel exe-
cution. It would therefore be desirable to execute analysis
pipelines in a highly scalable, data parallel and distributed
compute environment. While most scientific workflow man-
agement systems, like Taverna, provide pipelining function-
ality by default, they usually assume a monolithic environ-
ment and cannot take advantage of data or task parallelism.
Systems stemming from cluster or grid schedulers, like Pe-
gasus [13], are capable of detecting and exploiting task par-
allelism, but often do not support pipelining or data paral-
lelism. Finally, current dataflow engines like PACT/Nephele
[5,53] or PIG/HADOOP [40,55] concentrate on exploiting
data parallelism, but are restricted in the patterns of paral-
lelism that can be exploited (i.e., they usually map all pipe-
lines into series of map / reduce tasks). A system that would
be capable of using all three types of parallelism and does
not hamper the topology of analysis pipelines still does not
exist.

4.3 Open challenges

The proliferation of cloud computing technology has made
highly scalable compute resources readily available and af-
fordable for the end user. The usage of (public) cloud re-
sources for execution of scientific workflows has therefore
become a major topic of interest in recent years [21,24].

However, using a cloud of (usually virtual) machines effi-
ciently for scientific workflows raises several questions that
are still mostly unexplored.

First, the question of how to get input (and output) data
to (and from) the cloud constitutes a severe challenge when
trying to use clouds for BIG data analysis. One solution for
NGS data could be compression (see Section 3); another so-
lution is that cloud providers offer pre-configured images
containing important sequence data like reference genomes.
For instance, users of EC2 can mount the entire Genbank
database from any image. Clearly, the latter option does not
help if novel sequences are to be analyzed. Thus, the seam-
less integration of compression / decompression algorithms
into scientific workflows is an important yet open issue.

Second, the problem of efficiently mapping workflow
tasks onto heterogeneous distributed compute nodes – such
as virtual machines in a cloud – is still not solved satisfac-
torily. Different types of parallelism may be exploited. As
NGS data is huge, data transfer times must be taken into
account when considering which tasks to execute on which
machines. Ideally, a workflow scheduler would be able to
continuously adjust the execution of a given workflow to a
dynamic environment, in which bandwidth, availability of
memory, and speed of assigned nodes change with high fre-
quency, as this is exactly the situation in most public cloud
environments [56]. On top, an ideal scheduler would also
be able to use the elasticity offered by public clouds. Effec-
tively utilizing elasticity in distributed workflow execution
is a challenge that is not addressed adequately by any of the
current systems.

5 Conclusion

NGS has dramatically increased the amount of data that must
be handled by current genome projects. This trend has lead
to a number of challenges that need to be addressed by the

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Data Management Challenges in Next Generation Sequencing 9

Fig. 8: A generic Galaxy workflow for performing a metagenomic analysis on NGS data. A metagenome analysis compares the genomes of species
in one environment to the genomes of species in another environment to find environment-specific genes.

research community, some of which we highlighted in this
paper. Note that the situation soon will become even worse
(or even more challenging): First, the scope of sequencing
projects will grow and grow due to the falling prices of se-
quencing. Second, it is expected that within the next two or
three years a third generation of sequencing machines will
become available [45]. Several development routes are fol-
lowed; they all have in common that the speed of sequencing
and the length of reads will increase drastically. The ”100
dollar genome” most likely is only a few years away.

There are also further challenges we did not discuss in
this review. For instance, meta data management for thou-
sands of genomes must be carefully designed, to not loose
important data associated to a genome. Another issue is the
integration of large genomic data sets with other types of
information, like function or interaction of genes. A partic-
ularly hard problem is that of data privacy. Genomic data
is highly personal and sensitive. What’s more, anonymiza-
tion or pseudonymization of sequencing data is not simply a
matter of dissociating the donor’s name from the data, since
the data itself can potentially identify the donor. In a re-
search context, probands of genomic studies may want to
be assured that they retain some form of control over this
sensitive personal data. In a clinical context, genomic data
may be regarded as personal health information, making its
protection imperative and even mandated by law [38]. This
severely limits the use of publicly accessible cloud-based
read mapping services and also puts commercial services
to sequencing into question. Possible solutions include the
establishment of non-public ”walled” cloud-based solutions
with strict and reliable access control, or the development
of cloud-based read mapping that does not require transmis-
sion of the actual read sequence to the public cloud [9].

Acknowledgements Astrid Rheinländer is funded by the Deutsche
Forschungsgemeinschaft through the Stratosphere project. Marc Bux
is funded by the Deutsche Forschungsgemeinschaft through the SOA-

MED research unit. Berit Haldemann is funded by the Bundesminis-
terium f. Bildung und Forschung through the project Prositu.

References

1. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman.
Basic local alignment search tool. Journal of Molecular Biology,
215(3):403–410, 1990.

2. S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang,
W. Miller, and D. J. Lipman. Gapped blast and psi-blast: a new
generation of protein database search programs. Nucleic Acids
Res, 25(17):3389–3402, 1997.

3. D. Antoniou, E. Theodoridis, and A. Tsakalidis. Compressing bi-
ological sequences using self adjusting data structures. In Infor-
mation Technology and Applications in Biomedicine, 2010.

4. R. A. Baeza-Yates and C. H. Perleberg. Fast and practical ap-
proximate string matching. In Proceedings of the Third Annual
Symposium on Combinatorial Pattern Matching, CPM ’92, pages
185–192, London, UK, UK, 1992. Springer-Verlag.

5. D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. Warneke.
Nephele / PACTs : A Programming Model and Execution Frame-
work for Web-Scale Analytical Processing Categories and Subject
Descriptors. Proceedings of the 1st ACM symposium on Cloud
computing, 2010.

6. R. K. Bharti, A. Verma, and R. Singh. A biological sequence com-
pression based on cross chromosomal similarities using variable
length lut. International Journal of Biometrics and Bioinformat-
ics, 4:217–223, 2011.

7. M. C. Brandon, D. C. Wallace, and P. Baldi. Data structures and
compression algorithms for genomic sequence data. Bioinformat-
ics, 25(14):1731–1738, July 2009.

8. X. Chen, S. Kwong, and M. Li. A compression algorithm for
DNA sequences. Engineering in Medicine and Biology Magazine,
IEEE, 20(4):61–66, 2001.

9. Y. Chen, B. Peng, X. Wang, and H. Tang. Large-scale privacy-
preserving mapping of human genomic sequences on hybrid
clouds. In Proceeding of the 19th Network & Distributed System
Security Symposium, 2012.

10. G. T. Chiang, P. Clapham, G. Qi, K. Sale, and G. Coates. Im-
plementing a genomic data management system using irods in
the wellcome trust sanger institute. BMC Bioinformatics, 12:361,
2011.

11. J. Dean and S. Ghemawat. MapReduce: simplified data processing
on large clusters. Communications of the ACM, 51(1):107, 2008.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 Sebastian Wandelt, Astrid Rheinländer, Marc Bux, Lisa Thalheim, Berit Haldemann, Ulf Leser

12. E. Deelman, D. Gannon, M. Shields, and I. Taylor. Workflows
and e-Science: An overview of workflow system features and ca-
pabilities. Future Generation Computer Systems, 25(5):528–540,
2009.

13. E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. Berriman, J. Good, and Others. Pegasus:
A framework for mapping complex scientific workflows onto dis-
tributed systems. Scientific Programming, 13(3):219–237, 2005.

14. C. Dennis and R. Gallagher, editors. The Human Genome. Pal-
grave Macmillan, 2002.

15. M. Duc Cao, T. I. Dix, L. Allison, and C. Mears. A simple sta-
tistical algorithm for biological sequence compression. In Pro-
ceedings of the 2007 Data Compression Conference, pages 43–52,
Washington, DC, USA, 2007. IEEE Computer Society.

16. P. Ferragina and G. Manzini. Opportunistic data structures with
applications. In Proc. Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 390–398, Los Alamitos, CA,
USA, 2000. IEEE Computer Society.

17. I. Foster. Designing and Building Parallel Programs: Concepts
and Tools for Parallel Software Engineering. Parallel program-
ming / scientific computing. Addison-Wesley, 1995.

18. J. Goecks, A. Nekrutenko, J. Taylor, and T. Team. Galaxy: a com-
prehensive approach for supporting accessible, reproducible, and
transparent computational research in the life sciences. Genome
Biology, 11(8):R86, 2010.

19. S. Grabowski and S. Deorowicz. Engineering relative compres-
sion of genomes. CoRR, abs/1103.2351, 2011.

20. S. Grumbach and F. Tahi. A new challenge for compression algo-
rithms: genetic sequences. Inf. Process. Manage., 30(6):875–886,
Oct. 1994.

21. C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, and
J. Good. On the Use of Cloud Computing for Scientific Work-
flows. In Proceedings of the 2008 Fourth IEEE International Con-
ference on eScience, pages 640–645, 2008.

22. M. Holtgrewe, A.-K. Emde, D. Weese, and K. Reinert. A novel
and well-defined benchmarking method for second generation
read mapping. BMC Bioinformatics, 12:210, 2011.

23. T. J. Hudson, W. Anderson, A. Artez, A. D. Barker, C. Bell,
R. R. Bernabe, M. K. Bhan, F. Calvo, I. Eerola, D. S. Gerhard,
et al. International network of cancer genome projects. Nature,
464(7291):993–998, 2010.

24. G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. P.
Berman, and P. Maechling. Data Sharing Options for Scientific
Workflows on Amazon EC2. 2010 ACM/IEEE International Con-
ference for High Performance Computing, Networking, Storage
and Analysis, pages 1–9, 2010.

25. W. J. Kent. BLAT – the BLAST-like alignment tool. Genome
Research, 12(4):656–664, 2002.

26. S. Kuruppu, B. Beresford-Smith, T. Conway, and J. Zobel. It-
erative dictionary construction for compression of large dna data
sets. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 9(1):137–
149, Jan. 2012.

27. S. Kuruppu, S. J. Puglisi, and J. Zobel. Relative lempel-ziv com-
pression of genomes for large-scale storage and retrieval. In Pro-
ceedings of the 17th international conference on String processing
and information retrieval, SPIRE’10, pages 201–206, Berlin, Hei-
delberg, 2010. Springer-Verlag.

28. B. Langmead and S. L. Salzberg. Fast gapped-read alignment with
bowtie 2. Nat Meth, 9(4):357–359, Apr. 2012.

29. B. Langmead, M. Schatz, J. Lin, M. Pop, and S. Salzberg. Search-
ing for snps with cloud computing. Genome Biol, 10(11):R134,
2009.

30. B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast
and memory-efficient alignment of short dna sequences to the hu-
man genome. Genome Biology, 10(3):R25, 2009.

31. B. Li and S. M. Leal. Methods for Detecting Associations with
Rare Variants for Common Diseases: Application to Analysis

of Sequence Data. The American Journal of Human Genetics,
83(3):311–321, Sept. 2008.

32. H. Li and R. Durbin. Fast and accurate long-read alignment
with Burrows–Wheeler transform. Bioinformatics, 26(5):589–
595, 2010.

33. H. Li and N. Homer. A survey of sequence alignment algorithms
for next-generation sequencing. Brief Bioinform, 11(5):473–483,
2010.

34. Y. Li and S. Zhong. Seqmapreduce: software and web service for
accelerating sequence mapping. In Proceedings of the 9th Inter-
national Conference for the Critical Assessment of Massive Data
Anaysis, CAMDA 2009, 2009.

35. Y. Liu and B. Schmidt. Long read alignment based on maximal ex-
act match seeds. Bioinformatics, ECCB 2012 special issue, 2012.

36. D. W. Mount. Bioinformatics: sequence and genome analysis.
CSHL Press, 2004.

37. T. Nguyen, W. Shi, and D. Ruden. CloudAligner: A fast and full-
featured MapReduce based tool for sequence mapping. BMC Re-
search Notes, 4(1):171+, 2011.

38. U. D. of Health and H. Services. Ocr privacy brief: Summary of
the hipaa privacy rule. HIPAA Compliance Assistance, 2003.

39. T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Green-
wood, T. Carver, K. Glover, M. R. Pocock, A. Wipat, and P. Li.
Taverna: a tool for the composition and enactment of bioinformat-
ics workflows. Bioinformatics, 20(17):3045–54, 2004.

40. C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins.
Pig latin: a not-so-foreign language for data processing. In Pro-
ceedings of the 2008 ACM SIGMOD international conference on
Management of data, pages 1099–1110. ACM, 2008.

41. E. Pennisi. Will computers crash genomics? Science,
331(6018):666–668, 2011.

42. E. Rivals, L. Salmela, P. Kiiskinen, P. Kalsi, and J. Tarhio. mp-
scan: fast localisation of multiple reads in genomes. In Proc. 9th
International Workshop on Algorithms in Bioinformatics (WABI),
volume 5724 of Lecture Notes in Computer Science, pages 246–
260. Springer, 2009.

43. F. Sanger, S. Nicklen, and A. R. Coulson. Dna sequenc-
ing with chain-terminating inhibitors. Proceedings of the Na-
tional Academy of Sciences of the United States of America,
74(12):5463–5467, 1977.

44. E. E. Schadt, M. D. Linderman, J. Sorenson, L. Lee, and G. P.
Nolan. Computational solutions to large-scale data management
and analysis. Nat Rev Genet, 11(9):647–657, 2010.

45. E. E. Schadt, S. Turner, and A. Kasarskis. A window into third-
generation sequencing. Human molecular genetics, 19(R2):R227–
R240, Oct. 2010.

46. M. C. Schatz. Cloudburst. Bioinformatics, 25(11):1363–1369,
June 2009.

47. A. D. Smith, W.-Y. Chung, E. Hodges, J. Kendall, G. Hannon,
J. Hicks, Z. Xuan, and M. Q. Zhang. Updates to the RMAP short-
read mapping software. Bioinformatics, 25(21):2841–2842, Nov.
2009.

48. A. D. Smith, Z. Xuan, and M. Q. Zhang. Using quality scores and
longer reads improves accuracy of solexa read mapping. BMC
Bioinformatics, 9, 2008.

49. L. D. Stein. The case for cloud computing in genome informatics.
Genome Biol, 11(5):207, 2010.

50. C. Trapnell and S. L. Salzberg. How to map billions of short reads
onto genomes. Nature biotechnology, 27(5):455–457, 2009.

51. N. Välimäki, W. Gerlach, K. Dixit, and V. Mäkinen. Compressed
suffix tree—a basis for genome-scale sequence analysis. Bioinfor-
matics, 23(5):629–630, Feb. 2007.

52. G. Vey. Differential direct coding: a compression algorithm for
nucleotide sequence data. The Journal of Biological Database
and Curation, 2009, 2009.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Data Management Challenges in Next Generation Sequencing 11

53. D. Warneke and O. Kao. Nephele : Efficient Parallel Data Process-
ing in the Cloud Categories and Subject Descriptors. Proceedings
of the 2nd Workshop on Many-Task Computing on Grids and Su-
percomputers, 2009.

54. D. Weese, A. Emde, T. Rausch, A. Döring, and K. Reinert. RazerS
– fast read mapping with sensitivity control. Genome Research,
19(9):1646–1654, 2009.

55. T. White. Hadoop: The definitive guide. Yahoo Press, 2010.
56. M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Sto-

ica. Improving MapReduce Performance in Heterogeneous Envi-
ronments. In Proceedings of the 8th USENIX conference on Op-
erating systems design and implementation, pages 29–42, 2008.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

