Einführung in die Theoretische Informatik

Johannes Köbler

Institut für Informatik Humboldt-Universität zu Berlin

WS 2016/17

Inhalt der Vorlesung

Themen dieser VL:

- Welche Rechenmodelle sind adäquat?
- Welche Probleme sind lösbar?
- Welcher Aufwand ist nötig?

Automatentheorie Berechenbarkeitstheorie Komplexitätstheorie

Themen der VL Algorithmen und Datenstrukturen:

 Wie lassen sich praktisch relevante Problemstellungen möglichst effizient lösen?

Algorithmik

Themen der VL Logik in der Informatik:

Mathem. Grundlagen der Informatik, Beweise führen, Modellierung
 Aussagenlogik, Prädikatenlogik

- Rechenmaschinen spielen in der Informatik eine zentrale Rolle
- Es gibt viele unterschiedliche math. Modelle für Rechenmaschinen
- Diese können sich in ihrer Berechnungskraft unterscheiden
- Die Turingmaschine (TM) ist ein universales Berechnungsmodell, da sie alle anderen bekannten Rechenmodelle simulieren kann
- Wir betrachten zunächst Einschränkungen des TM-Modells, die vielfältige praktische Anwendungen haben, wie z.B.
 - endliche Automaten (DFA, NFA)
 - Kellerautomaten (PDA, DPDA) etc.

Der Algorithmenbegriff

- Der Begriff Algorithmus geht auf den persischen Gelehrten Muhammed Al Chwarizmi (8./9. Jhd.) zurück
- Ältester bekannter nicht-trivialer Algorithmus:
 Euklidischer Algorithmus zur Berechnung des größten gemeinsamen
 Teilers zweier natürlicher Zahlen (300 v. Chr.)
- Von einem Algorithmus wird erwartet, dass er bei jeder zulässigen Problemeingabe nach endlich vielen Rechenschritten eine korrekte Ausgabe liefert
- Die (maximale) Anzahl der Rechenschritte bei allen möglichen Eingaben ist nicht beschränkt, d.h. mit wachsender Eingabelänge kann auch die Rechenzeit beliebig anwachsen
- Die Beschreibung eines Algorithmus muss jedoch endlich sein
- Problemeingaben können Zahlen, Formeln, Graphen etc. sein
- ullet Diese werden über einem Eingabealphabet Σ kodiert

Definition

• Ein Alphabet ist eine geordnete endliche Menge

$$\Sigma = \{a_1, \ldots, a_m\}, \ m \ge 1$$

von Zeichen ai

- Eine Folge $x = x_1 \dots x_n \in \Sigma^n$ von Zeichen heißt Wort
- Die Länge von $x = x_1 ... x_n \in \Sigma^n$ ist n und wird mit |x| bezeichnet
- ullet Die Menge aller Wörter über Σ ist

$$\sum^* = \bigcup_{n>0} \sum^n$$

- Das (einzige) Wort der Länge n=0 ist das leere Wort, welches wir mit ε bezeichnen, d.h. $\Sigma^0 = \{\varepsilon\}$
- Jede Teilmenge $L \subseteq \Sigma^*$ heißt Sprache über dem Alphabet Σ

Beispiel

- Sprachen über Σ sind beispielsweise $\varnothing, \Sigma^*, \Sigma$ und $\{\varepsilon\}$
- Ø enthält keine Wörter und heißt leere Sprache
- ullet Σ^* enthält dagegen alle Wörter über Σ
- ullet Enthält alle Wörter über Σ der Länge 1
- $\bullet \ \{\varepsilon\}$ enthält nur das leere Wort, ist also einelementig
- Sprachen, die genau ein Wort enthalten, werden auch als Singletonsprachen bezeichnet

- Da Sprachen Mengen sind, können wir sie bzgl. Inklusion vergleichen
- Zum Beispiel gilt $\varnothing \subseteq \{\varepsilon\} \subseteq \Sigma^*$
- Wir können Sprachen auch vereinigen, schneiden und komplementieren
- ullet Seien A und B Sprachen über Σ . Dann ist
 - $A \cap B = \{x \in \Sigma^* \mid x \in A \land x \in B\}$ der Schnitt von A und B,
 - $A \cup B = \{x \in \Sigma^* \mid x \in A \lor x \in B\}$ die Vereinigung von A und B, und
 - $\overline{A} = \{x \in \Sigma^* \mid x \notin A\}$ das Komplement von A

Konkatenation von Wörtern

Definition

Seien $x = x_1 \dots x_n$ und $y = y_1 \dots y_m$ Wörter. Dann wird das Wort $x \circ y = x_1 \dots x_n y_1 \dots y_m$

als Konkatenation von x und y bezeichnet. Für $x \circ y$ schreiben wir auch einfach xy.

Beispiel

- Für x = aba und y = abab erhalten wir xy = abaabab und yx = abababa
- Die Konkatenation ist also nicht kommutativ
 Allerdings ist o assoziativ, d.h. es gilt x(yz) = (xy)z
- Daher können wir hierfür auch einfach xyz schreiben
- Es gibt auch ein neutrales Element, da xε = εx = x ist
 Eine algebraische Struktur (M, □, e) mit einer assoziativen Operation
 - $\Box: M \times M \to M$ und einem neutralen Element e heißt Monoid
- $(\Sigma^*, \circ, \varepsilon)$ ist also ein Monoid

Spezielle Sprachoperationen

Neben den Mengenoperationen Schnitt, Vereinigung und Komplement gibt es auch spezielle Sprachoperationen

Definition

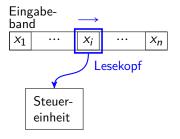
- Das Produkt (Verkettung, Konkatenation) der Sprachen A und B ist $AB = \{xy \mid x \in A, y \in B\}$
- Ist $A = \{x\}$ eine Singletonsprache, so schreiben wir für $\{x\}B$ auch einfach xB
- Die *n*-fache Potenz *A*ⁿ einer Sprache *A* ist induktiv definiert durch

$$A^{n} = \begin{cases} \{\varepsilon\}, & n = 0, \\ A^{n-1}A, & n > 0 \end{cases}$$

- Die Sternhülle von A ist $A^* = \bigcup_{n>0} A^n$
- Die Plushülle von A ist $A^+ = \bigcup_{n>1} A^n = AA^*$

Algorithmische Erkennung von Sprachen

 Ein einfaches Rechenmodell zum Erkennen von Sprachen ist der endliche Automat:



- Ein endlicher Automat
 - nimmt zu jedem Zeitpunkt genau einen von endlich vielen Zuständen an
 - macht bei Eingaben der Länge n genau n Rechenschritte und
 - liest in jedem Schritt genau ein Eingabezeichen

Formale Definition eines endlichen Automaten

Definition

- Ein endlicher Automat (kurz: DFA; *Deterministic Finite Automaton*) wird durch ein 5-Tupel $M = (Z, \Sigma, \delta, q_0, E)$ beschrieben, wobei
 - $Z \neq \emptyset$ eine endliche Menge von Zuständen
 - Σ das Eingabealphabet,
 - $\delta: Z \times \Sigma \rightarrow Z$ die Überführungsfunktion
 - $q_0 \in Z$ der Startzustand und
 - $E \subseteq Z$ die Menge der Endzustände ist
- Die von M akzeptierte oder erkannte Sprache ist

$$L(M) = \begin{cases} x_1 \dots x_n \in \Sigma^* \middle| & \text{es gibt } q_1, \dots, q_{n-1} \in Z, q_n \in E \text{ mit } \\ \delta(q_i, x_{i+1}) = q_{i+1} \text{ für } i = 0, \dots, n-1 \end{cases}$$

- Eine Zustandsfolge q_0, q_1, \ldots, q_n heißt Rechnung von $M(x_1, \ldots, x_n)$, falls $\delta(q_i, x_{i+1}) = q_{i+1}$ für $i = 0, \ldots, n-1$ gilt
- Sie heißt akzeptierend, falls $q_n \in E$ ist, und andernfalls verwerfend

Die Klasse der regulären Sprachen

Frage

Welche Sprachen lassen sich durch endliche Automaten erkennen und welche nicht?

Definition

Eine von einem DFA akzeptierte Sprache wird als regulär bezeichnet. Die zugehörige Sprachklasse ist

 $REG = \{L(M) \mid M \text{ ist ein DFA}\}\$

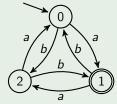
DFAs beherrschen Modulare Arithmetik

Beispiel

Sei $M_3 = (Z, \Sigma, \delta, 0, E)$ ein DFA mit $Z = \{0, 1, 2\}$, $\Sigma = \{a, b\}$, $E = \{1\}$ und der Überführungsfunktion

0	U	Т	2	
а	1	2	0	
b	2	2 0	1	

Graphische Darstellung:



Endzustände werden durch einen doppelten Kreis und der Startzustand wird durch einen Pfeil gekennzeichnet

Frage: Welche Wörter akzeptiert M_3 ?

- $w_1 = aba$? Ja (akzeptierende Rechnung: 0, 1, 0, 1)
- $w_2 = abba$? Nein (verwerfende Rechnung: 0, 1, 0, 2, 0)

Behauptung

Die von M_3 erkannte Sprache ist

$$L(M_3) = \{x \in \{a, b\}^* \mid \#_a(x) - \#_b(x) \equiv_3 1\}, \text{ wobei}$$

- $\#_a(x)$ die Anzahl der Vorkommen von a in x bezeichnet und
- $i \equiv_m j$ (in Worten: i ist kongruent zu j modulo m) bedeutet, dass i j durch m teilbar ist

Beweis der Behauptung durch Induktion über die Länge von x

Wir betrachten zunächst das Erreichbarkeitsproblem für DFAs

Das Erreichbarkeitsproblem für DFAs

Frage

Sei $M = (Z, \Sigma, \delta, q_0, E)$ ein DFA und sei $x = x_1 \dots x_n \in \Sigma^*$. Welchen Zustand erreicht M bei Eingabe x nach i Schritten?

Antwort

- nach 0 Schritten: q₀
- nach 1 Schritt: $\delta(q_0, x_1)$
- nach 2 Schritten: $\delta(\delta(q_0, x_1), x_2)$
- nach *i* Schritten: $\delta(\dots \delta(\delta(q_0, x_1), x_2), \dots x_i)$

Das Erreichbarkeitsproblem für DFAs

Definition

- Bezeichne $\hat{\delta}(q,x)$ denjenigen Zustand, in dem sich M nach Lesen von x befindet, wenn M im Zustand q gestartet wird
- Dann können wir die Funktion

$$\hat{\delta}: Z \times \Sigma^* \to Z$$

induktiv über die Länge von x wie folgt definieren

• Für $q \in Z$, $x \in \Sigma^*$ und $a \in \Sigma$ sei

$$\hat{\delta}(q,\varepsilon) = q,$$

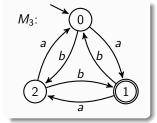
 $\hat{\delta}(q,xa) = \delta(\hat{\delta}(q,x),a)$

Die von M erkannte Sprache lässt sich nun auch in der Form

$$L(M) = \{x \in \Sigma^* \mid \hat{\delta}(q_0, x) \in E\}$$

schreiben

DFAs beherrschen Modulare Arithmetik



Behauptung

$$L(M_3) = \{x \in \{a, b\}^* \mid \#_a(x) - \#_b(x) \equiv_3 1\}$$

Beweis

- 1 ist der einzige Endzustand von M
- Daher ist $L(M_3) = \{x \in \Sigma^* \mid \hat{\delta}(0, x) = 1\}$
- Obige Behauptung ist also äquivalent zu

$$\hat{\delta}(0,x) = 1 \Leftrightarrow \#_a(x) - \#_b(x) \equiv_3 1$$

• Folglich reicht es, für alle $x \in \Sigma^*$ folgende Kongruenz zu zeigen:

$$\hat{\delta}(0,x) \equiv_3 \#_a(x) - \#_b(x)$$

Induktionsbehauptung: Für alle $x \in \Sigma^n$ gilt $\hat{\delta}(0,x) \equiv_3 \#_a(x) - \#_b(x)$.

Induktionsanfang n = 0: klar, da $\hat{\delta}(0, \varepsilon) = \#_a(\varepsilon) = \#_b(\varepsilon) = 0$ ist.

Induktionsschritt $n \rightsquigarrow n+1$: Sei $x = x_1 \dots x_{n+1}$ gegeben.

Nach IV gilt

$$\hat{\delta}(0, x_1 \dots x_n) \equiv_3 \#_{\mathsf{a}}(x_1 \dots x_n) - \#_{\mathsf{b}}(x_1 \dots x_n)$$

Zudem gilt

$$\delta(i, x_{n+1}) \equiv_3 \begin{cases} i+1, & x_{n+1} = a \\ i-1, & x_{n+1} = b \end{cases} = i + \#_a(x_{n+1}) - \#_b(x_{n+1})$$

Somit folgt

$$\hat{\delta}(0,x) = \delta(\hat{\delta}(0,x_1...x_n),x_{n+1})
\equiv_3 \hat{\delta}(0,x_1...x_n) + \#_a(x_{n+1}) - \#_b(x_{n+1})
\equiv_3 \#_a(x_1...x_n) - \#_b(x_1...x_n) + \#_a(x_{n+1}) - \#_b(x_{n+1})
\equiv_3 \#_a(x) - \#_b(x)$$

Singletons sind regulär

Vereinbarung

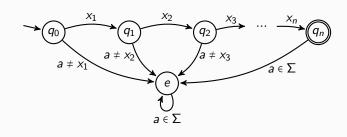
Für das Folgende sei $\Sigma = \{a_1, \dots, a_m\}$ ein fest gewähltes Alphabet.

Beobachtung 1

Alle Sprachen, die nur ein Wort $x = x_1 \dots x_n \in \Sigma^*$ enthalten, sind regulär.

Beweis

Folgender DFA M erkennt die Sprache $L(M) = \{x\}$:



REG ist unter Komplement abgeschlossen

Beobachtung 2

Ist $L \in \mathsf{REG}$, so ist auch die Sprache $\overline{L} = \Sigma^* \setminus L$ regulär.

Beweis

- Sei $M = (Z, \Sigma, \delta, q_0, E)$ ein DFA mit L(M) = L.
- Dann wird das Komplement \overline{L} von L von dem DFA $\overline{M} = (Z, \Sigma, \delta, q_0, Z \setminus E)$ akzeptiert.

Definition

Für eine Sprachklasse $\mathcal C$ bezeichne $co\text{-}\mathcal C$ die Klasse $\{\bar L\mid L\in\mathcal C\}$ aller Komplemente von Sprachen in $\mathcal C$.

Korollar

co-REG = REG.

REG ist unter Schnitt abgeschlossen

Beobachtung 3

Sind $L_1, L_2 \in REG$, so ist auch die Sprache $L_1 \cap L_2$ regulär.

Beweis

- Seien $M_i = (Z_i, \Sigma, \delta_i, q_i, E_i)$, i = 1, 2, DFAs mit $L(M_i) = L_i$.
- Dann wird der Schnitt $L_1 \cap L_2$ von dem DFA

$$M = (Z_1 \times Z_2, \Sigma, \delta, (q_1, q_2), E_1 \times E_2)$$

mit

$$\delta((p,q),a) = (\delta_1(p,a),\delta_2(q,a))$$

erkannt.

• *M* wird auch als Kreuzproduktautomat bezeichnet.

REG ist unter Vereinigung abgeschlossen

Beobachtung 4

Die Vereinigung $L_1 \cup L_2$ von regulären Sprachen L_1 und L_2 ist regulär.

Beweis

Es gilt $L_1 \cup L_2 = (\overline{L_1} \cap \overline{L_2})$.

Frage

Wie sieht der zugehörige DFA aus?

Antwort

$$M' = (Z_1 \times Z_2, \Sigma, \delta, (q_1, q_2), (E_1 \times Z_2) \cup (Z_1 \times E_2)).$$

Abschlusseigenschaften von Sprachklassen

Definition

- Ein (k-stelliger) Sprachoperator ist eine Abbildung op, die k Sprachen L_1, \ldots, L_k auf eine Sprache $op(L_1, \ldots, L_k)$ abbildet.
- Eine Sprachklasse K heißt unter op abgeschlossen, wenn gilt:

$$L_1, \ldots, L_k \in \mathcal{K} \Rightarrow op(L_1, \ldots, L_k) \in \mathcal{K}.$$

• Der Abschluss von \mathcal{K} unter op ist die (bzgl. Inklusion) kleinste Sprachklasse \mathcal{K}' , die \mathcal{K} enthält und unter op abgeschlossen ist.

Beispiel

- Der 2-stellige Schnittoperator \cap bildet L_1 und L_2 auf $L_1 \cap L_2$ ab.
- Der Abschluss der Singletonsprachen unter ∩ besteht aus allen Singletonsprachen und der leeren Sprache.
- Der Abschluss der Singletonsprachen unter ∪ besteht aus allen nichtleeren endlichen Sprachen.

REG ist unter Mengenoperationen abgeschlossen

Korollar

Die Klasse REG der regulären Sprachen ist unter folgenden Operationen abgeschlossen:

- Komplement,
- Schnitt,
- Vereinigung.

Folgerung

- Aus den Beobachtungen folgt, dass alle endlichen und alle co-endlichen Sprachen regulär sind.
- Da die reguläre Sprache

$$L(M_3) = \{x \in \{a,b\}^* \mid \#_a(x) - \#_b(x) \equiv_3 1\}$$

weder endlich noch co-endlich ist, haben wir damit allerdings noch nicht alle regulären Sprachen erfasst.

Wie umfangreich ist REG?

Nächstes Ziel

Zeige, dass REG unter Produktbildung und Sternhülle abgeschlossen ist.

Problem

Bei der Konstruktion eines DFA für das Produkt L_1L_2 bereitet es Schwierigkeiten, den richtigen Zeitpunkt für das Ende der Simulation von M_1 und den Start der Simulation von M_2 zu finden.

Lösungsidee

Ein nichtdeterministischer Automat (NFA) kann den richtigen Zeitpunkt "raten".

Verbleibendes Problem

Zeige, dass auch NFAs nur reguläre Sprachen erkennen.

Nichtdeterministische endliche Automaten

Definition

• Ein nichtdet. endl. Automat (kurz: NFA; Nondet. Finite Automaton)

$$N = (Z, \Sigma, \Delta, Q_0, E)$$

ist genau so aufgebaut wie ein DFA, nur dass er

- eine Menge $Q_0 \subseteq Z$ von Startzuständen hat und
- die Überführungsfunktion folgende Form hat

$$\Delta: Z \times \Sigma \to \mathcal{P}(Z)$$

Hierbei bezeichnet $\mathcal{P}(Z)$ die Potenzmenge (also die Menge aller Teilmengen) von Z; diese wird oft auch mit 2^Z bezeichnet

• Die von einem NFA N akzeptierte oder erkannte Sprache ist

$$L(N) = \begin{cases} x_1 \dots x_n \in \Sigma^* & \text{es gibt } q_0 \in Q_0, q_1, \dots, q_{n-1} \in Z, q_n \in E \\ \text{mit } q_{i+1} \in \Delta(q_i, x_{i+1}) \text{ für } i = 0, \dots, n-1 \end{cases}$$

• Eine Zustandsfolge q_0, \ldots, q_n heißt Rechnung von $N(x_1 \ldots x_n)$, falls $q_0 \in Q_0$ und $q_{i+1} \in \Delta(q_i, x_{i+1})$ für $i = 0, \ldots, n-1$ gilt

- Ein NFA *N* kann bei einer Eingabe *x* also nicht nur eine, sondern mehrere verschiedene Rechnungen parallel ausführen.
- \bullet Ein Wort x gehört genau dann zu L(N), wenn N(x) mindestens eine akzeptierende Rechnung hat.
- Im Gegensatz zu einem DFA, der jede Eingabe zu Ende liest, kann ein NFA N "stecken bleiben".
- Dieser Fall tritt ein, wenn N in einen Zustand q gelangt, in dem er das nächste Eingabezeichen x_i wegen

$$\Delta(q,x_i) = \emptyset$$

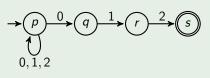
nicht verarbeiten kann.

Beispiel

• Betrachte den NFA $N = (Z, \Sigma, \Delta, Q_0, E)$ mit $Z = \{p, q, r, s\}$, $\Sigma = \{0, 1, 2\}$, $Q_0 = \{p\}$, $E = \{s\}$ und der Überführungsfunktion

Δ	р	q	r	s
0	$\{p,q\}$	Ø	Ø	Ø
1	{p}	{ <i>r</i> }	Ø	Ø
2	{ <i>p</i> }	Ø	{s}	Ø

Graphische Darstellung:



- $w_1 = 0.12 \in L(N)$? Ja (akzeptierende Rechnung: p, q, r, s) Es gibt aber auch verwerfende Rechnungen bei Eingabe w_1 : p, p, p, p
- $w_2 = 021 \in L(N)$? Nein, da es keine akzeptierenden Rechnungen gibt
- Es gilt $L(N) = \{x012 \mid x \in \Sigma^*\}$

Beobachtung 5

Seien $N_i = (Z_i, \Sigma, \Delta_i, Q_i, E_i)$ NFAs mit $L(N_i) = L_i$ für i = 1, 2. Dann wird auch das Produkt L_1L_2 von einem NFA erkannt.

Beweis

- Wir können $Z_1 \cap Z_2 = \emptyset$ annehmen.
- Dann gilt $L(N) = L_1L_2$ für den NFA $N = (Z_1 \cup Z_2, \Sigma, \Delta, Q_1, E)$ mit

$$\Delta(p,a) = \begin{cases} \Delta_1(p,a), & p \in Z_1 \setminus E_1, \\ \Delta_1(p,a) \cup \bigcup_{q \in Q_2} \Delta_2(q,a), & p \in E_1, \\ \Delta_2(p,a), & p \in Z_2 \end{cases}$$

und

$$E = \begin{cases} E_2, & Q_2 \cap E_2 = \emptyset, \\ E_1 \cup E_2, & \text{sonst.} \end{cases}$$

• Dann gilt $L(N) = L_1L_2$ für den NFA $N = (Z_1 \cup Z_2, \Sigma, \Delta, Q_1, E)$ mit

$$\Delta(p,a) = \begin{cases} \Delta_1(p,a), & p \in Z_1 \setminus E_1, \\ \Delta_1(p,a) \cup \bigcup_{q \in Q_2} \Delta_2(q,a), & p \in E_1, \\ \Delta_2(p,a), & p \in Z_2 \end{cases}$$

und $E = E_2$, falls $Q_2 \cap E_2 = \emptyset$, bzw. $E = E_1 \cup E_2$ sonst.

Beweis von $L_1L_2 \subseteq L(N)$:

Seien $x = x_1 \cdots x_k \in L_1, y = y_1 \cdots y_l \in L_2$ und seien q_0, \dots, q_k und p_0, \dots, p_l akzeptierende Rechnungen von $N_1(x)$ und $N_2(y)$.

Dann ist $q_0, \ldots, q_k, p_1, \ldots, p_l$ eine akz. Rechnung von N(xy), da

- $q_0 \in Q_1$ und $p_l \in E_2$ ist, und
- im Fall $l \ge 1$ wegen $q_k \in E_1$, $p_0 \in Q_2$ und $p_1 \in \Delta_2(p_0, y_1)$ zudem $p_1 \in \Delta(q_k, y_1)$ und
- im Fall I = 0 wegen $q_k \in E_1$ und $p_I \in Q_2 \cap E_2$ zudem $q_k \in E$ ist.

• Dann gilt $L(N) = L_1L_2$ für den NFA $N = (Z_1 \cup Z_2, \Sigma, \Delta, Q_1, E)$ mit

$$\Delta(p,a) = \begin{cases} \Delta_1(p,a), & p \in Z_1 \setminus E_1, \\ \Delta_1(p,a) \cup \bigcup_{q \in Q_2} \Delta_2(q,a), & p \in E_1, \\ \Delta_2(p,a), & p \in Z_2 \end{cases}$$

und $E = E_2$, falls $Q_2 \cap E_2 = \emptyset$, bzw. $E = E_1 \cup E_2$ sonst.

Beweis von $L(N) \subseteq L_1L_2$:

Sei $x = x_1 \cdots x_n \in L(N)$ und sei q_0, \dots, q_n eine akz. Rechnung von N(x).

Dann gilt $q_0 \in Q_1$, $q_n \in E$, $q_0, \ldots, q_i \in Z_1$ und $q_{i+1}, \ldots, q_n \in Z_2$ für ein i.

Wir zeigen, dass q_0, \ldots, q_i eine akz. Rechnung von $N_1(x_1 \cdots x_i)$ und q, q_{i+1}, \ldots, q_n für ein $q \in Q_2$ eine akz. Rechnung von $N_2(x_{i+1} \cdots x_n)$ ist:

- Im Fall i < n impliziert der Übergang $q_{i+1} \in \Delta(q_i, x_{i+1})$, dass $q_i \in E_1$ und $q_{i+1} \in \Delta_2(q, x_{i+1})$ für ein $q \in Q_2$ ist
- Im Fall i = n ist $q_n \in E_1$ (d.h. $x \in L_1$) und $Q_2 \cap E_2 \neq \emptyset$ (d.h. $\varepsilon \in L_2$)

Beobachtung 6

Ist $N = (Z, \Sigma, \Delta, Q_0, E)$ ein NFA, so wird auch die Sprache $L(N)^*$ von einem NFA erkannt.

Beweis

Die Sprache $L(N)^*$ wird von dem NFA

$$N' = (Z \cup \{q_{neu}\}, \Sigma, \Delta', Q_0 \cup \{q_{neu}\}, E \cup \{q_{neu}\})$$

mit

$$\Delta'(p,a) = \begin{cases} \Delta(p,a), & p \in Z \setminus E, \\ \Delta(p,a) \cup \bigcup_{q \in Q_0} \Delta(q,a), & p \in E, \\ \varnothing, & p = q_{neu} \end{cases}$$

erkannt.

Überblick

Ziel

Zeige, dass REG unter Produktbildung und Sternhülle abgeschlossen ist.

Problem

Bei der Konstruktion eines DFA für das Produkt L_1L_2 bereitet es Schwierigkeiten, den richtigen Zeitpunkt für den Übergang von (der Simulation von) M_1 zu M_2 zu finden.

Lösungsidee (bereits umgesetzt)

Ein nichtdeterministischer Automat (NFA) kann den richtigen Zeitpunkt für den Übergang "raten".

Noch zu zeigen

NFAs erkennen genau die regulären Sprachen.

NFAs erkennen genau die regulären Sprachen

Satz (Rabin und Scott)

REG = $\{L(N) \mid N \text{ ist ein NFA}\}.$

Beweis von REG $\subseteq \{L(N) \mid N \text{ ist ein NFA}\}$

Diese Inklusion ist klar, da jeder DFA $M=(Z,\Sigma,\delta,q_0,E)$ leicht in einen äquivalenten NFA

$$N = (Z, \Sigma, \Delta, Q_0, E)$$

transformiert werden kann, indem wir $\Delta(q,a)$ = $\{\delta(q,a)\}$ und Q_0 = $\{q_0\}$ setzen.

Für die umgekehrte Inklusion ist das Erreichbarkeitsproblem für NFAs von zentraler Bedeutung.

Das Erreichbarkeitsproblem für NFAs

Frage

Sei $N = (Z, \Sigma, \Delta, Q_0, E)$ ein NFA und sei $x = x_1 \dots x_n$ eine Eingabe. Welche Zustände sind in i Schritten erreichbar?

Antwort

- ullet in 0 Schritten: alle Zustände in Q_0
- in einem Schritt: alle Zustände in

$$Q_1 = \bigcup_{q \in Q_0} \Delta(q, x_1)$$

• in i Schritten: alle Zustände in

$$Q_i = \bigcup_{q \in Q_{i-1}} \Delta(q, x_i)$$

Idee

- Wir können einen NFA $N=(Z,\Sigma,\Delta,Q_0,E)$ durch einen DFA $M=(Z',\Sigma,\delta,q_0',E')$ simulieren, der in seinem Zustand die Information speichert, in welchen Zuständen sich N momentan befinden könnte.
- Die Zustände von M sind also Teilmengen Q von Z (d.h. $Z' = \mathcal{P}(Z)$) mit Q_0 als Startzustand (d.h. $q_0' = Q_0$) und der Endzustandsmenge $E' = \{Q \subseteq Z \mid Q \cap E \neq \emptyset\}.$
- Die Überführungsfunktion $\delta: \mathcal{P}(Z) \times \Sigma \to \mathcal{P}(Z)$ von M berechnet dann für einen Zustand $Q \subseteq Z$ und ein Zeichen $a \in \Sigma$ die Menge

$$\delta(Q,a) = \bigcup_{q \in Q} \Delta(q,a)$$

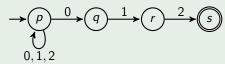
aller Zustände, in die N gelangen kann, wenn N ausgehend von einem beliebigen Zustand $q \in Q$ das Zeichen a liest.

M wird auch als der zu N gehörige Potenzmengenautomat bezeichnet.

Simulation von NFAs durch DFAs

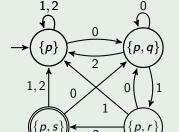
Beispiel

Betrachte den NFA N



• Ausgehend von $Q_0 = \{p\}$ liefert δ dann die folgenden Werte:

δ	0	1	2
{ <i>p</i> }	$\{p,q\}$	{ <i>p</i> }	{ <i>p</i> }
$\{p,q\}$	$\{p,q\}$	$\{p,r\}$	{ <i>p</i> }
$\{p,r\}$	$\{p,q\}$	{ <i>p</i> }	$\{p,s\}$
$\{p,s\}$	$\{p,q\}$	{ <i>p</i> }	{ <i>p</i> }



Bemerkung

• Im obigen Beispiel werden für die Konstruktion des Potenzmengenautomaten nur 4 der insgesamt

$$\|\mathcal{P}(Z)\| = 2^{\|Z\|} = 2^4 = 16$$

Zustände benötigt, da die übrigen 12 Zustände nicht erreichbar sind.

• Es gibt jedoch Beispiele, bei denen alle $2^{\|Z\|}$ Zustände benötigt werden (siehe Übungen).

NFAs erkennen genau die regulären Sprachen

Beweis von $\{L(N) \mid N \text{ ist ein NFA}\} \subseteq REG$

- Sei $N = (Z, \Sigma, \Delta, Q_0, E)$ ein NFA und sei $M = (\mathcal{P}(Z), \Sigma, \delta, Q_0, E')$ der zugehörige Potenzmengenautomat mit $\delta(Q, a) = \bigcup_{q \in Q} \Delta(q, a)$ und $E' = \{Q \subseteq Z \mid Q \cap E \neq \emptyset\}.$
- Dann folgt die Korrektheit von *M* leicht mittels folgender Behauptung, die wir auf der nächsten Folie beweisen.

Behauptung

 $\hat{\delta}(Q_0,x)$ enthält genau die von N nach Lesen von x erreichbaren Zustände.

• Für alle Wörter $x \in \Sigma^*$ gilt

$$x \in L(N) \Leftrightarrow N$$
 kann nach Lesen von x einen Endzustand erreichen $\hat{\delta}(Q_0,x) \cap E \neq \emptyset$ $\Leftrightarrow \hat{\delta}(Q_0,x) \in E'$

 $\Leftrightarrow x \in L(M).$

Behauptung

 $\hat{\delta}(\mathit{Q}_{0},x)$ enthält genau die von N nach Lesen von x erreichbaren Zustände.

Beweis durch Induktion über die Länge n von x

$$n=0$$
: klar, da $\hat{\delta}(Q_0,\varepsilon)=Q_0$ ist.

 $n \rightarrow n+1$: Sei $x = x_1 \dots x_{n+1}$ gegeben. Nach IV enthält

$$Q_n = \hat{\delta}(Q_0, x_1 \dots x_n)$$

die Zustände, die N nach Lesen von $x_1 \dots x_n$ erreichen kann. Wegen

$$\hat{\delta}(Q_0,x) = \delta(Q_n,x_{n+1}) = \bigcup_{q \in Q_n} \Delta(q,x_{n+1})$$

enthält dann aber $\hat{\delta}(Q_0, x)$ die Zustände, die N nach Lesen von x erreichen kann.

Abschlusseigenschaften der Klasse REG

Korollar

Die Klasse REG der regulären Sprachen ist unter folgenden Operationen abgeschlossen:

- Komplement,
- Schnitt,
- Vereinigung,
- Produkt,
- Sternhülle.

Nächstes Ziel

Zeige, dass REG als Abschluss der endl. Sprachen unter Vereinigung, Produkt und Sternhülle charakterisierbar ist.

Bereits gezeigt:

Jede Sprache, die mittels der Operationen Vereinigung, Produkt und Sternhülle (sowie Schnitt und Komplement) angewandt auf endliche Sprachen darstellbar ist, ist regulär.

Noch zu zeigen:

Jede reguläre Sprache lässt sich aus endlichen Sprachen mittels Vereinigung, Produkt und Sternhülle erzeugen.

Konstruktive Charakterisierung von REG

Induktive Definition der Menge RA_Σ aller regulären Ausdrücke über Σ

Die Symbole \emptyset , ϵ und a ($a \in \Sigma$) sind reguläre Ausdrücke über Σ , die

- die leere Sprache $L(\emptyset) = \emptyset$,
 - die Sprache $L(\epsilon) = \{ \epsilon \}$ und
 - für jedes $a \in \Sigma$ die Sprache $L(a) = \{a\}$ beschreiben.

Sind α und β reguläre Ausdrücke über Σ , die die Sprachen $L(\alpha)$ und $L(\beta)$ beschreiben, so sind auch $\alpha\beta$, $(\alpha|\beta)$ und $(\alpha)^*$ reguläre Ausdrücke über Σ , die folgende Sprachen beschreiben:

- $L(\alpha\beta) = L(\alpha)L(\beta)$,
- $L((\alpha|\beta)) = L(\alpha) \cup L(\beta)$,
- $L((\alpha)^*) = L(\alpha)^*$.

Bemerkung

 RA_{Σ} ist eine Sprache über dem Alphabet $\Gamma = \Sigma \cup \{\emptyset, \epsilon, |, *, (,)\}.$

Beispiel

Die regulären Ausdrücke $(\epsilon)^*$, $(\varnothing)^*$, $(0|1)^*00$ und $(0|(\epsilon 0|\varnothing(1)^*))$ beschreiben folgende Sprachen:

Vereinbarungen

- Um Klammern zu sparen, definieren wir folgende Präzedenzordnung:
 Der Sternoperator * bindet stärker als der Produktoperator und dieser wiederum stärker als der Vereinigungsoperator.
- Für $(0|(\epsilon 0|\varnothing(1)^*))$ können wir also kurz $0|\epsilon 0|\varnothing 1^*$ schreiben.
- Da der reguläre Ausdruck $\gamma\gamma^*$ die Sprache $L(\gamma)^+$ beschreibt, verwenden wir γ^+ als Abkürzung für den Ausdruck $\gamma\gamma^*$.

П

Charakterisierung von REG durch reguläre Ausdrücke

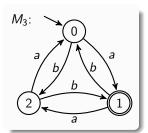
Satz

 $\{L(\gamma) \mid \gamma \text{ ist ein regulärer Ausdruck über } \Sigma\} \subseteq \mathsf{REG}.$

Beweis.

Klar, da

- die Basisausdrücke \emptyset , ϵ und a, $a \in \Sigma^*$, reguläre Sprachen beschreiben und
- die Sprachklasse REG unter Produkt, Vereinigung und Sternhülle abgeschlossen ist.



Frage

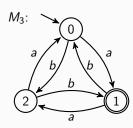
Wie lässt sich die Sprache

$$L(M_3) = \{x \in \{a, b\}^* \mid \#_a(x) - \#_b(x) \equiv_3 1\}$$
 durch einen regulären Ausdruck beschreiben?

Antwort

- Sei $L_{p,q}$ die Sprache aller Wörter x, die M_3 vom Zustand p in den Zustand q überführen (d.h. $L_{p,q} = \{x \in \{a,b\}^* \mid \hat{\delta}(p,x) = q\}$).
- Weiter sei $L_{p,q}^{\neq r}$ die Sprache aller Wörter $x=x_1\cdots x_n\in L_{p,q}$, die hierzu nur Zustände ungleich r benutzen (d.h. $\hat{\delta}(p,x_1\cdots x_i)\neq r$ für $i=1,\ldots,n-1$).
- Dann gilt $L(M_3) = L_{0,1} = L_{0,0}L_{0,1}^{\neq 0}$ und $L_{0,0} = (L_{0,0}^{\neq 0})^*$, also $L(M_3) = (L_{0,0}^{\neq 0})^*L_{0,1}^{\neq 0}$.

Antwort (Fortsetzung)



- Dann gilt $L(M_3) = (L_{0,0}^{\neq 0})^* L_{0,1}^{\neq 0}$.
- $L_{0,1}^{\neq 0}$ und $L_{0,0}^{\neq 0}$ lassen sich durch folgende reguläre Ausdrücke beschreiben:

$$\gamma_{0,1}^{\neq 0} = (a|bb)(ab)^*,$$

$$\gamma_{0,0}^{\neq 0} = a(ab)^*(aa|b) | b(ba)^*(a|bb) | \epsilon.$$

• Also ist $L(M_3)$ durch folgenden regulären Ausdruck beschreibbar:

$$\gamma_{0,1} = (a(ab)^*(aa|b) | b(ba)^*(a|bb))^*(a|bb)(ab)^*.$$

Satz

 $REG \subseteq \{L(\gamma) \mid \gamma \text{ ist ein regulärer Ausdruck}\}.$

Beweis

- Wir konstruieren zu einem DFA $M = (Z, \Sigma, \delta, q_0, E)$ einen regulären Ausdruck γ mit $L(\gamma) = L(M)$.
- Wir nehmen an, dass $Z = \{1, ..., m\}$ und $q_0 = 1$ ist.
- Dann lässt sich L(M) als Vereinigung

$$L(M) = \bigcup_{q \in E} L_{1,q}$$

von Sprachen der Form $L_{p,q} = \{x \in \Sigma^* \mid \hat{\delta}(p,x) = q\}$ darstellen.

• Es reicht also, reguläre Ausdrücke für die Sprachen $L_{p,q}$ mit $1 \le p, q \le m$ anzugeben.

Satz

REG $\subseteq \{L(\gamma) \mid \gamma \text{ ist ein regulärer Ausdruck}\}.$

Beweis (Fortsetzung)

- Es reicht also, reguläre Ausdrücke für die Sprachen $L_{p,q}$ mit $1 \le p, q \le m$ anzugeben.
- Hierzu betrachten wir für r = 0, ..., m die Sprachen

$$L_{p,q}^{\leq r} = \left\{ x_1 \dots x_n \in L_{p,q} \middle| \text{für } i = 1, \dots, n-1 \text{ ist } \hat{\delta}(p, x_1 \dots x_i) \leq r \right\},$$

- die wir auch einfach mit $L_{p,q}^r$ bezeichnen.
- Wegen $L_{p,q} = L_{p,q}^m$ reicht es, reguläre Ausdrücke für die Sprachen $L_{p,q}^r$ mit $1 \le p, q \le m$ und $0 \le r \le m$ anzugeben.
- Wir zeigen induktiv über r, dass die Sprachen $L_{p,q}^r$ durch reguläre Ausdrücke beschreibbar sind.

Satz

REG $\subseteq \{L(\gamma) \mid \gamma \text{ ist ein regulärer Ausdruck}\}.$

Beweis (Schluss)

r = 0: In diesem Fall sind die Sprachen

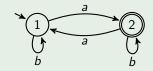
$$L^0_{p,q} = \begin{cases} \{a \in \Sigma \mid \delta(p,a) = q\}, & p \neq q, \\ \{a \in \Sigma \mid \delta(p,a) = q\} \cup \{\varepsilon\}, & \text{sonst} \end{cases}$$
 endlich, also durch reg. Ausdrücke $\gamma^0_{p,q}$ beschreibbar.

 $r \sim r + 1$: Nach IV existieren reguläre Ausdrücke $\gamma_{p,q}^r$ für die Sprachen $L_{p,q}^r$. Wegen

$$L_{p,q}^{r+1} = L_{p,q}^{r} \cup L_{p,r+1}^{r} (L_{r+1,r+1}^{r})^{*} L_{r+1,q}^{r}$$
 sind dann $\gamma_{p,q}^{r+1} = \gamma_{p,q}^{r} | \gamma_{p,r+1}^{r} (\gamma_{r+1,r+1}^{r})^{*} \gamma_{r+1,q}^{r}$ reguläre Ausdrücke für die Sprachen $L_{p,q}^{r+1}$.

Beispiel

Betrachte den DFA M



 \bullet Da M insgesamt m=2 Zustände und nur den Endzustand 2 besitzt, ist

$$L(M) = \bigcup_{q \in E} L_{1,q} = L_{1,2} = L_{1,2}^2.$$

Beispiel (Fortsetzung)

• Um reguläre Ausdrücke $\gamma_{p,q}^r$ für die Sprachen $L_{p,q}^r$ zu bestimmen, benutzen wir für r > 0 die Rekursionsformel

$$\gamma_{p,q}^{r+1} = \gamma_{p,q}^{r} \big| \gamma_{p,r+1}^{r} \big(\gamma_{r+1,r+1}^{r} \big)^* \gamma_{r+1,q}^{r}.$$

• Damit erhalten wir

$$\begin{split} &\gamma_{1,2}^2 = \gamma_{1,2}^1 | \gamma_{1,2}^1 (\gamma_{2,2}^1)^* \gamma_{2,2}^1, \\ &\gamma_{1,2}^1 = \gamma_{1,2}^0 | \gamma_{1,1}^0 (\gamma_{1,1}^0)^* \gamma_{1,2}^0, \\ &\gamma_{2,2}^1 = \gamma_{2,2}^0 | \gamma_{2,1}^0 (\gamma_{1,1}^0)^* \gamma_{1,2}^0. \end{split}$$

• Es genügt also, die regulären Ausdrücke $\gamma_{1,1}^0$, $\gamma_{1,2}^0$, $\gamma_{2,1}^0$, $\gamma_{2,2}^0$, $\gamma_{1,2}^1$, $\gamma_{2,2}^1$ und $\gamma_{1,2}^2$ zu berechnen.

Beispiel (Fortsetzung)

Rekursionsformeln

$$L_{p,p}^{0} = \{ a \mid \delta(p, a) = p \} \cup \{ \varepsilon \}$$

$$L_{p,q}^{0} = \{ a \mid \delta(p, a) = q \} \text{ für } p \neq q$$

$$\gamma_{p,q}^{r+1} = \gamma_{p,q}^{r} | \gamma_{p,r+1}^{r} (\gamma_{r+1,r+1}^{r})^{*} \gamma_{r+1,q}^{r}$$

		р), q	
ı	1,1	1,2	2, 1	2,2
0	$\gamma_{1,1}^0$	$\gamma_{1,2}^0$	$\gamma_{2,1}^0$	$\gamma_{2,2}^0$
1	-	$\gamma^1_{1,2}$	-	$\gamma^1_{2,2}$
2	-	$\gamma_{1,2}^2$	-	-

Beispiel (Fortsetzung)

Rekursionsformel

 $L_{1,1}^0 = \{a \in \Sigma \mid \delta(1,a) = 1\} \cup \{\varepsilon\} = \{\varepsilon,b\}$

$$\Rightarrow \gamma_{1,1}^0 = \epsilon |b|$$

		р), q	
, -	1, 1	1,2	2,1	2,2
0	ϵb	$\gamma_{1,2}^0$	$\gamma_{2,1}^0$	$\gamma_{2,2}^0$
1	-	$\gamma_{1,2}^{1}$	-	$\gamma_{2,2}^1$
2	-	$\gamma_{1,2}^2$	-	-

Beispiel (Fortsetzung)

$$L_{1,2}^{0} = \{ a \in \Sigma \mid \delta(1, a) = 2 \} = \{ a \}$$

$$\Rightarrow \gamma_{1,2}^{0} = a$$

		p, q							
2	ı	1,1	1,2	2,1	2,2				
2	0	ϵb	а	$\gamma_{2,1}^0$	$\gamma_{2,2}^0$				
2	1	-	$\gamma^1_{1,2}$	-	$\gamma^1_{2,2}$				
z - $\gamma_{\overline{1},2}$	2	-	$\gamma_{1,2}^2$	-	-				

Beispiel (Fortsetzung)

$$L_{2,1}^0 = \{ a \in \Sigma \mid \delta(2, a) = 1 \} = \{ a \}$$
 $\Rightarrow \quad \gamma_{2,1}^0 = a$

	p, q								
<u>'</u>	1, 1	1,2	2,1	2,2					
0	ϵb	а	а	$\gamma_{2,2}^0$					
1	-	$\gamma^1_{1,2}$	-	$\begin{array}{c} \gamma_{2,2}^0 \\ \gamma_{2,2}^1 \end{array}$					
2	-	$\gamma_{1,2}^2$	-	-					

Beispiel (Fortsetzung)

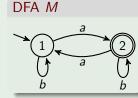
Rekursionsformel

$$\Rightarrow \gamma_{2,2}^0 = \epsilon |b|$$

 $L_{2,2}^{0} = \{ a \in \Sigma \mid \delta(2,a) = 2 \} \cup \{ \varepsilon \} = \{ \varepsilon, b \}$

	p, q								
	1, 1	1,2	2,1	2,2					
0	ϵb	а	а	ϵb					
1	-	$\gamma^1_{1,2}$	-	$\gamma^1_{2,2}$					
2	-	$\gamma_{1,2}^2$	-	-					

Beispiel (Fortsetzung)



Rekursionsformel

$$\gamma_{1,2}^{1} = \gamma_{1,2}^{0} | \gamma_{1,1}^{0} (\gamma_{1,1}^{0})^{*} \gamma_{1,2}^{0}$$

$$= a | (\epsilon | b) (\epsilon | b)^{*} a$$

$$\equiv b^{*} a$$

r	p,q								
'	1,1	1,2	2,1	2,2					
0	ϵb	а	а	ϵb					
1	-	b* a	-	$\gamma^1_{2,2}$					
2	-	$\gamma_{1,2}^2$	-	-					

Beispiel (Fortsetzung)

$$\gamma_{2,2}^{1} = \gamma_{2,2}^{0} | \gamma_{2,1}^{0} (\gamma_{1,1}^{0})^{*} \gamma_{1,2}^{0}$$
$$= (\epsilon | b) | a(\epsilon | b)^{*} a$$
$$\equiv \epsilon | b | ab^{*} a$$

	p, q								
	1,1	1,2	2, 1	2,2					
0	ϵb	а	а	ϵb					
1	-	b* a	-	$\epsilon b ab^* a$					
2	-	$\gamma_{1,2}^2$	-	-					

Beispiel (Fortsetzung)

Rekursionsformel
$$\gamma_{1,2}^2 = \gamma_{1,2}^1 | \gamma_{1,2}^1 (\gamma_{2,2}^1)^* \gamma_{2,2}^1$$

$$\equiv b^* a (b|ab^*a)^*$$

 $=b^*a|b^*a(\epsilon|b|ab^*a)^*(\epsilon|b|ab^*a)$

		p,q	,	
	1, 1	1,2	2,1	2,2
0	ϵb	а	а	ϵb
1	-	b* a	-	$\epsilon b ab^*a$
2	-	$b^*a(b ab^*a)^*$	-	-

Charakterisierungen der Klasse REG

Korollar

Sei L eine Sprache. Dann sind folgende Aussagen äquivalent:

- L ist regulär (d.h. es gibt einen DFA M mit L = L(M)),
- es gibt einen NFA N mit L = L(N),
- es gibt einen regulären Ausdruck γ mit $L = L(\gamma)$,
- L lässt sich mit den Operationen Vereinigung, Produkt und Sternhülle aus endlichen Sprachen gewinnen,
- L lässt sich mit den Operationen Vereinigung, Schnitt, Komplement, Produkt und Sternhülle aus endlichen Sprachen gewinnen.

Ausblick

- Als nächstes wenden wir uns der Frage zu, wie sich die Anzahl der Zustände eines DFA minimieren lässt.
- Da hierbei Äquivalenzrelationen eine wichtige Rolle spielen, befassen wir uns zunächst mit Relationalstrukturen.

Definition

- Sei A eine nichtleere Menge, R ist eine k-stellige Relation auf A, wenn $R \subseteq A^k = \underbrace{A \times \cdots \times A}_{} = \{(a_1, \ldots, a_k) \mid a_i \in A \text{ für } i = 1, \ldots, k\}$ ist.
- Für i = 1, ..., n sei R_i eine k_i -stellige Relation auf A. Dann heißt $(A; R_1, ..., R_n)$ Relationalstruktur.
- Die Menge A heißt der Individuenbereich, die Trägermenge oder die Grundmenge der Relationalstruktur.

Bemerkung

- Wir werden hier hauptsächlich den Fall n = 1, $k_1 = 2$, also (A, R) mit $R \subseteq A \times A$ betrachten.
- Man nennt dann R eine (binäre) Relation auf A.
- Oft wird für $(a, b) \in R$ auch die Infix-Schreibweise aRb benutzt.

Beispiel

- (F, M) mit $F = \{f \mid f \text{ ist Fluss in Europa}\}$ und
 - $M = \{(f,g) \in F \times F \mid f \text{ mündet in } g\},\$
- (U, B) mit $U = \{x \mid x \text{ ist Berliner}\}$ und

$$B = \{(x, y) \in U \times U \mid x \text{ ist Bruder von } y\},\$$

- $(\mathcal{P}(M), \subseteq)$, wobei M eine beliebige Menge und \subseteq die Inklusionsrelation auf den Teilmengen von M ist,
- (A, Id_A) mit $Id_A = \{(x, x) \mid x \in A\}$ (die Identität auf A),
- \bullet (\mathbb{R}, \leq) ,
- $(\mathbb{Z}, |)$, wobei | die "teilt"-Relation bezeichnet (d.h. a|b, falls ein $c \in \mathbb{Z}$ mit b = ac existiert).

 Da Relationen Mengen sind, können wir den Schnitt, die Vereinigung, die Differenz und das Komplement von Relationen bilden:

$$R \cap S = \{(x, y) \in A \times A \mid xRy \land xSy\},\$$

$$R \cup S = \{(x, y) \in A \times A \mid xRy \lor xSy\},\$$

$$R - S = \{(x, y) \in A \times A \mid xRy \land \neg xSy\},\$$

$$\overline{R} = (A \times A) - R.$$

• Sei $\mathcal{M} \subseteq \mathcal{P}(A \times A)$ eine beliebige Menge von Relationen auf A. Dann sind der Schnitt über \mathcal{M} und die Vereinigung über \mathcal{M} folgende Relationen:

$$\bigcap \mathcal{M} = \bigcap_{R \in \mathcal{M}} R = \{(x, y) \mid \forall R \in \mathcal{M} : xRy\},\$$

$$\bigcup \mathcal{M} = \bigcup_{R \in \mathcal{M}} R = \{(x, y) \mid \exists R \in \mathcal{M} : xRy\}.$$

Weitere Operationen auf Relationen

Definition

• Die transponierte (konverse) Relation zu R ist

$$R^{T} = \{(y, x) \mid xRy\}.$$

- R^T wird oft auch mit R^{-1} bezeichnet.
- Zum Beispiel ist $(\mathbb{R}, \leq^T) = (\mathbb{R}, \geq)$.
- ullet Das Produkt (oder die Komposition) zweier Relationen R und S ist

$$R \circ S = \{(x, z) \in A \times A \mid \exists y \in A : xRy \land ySz\}.$$

Beispiel

Ist B die Relation "ist Bruder von", V "ist Vater von", M "ist Mutter von" und $E = V \cup M$ "ist Elternteil von", so ist $B \circ E$ die Onkel-Relation.

Das Relationenprodukt

Notation

- Für $R \circ S$ wird auch $R; S, R \cdot S$ oder einfach RS geschrieben.
- Für $\underbrace{R \circ \cdots \circ R}_{n-\text{mal}}$ schreiben wir auch R^n . Dabei ist $R^0 = Id$.

Vorsicht!

Das Relationenprodukt R^n sollte nicht mit dem kartesischen Produkt

$$\underbrace{R \times \cdots \times R}_{\text{n-mal}}$$

verwechselt werden.

Vereinbarung

Wir vereinbaren, dass \mathbb{R}^n das n-fache Relationenprodukt bezeichnen soll, falls \mathbb{R} eine Relation ist.

Eigenschaften von Relationen

Definition

gilt.

Sei R eine Relation auf A. Dann heißt R

```
falls \forall x \in A : xRx
                                                                                          (also Id_A \subseteq R)
reflexiv.
                                                                                          (also Id_A \subseteq \overline{R})
irreflexiv.
                          falls \forall x \in A : \neg xRx
                                                                                          (also R \subseteq R^T)
symmetrisch.
                         falls \forall x, y \in A : xRy \Rightarrow yRx
                                                                                          (also R \subseteq \overline{R^T})
asymmetrisch,
                         falls \forall x, y \in A : xRy \Rightarrow \neg yRx
antisymmetrisch, falls \forall x, y \in A : xRy \land yRx \Rightarrow x = y (also R \cap R^T \subseteq Id)
                                                                            (also A \times A \subseteq R \cup R^T)
                          falls \forall x, y \in A : xRy \lor yRx
konnex.
                          falls \forall x, y \in A : x \neq y \Rightarrow xRy \lor yRx (also \overline{Id} \subseteq R \cup R^T)
semikonnex.
                                                                                          (also R^2 \subseteq R)
                          falls \forall x, y, z \in A : xRy \land yRz \Rightarrow xRz
transitiv.
```

Überblick über Relationalstrukturen

Äquivalenz- und Ordnungsrelationen

	refl.	sym.	trans.	antisym.	asym.	konnex	semikon.
Äquivalenzrelation	\checkmark	\checkmark	\checkmark				
(Halb-)Ordnung	\checkmark		√	√			
Striktordnung			\checkmark		\checkmark		
lineare Ordnung			\checkmark	√		√	
lin. Striktord.			√		√		√
Quasiordnung	\checkmark		√				

Bemerkung

In der Tabelle sind nur die definierenden Eigenschaften durch ein " \checkmark " gekennzeichnet. Das schließt nicht aus, dass noch weitere Eigenschaften vorliegen.

Eigenschaften von Relationen

Beispiel

- Die Relation "ist Schwester von" ist zwar in einer reinen Damengesellschaft symmetrisch, i.a. jedoch weder symmetrisch noch asymmetrisch noch antisymmetrisch.
- Die Relation "ist Geschwister von" ist zwar symmetrisch, aber weder reflexiv noch transitiv und somit keine Äquivalenzrelation.
- \bullet ($\mathbb{R},<$) ist irreflexiv, asymmetrisch, transitiv und semikonnex und somit eine lineare Striktordnung.
- (\mathbb{R}, \leq) und $(\mathcal{P}(M), \subseteq)$ sind reflexiv, antisymmetrisch und transitiv und somit Ordnungen.
- ullet (\mathbb{R},\leq) ist auch konnex und somit eine lineare Ordnung.
- $(\mathcal{P}(M), \subseteq)$ ist zwar im Fall $||M|| \le 1$ konnex, aber im Fall $||M|| \ge 2$ weder semikonnex noch konnex.

Graphische Darstellung

$$A = \{a, b, c, d\}$$

$$R = \{(b, c), (b, d), (c, a), (c, d), (d, d)\}$$

- Eine Relation R auf einer (endlichen) Menge A kann durch einen gerichteten Graphen (kurz Digraphen) G = (A, R) mit Knotenmenge A und Kantenmenge R veranschaulicht werden.
- Hierzu stellen wir jedes Element x ∈ A als einen Knoten dar und verbinden jedes Knotenpaar (x, y) ∈ R durch eine gerichtete Kante (Pfeil).
- Zwei durch eine Kante verbundene Knoten heißen adjazent oder benachbart.

Darstellung von endlichen Relationen

Definition

Sei R eine binäre Relation auf A.

• Die Menge der Nachfolger bzw. Vorgänger von x ist

$$R[x] = \{y \in A \mid xRy\}$$
 bzw. $R^{-1}[x] = \{y \in A \mid yRx\}$.

- Der Ausgangsgrad eines Knotens x ist $deg^+(x) = ||R[x]||$.
- Der Eingangsgrad von x ist $deg^{-}(x) = ||R^{-1}[x]||$.
- Ist R symmetrisch, so können wir die Pfeilspitzen auch weglassen.
- In diesem Fall heißt $deg(x) = deg^{-}(x) = deg^{+}(x)$ der Grad von x und $R[x] = R^{-1}[x]$ die Nachbarschaft von x in G.
- G ist schleifenfrei, falls R irreflexiv ist.
- Ist R irreflexiv und symmetrisch, so nennen wir G = (A, R) einen (ungerichteten) Graphen.
- Eine irreflexive und symmetrische Relation R wird meist als Menge der ungeordneten Paare $E = \{\{a,b\} \mid aRb\}$ notiert.