Statistische Tests Übersicht

Werkzeuge der empirischen Forschung

W. Kössle

Einleitung

Datenbehandlun Syntax Tastatur

Transformatione
Externes File

SAS-Files
Zusamenfügen
Output-Anweisung

Vkt.rechnung Population Wahrscheinlichkeit Zufallsvariablen

Diskrete Zufallsvariablen Stetige Zufallsvariablen Vormalverteilung (1) Enwartungswert Varianz

- 1. Einführung und Übersicht
- 2. Das Einstichprobenproblem
- 3. Vergleich zweier unabhängiger Gruppen (unverbundene Stichproben)
- 4. Vergleich zweier abhängiger Gruppen (verbundene Stichproben)
- 5. Vergleich mehrerer unabhängiger Gruppen (einfache Varianzanalyse)
- 6. Vergleich mehrerer abhängiger Gruppen (einfaches Blockexperiment)
- 7. Weitere Varianzanalysemodelle
- 8. Anpassungstests
- 9. Nichtparametrische Tests

Statistische Tests

Einführung und Übersicht

Werkzeuge der empirischen Forschung

W. Kössle

Einleitung

Datenbehandlun

Tastatur
Transformationen
Externes File

Input-Anweisung
SAS-Files
Zusamenfügen
Output-Anweisung

Wkt.rechnung
Population
Wahrscheinlichkeit
Zufallsvariablen

curansvariabien Diskrete Zufallsvariablen Stetige Zufallsvariablen Jormalverteilung (1) Erwartungswert farianz Sei *X* ein Merkmal (eine Zufallsvariable),

$$F_X(x) = P(X \le x) = P_{\theta}(X \le x) = F_{X,\theta}(x)$$

 θ : Parametervektor

Beispiel: $\theta = (\mu, \sigma^2)$

 μ : Erwartungswert von X

 σ^2 : Varianz von X

 $X_1, X_2, ..., X_n$ Beobachtungen von X

$$\mu \approx \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}$$

$$\sigma^2 \approx \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = s^2$$

D.h. die unbekannten Parameter werden geschätzt.

Statistische Tests: Einführung

Werkzeuge der empirischen Forschung

W Kössle

Einleitun

Datenbehandlur Syntax

Tastatur Transformationen Externes File

Input-Anweisur SAS-Files

Zusamenfügen
Output-Anweisu

Wkt.rechnung

Population Wahrscheinlichkeit Zufallsvariablen

Diskrete Zufallsvariabli Stetige Zufallsvariabli Normalverteilung (1) Erwartungswert

Problem

Schätzungen können sehr schlecht ausfallen!

I.a. vertritt der Fachexperte gewisse Hypothesen bzgl. der (unbekannten) Parameterwerte!

Diese Hypothesen werden verworfen, wenn die erhaltenen <u>Schätzwerte</u> (z.B. \overline{X} , s^2) mit ihnen nicht in Einklang stehen.

Statistische Tests: Einführung

Eine verwandte Problemstellung

Werkzeuge der empirischen Forschung

Elektronischer Großhandel: TV-Geräte

Händler sagt: Ausschußquote p < 1% (p = 0.01) Käufer wäre einverstanden, prüft aber N Geräte! Davon: N_f fehlerhaft, N_f - Teststatistik

$$\frac{N_f}{N} \cdot 100\% \gg 1\% \Rightarrow \text{Ablehnung}$$

Zwei Fehler möglich

a) Zufällig N_f zu groß!

⇒ Käufer lehnt ab

b) Zufällig N_f zu klein!

$$p \text{ groß}, p \gg 0.01$$

⇒ Käufer kauft

Statistische Tests: Einführung Risiken - Fehler

Werkzeuge der empirischen Forschung

Reschreihende

Risiko des Händlers

Käufer lehnt gute Ware ab (weil N_f zufällig zu groß)

Statistische Tests: Einführung Risiken - Fehler

Werkzeuge der empirischen Forschung

Risiko des Händlers

Käufer lehnt gute Ware ab (weil N_f zufällig zu groß)

Risiko des Käufers

Käufer kauft schlechte Ware (weil N_f zufällig zu klein)

Statistische Tests: Einführung

Risiken - Fehler

Werkzeuge der empirischen Forschung

Risiko des Händlers

Käufer lehnt gute Ware ab (weil N_f zufällig zu groß)

Risiko des Käufers

Käufer kauft schlechte Ware (weil N_f zufällig zu klein)

Risiken sollen quantifiziert werden:

- a) P(Nicht kaufen | p < 1%)
- b) P(Kaufen | p > 1%)

Beide Risiken nicht gleichzeitig zu minimieren.

Statistische Tests: Einführung Risiken - Fehler

Einleitung
Datenbehandlung
Syntax
Tactatur
Tarardomationan
Esternes File
Input Annecoung

Werkzeuge der

empirischen Forschung

Käufer lehnt gute Ware ab (weil N_f zufällig zu groß)
Risiko des Käufers

Risiko des Händlers

Käufer kauft schlechte Ware (weil N_f zufällig zu klein) Risiken sollen quantifiziert werden:

a) P(Nicht kaufen | p < 1%)

P(Nicht kaufen | $p \le 1\%$) = α vorgeben

P(Kaufen | p > 1%) minimieren (oder es versuchen), (330

b) $P(\text{Kaufen} \mid p > 1\%)$

Beide Risiken nicht gleichzeitig zu minimieren. Lösung:

Hypothesentest

Beispiel: Einstichproben-Lagetest

Werkzeuge der empirischen Forschung

Sei μ ein Lageparameter, z.B. der Erwartungswert. Sei μ_0 ein vorgegebener Wert.

Nullhypothese und Alternativhypothese

a) $H_0: \mu < \mu_0$

 $H_A: \mu > \mu_0$

b) $H_0: \mu \ge \mu_0$

 $H_A: \mu < \mu_0$

c) $H_0: \mu = \mu_0$

$$\mu = \mu_0$$

$$H_A: \mu \neq \mu_0$$

Hypothesentest

Beispiel: Einstichproben-Lagetest

Werkzeuge der empirischen Forschung

W. Kössle

Einleitun

Datenbehandlung

Syntax Tastatur Transformationen Externes File

Externes File Input-Anweisung SAS-Files Zusamenfügen Output-Anweisung DO-Schleifen

Population
Wahrscheinlichkeit
Zufallsvariablen
Diskrete Zufallsvariablen
Stettige Zufallsvariablen
Normalverteilung (1)
Erwartungswert
Varianz

Sei μ ein Lageparameter, z.B. der Erwartungswert. Sei μ_0 ein vorgegebener Wert.

Nullhypothese und Alternativhypothese

a) $H_0: \quad \mu \leq \mu_0 \qquad H_A: \mu > \mu_0$

b) $H_0: \quad \mu \ge \mu_0 \qquad H_A: \mu < \mu_0$

c) $H_0: \quad \mu = \mu_0 \qquad H_A: \mu \neq \mu_0$

Teststatistik

$$T(X_1,...,X_n) = \frac{\overline{X} - \mu_0}{s} \cdot \sqrt{n}$$

T heißt auch Testgröße, Prüfgröße, Stichprobenfunktion.

Hypothesentest Allgemein

Werkzeuge der empirischen Forschung

M Känalai

Einleitun

Datenbehandlun Syntax

Tastatur Transformationen Externes File Input-Anweisung

Zusamenfügen Output-Anweist DO-Schleifen

Wkt.rechnung
Population
Wahrschainlichkeit

tufallsvariablen Diskrete Zufallsvariablen Stetige Zufallsvariablen Jormalverteilung (1) Erwartungswert /arianz Die Entscheidung für H_A oder für H_0 wird anhand einer Teststatistik

$$T = T(x_1, ..., x_n)$$

gefällt.

Liegt der Wert von T in einem vorher bestimmten Bereich K, dem sogen. Ablehnungsbereich oder kritischen Bereich, dann wird H_0 abgelehnt, anderenfalls wird H_0 nicht abgelehnt.

 $T \in K \Rightarrow H_0$ ablehnen, Entscheidung für H_A $T \notin K \Rightarrow H_0$ nicht ablehnen, Entscheidung für H_0 .

Hypothesentest

Annahme- und Ablehnungsbereich

Werkzeuge der empirischen Forschung

W. Kössle

Finleitun

Datenbehandlung

Tastatur Transformationen Externes File Input-Anweisung

SAS-Files
Zusamenfügen
Output-Anweisung
DO-Schleifen

Wahrscheinlichkeit Zufallsvariablen Diskrete Zufallsvariablen Stetige Zufallsvariablen Normalverteilung (1) Erwartungswert a) $H_0: \quad \mu \leq \mu_0 \qquad H_A: \mu > \mu_0$ große Werte von T sprechen für H_A .

Annahmebereich t_{krit}

- b) H_0 $\mu \geq \mu_0$ H_A : $\mu < \mu_0$ kleine Werte von T sprechen für H_A . Krit.B. Annahmebereich
- c) $H_0: \mu = \mu_0$ $H_A: \mu \neq \mu_0$ große Werte von |T| sprechen für H_A .

 Annahmebereich

Entscheidung für H_A obwohl H_0 richtig ist.

Fehler 1.Art

Werkzeuge der empirischen Forschung

Reschreihende

Werkzeuge der empirischen Forschung

Fehler 1.Art

Entscheidung für H_A obwohl H_0 richtig ist.

Fehler 2.Art

Entscheidung für H_0 obwohl H_A richtig ist

Werkzeuge der empirischen Forschung

W Kössle

Einleitung

Datenbehandlun Syntax Tastatur

Transformatione Externes File Input-Anweisung SAS-Files

Zusamenfügen Output-Anweisung DO-Schleifen

Population
Wahrscheinlichkeit

Diskrete Zufallsvariable Stetige Zufallsvariabler Normalverteilung (1) Erwartungswert Jarianz

Fehler 1.Art

Entscheidung für H_A obwohl H_0 richtig ist.

Fehler 2.Art

Entscheidung für H_0 obwohl H_A richtig ist

	Entscheidung	Entscheidung
	für H_0	für H_A
H_0 richtig	richtig, Sicher-	Fehler 1. Art
	richtig, Sicherheitswkt. $1 - \alpha$	Fehlerwkt. α .
H_A richtig	Fehler 2.Art Fehlerwkt. 1-β	richtig,
	Fehlerwkt. 1-β	Güte β

Werkzeuge der empirischen Forschung

Fehler 1.Art

Entscheidung für H_A obwohl H_0 richtig ist.

Fehler 2.Art

Entscheidung für H_0 obwohl H_A richtig ist

	Entscheidung	Entscheidung
	für H_0	für H_A
H_0 richtig	richtig, Sicherheitswkt. $1 - \alpha$	Fehler 1. Art
	heitswkt. $1 - \alpha$	Fehlerwkt. α .
H_A richtig	Fehler 2.Art	richtig,
	Fehlerwkt. 1- β	Güte β

Entscheidung für H_0 heißt nicht notwendig, dass H_0 richtig ist.

Werkzeuge der empirischen Forschung

W Kössle

Einleitun

Syntax Tastatur Transformation

Transformation Externes File Input-Anweisur

Zusamenfügen Dutput-Anweisur DO-Schleifen

Population

Wahrscheinlichkeit

Zufallsvariablen

utallsvariablen

biskrete Zufallsvariablen

itetige Zufallsvariablen

lormalverteilung (1)

invartungswert

 α und $(1-\beta)$ können nicht gleichzeitig minimiert werden.

 \Rightarrow Man gibt α vor (z.B. $\alpha=0.05$), d.h. man behält α unter Kontrolle und versucht die Teststatistik so zu definieren, daß β maximal wird.

 β (und manchmal auch α) hängen von wahren (i.A. unbekannten) Parametern ab.

Signifikanzniveau

$$\alpha = \sup_{\theta \in \mathbf{\Theta}_0} \beta(\theta).$$

 Θ_0 : Nullhypothesenraum, also z.B. die Menge $\{\mu: \mu \geq \mu_0\}$ oder $\{\mu: \mu = \mu_0\}$.

Werkzeuge der empirischen Forschung

Gütefunktion

$$\beta = \beta(\theta) = \beta(\mu) = P_{\mu}(T \in K)$$

K heißt Ablehnungsbereich oder Kritischer Bereich.

Beispiel: t-Test

$$eta(\mu) = P(T \in K)$$
 K : kritischer Bereich $= P(T > t_{1-\alpha,n-1}|\mu,\sigma^2)$ $= 1 - CDF(T', t_{1-\alpha,n-1}, n-1, nc)$

$$nc = \sqrt{n} \frac{\mu - \mu_0}{\sigma}$$
:

$$t_{1-\alpha,n-1}$$
:

$$K = [t_{1-\alpha,n-1},\infty)$$
:

Nichtzentralitätsparameter kritischer Wert

kritischer Bereich.

Werkzeuge der empirischen Forschung

W. Kössle

Einleitun

Datenbehandlun

Syntax
Tastatur
Transformation

Externes File Input-Anweis

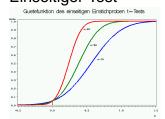
SAS-Files Zusamenfüg

Output-Anweisu DO-Schleifen

Wkt.rechnun

Population
Wahrscheinlichkeit
Zufallsvariablen
Diskrete Zufallsvariabler
Stetige Zufallsvariablen
Normalverteilung (1)

Einseitiger Test



Reschreibende 288/330

Werkzeuge der empirischen Forschung

Einseitiger Test

Zweiseitiger Test

288/330 Reschreibende

Werkzeuge der empirischen Forschung

W Kössle

Einleitun

Datenbehandlung

Syntax
Tastatur
Transformationen
Externes File

SAS-Files
Zusamenfügen
Output-Anweisung

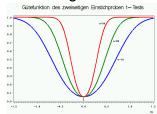
Wkt.rechnung

Wahrscheinlichkeit Zufallsvariablen Diskrete Zufallsvariabler Stetige Zufallsvariablen Normalverteilung (1) Erwartungswert

Einseitiger Test

Test Guete t.sas

Zweiseitiger Test



Test_Guete_t2.sas

Werkzeuge der empirischen Forschung

W. Kössle

Einleitung

Datenbehandlu Syntax Tastatur Transformationen Externes File Input-Anweisung

Input-Anweisung SAS-Files Zusamenfügen Output-Anweisung DO-Schleifen

Population
Wahrscheinlichkeit
Zufallsvariablen
Diskrete Zufallsvariablen
Stetige Zufallsvariablen
Normalverteilung (1)
Erwartungswert
Varianz

Ideal:

Unter H_0 : Güte 0 (d.h. Fehler 1. Art =0)

Unter H_A : Güte 1 (d.h. Fehler 2. Art =0)

Das ist aber nicht möglich!

Ziel:

Test mit möglichst großer Gütefunktion (unter H_A).

Wir schlagen natürlich nur solche "sinnvollen" Tests vor.

(bei Normalverteilungsannahme)

Werkzeuge der empirischen Forschung

Reschreihende

Einstichprobenproblem

 $H_0: \mu \leq \mu_0 \quad H_A: \mu > \mu_0$

 $H_0: \mu \geq \mu_0 \quad H_A: \mu < \mu_0$

 $H_0: \mu = \mu_0 \quad H_A: \mu \neq \mu_0$

(bei Normalverteilungsannahme)

Werkzeuge der empirischen Forschung

Einstichprobenproblem

 $H_0: \mu \leq \mu_0 \quad H_A: \mu > \mu_0$

 $H_0: \mu \geq \mu_0 \quad H_A: \mu < \mu_0$

 $H_0: \mu = \mu_0 \quad H_A: \mu \neq \mu_0$

Einstichproben t-Test

PROC UNIVARIATE

PROC TTEST

(bei Normalverteilungsannahme)

Werkzeuge der empirischen Forschung

W. Kössle

Einleitun

Datenbehandlun

Syntax
Tastatur
Transformatione
Externes File

Input-Anweisu SAS-Files

Zusamenfügen
Output-Anweisun

Wkt.rechnung

Wahrscheinlichkeit Zufallsvariablen

Diskrete Zufallsvariable Stetige Zufallsvariablen Normalverteilung (1) Erwartungswert

Einstichprobenproblem

 $H_0: \mu \leq \mu_0 \quad H_A: \mu > \mu_0$

 $H_0: \mu \geq \mu_0 \quad H_A: \mu < \mu_0$

 $H_0: \mu = \mu_0 \quad H_A: \mu \neq \mu_0$

Einstichproben t-Test

PROC UNIVARIATE

PROC TTEST

Zweistichprobenproblem

 $H_0: \mu_1 \leq \mu_2 \quad H_A: \mu_1 > \mu_2$

 $H_0: \mu_1 \geq \mu_2$ $H_A: \mu_1 < \mu_2$

 $H_0: \mu_1 = \mu_2 \quad H_A: \mu_1 \neq \mu_2$

(bei Normalverteilungsannahme)

Werkzeuge der empirischen Forschung

W. Kösslei

Einleitung

Datenbehandlun

Tastatur
Transformationer
Externes File

SAS-Files
Zusamenfügen
Output-Anweisung

Wkt.rechnung

Wahrscheinlichkeit Zufallsvariablen

Diskrete Zufallsvariabler Stetige Zufallsvariablen Normalverteilung (1) Erwartungswert Varianz

Einstichprobenproblem

 $H_0: \mu \leq \mu_0 \quad H_A: \mu > \mu_0$

 $H_0: \mu \geq \mu_0 \quad H_A: \mu < \mu_0$

 $H_0: \mu = \mu_0 \quad H_A: \mu \neq \mu_0$

Einstichproben t-Test PROC UNIVARIATE

PROC TTEST

Zweistichprobenproblem

 $H_0: \mu_1 \leq \mu_2 \quad H_A: \mu_1 > \mu_2$

 $H_0: \mu_1 \ge \mu_2$ $H_A: \mu_1 < \mu_2$

 $H_0: \mu_1 = \mu_2 \quad H_A: \mu_1 \neq \mu_2$

Einstichproben *t*-Test (verbundene Stichproben) *t*-Test (unverbundene Stichproben) PROC UNIVARIATE PROC TTEST

eschreibende 290/330

Lage- und Skalentests

(bei Normalverteilungsannahme)

c-Stichprobenproblem

Werkzeuge der empirischen Forschung

$$H_0: \mu_1 = ... = \mu_c$$

$$H_0: \mu_1 = ... = \mu_c$$
 $H_A: \exists (i,j): \mu_i \neq \mu_j$

einfache Varianzanalyse

PROC ANOVA, PROC GLM

Andere Alternativen sind:

$$\mu_1 \leq \ldots \leq \mu_c$$

$$\mu_1 \geq ... \geq \mu_c$$

Lage- und Skalentests

(bei Normalverteilungsannahme)

Werkzeuge der empirischen Forschung

c-Stichprobenproblem

 $H_0: \mu_1 = ... = \mu_c$ $H_A: \exists (i,j): \mu_i \neq \mu_i$

einfache Varianzanalyse

PROC ANOVA, PROC GLM

Andere Alternativen sind:

$$\mu_1 \leq \ldots \leq \mu_c$$

$$\mu_1 \geq ... \geq \mu_c$$

Skalentest

Zwei unverbundene Stichproben

$$H_0: \sigma_1^2 = \sigma_2^2$$
 $H_A: \sigma_1^2 \neq \sigma_2^2$

PROC TTEST (bei Normalverteilung)

p-Werte

Werkzeuge der empirischen Forschung

W. Kössle

Einleitung

Datenbehandlung

Tastatur
Transformationen
Externes File

Input-Anweisung SAS-Files Zusamenfügen Output-Anweisung

Vkt.rechnung
Population
Wahrscheinlichkeit
Zufallsvariablen
Stetige Zufallsvariablen

bisher: " H_0 abgelehnt" oder " H_0 beibehalten" \Rightarrow wenig informativ.

⇒ weriig iriiormativ.

Wir könnten uns auch bei jedem α fragen, ob H_0 abgelehnt wird oder nicht.

Wenn der Test bei Signifikanzniveau α ablehnt, wird er das auch für $\alpha' > \alpha$ tun.

Es gibt also ein kleinstes α , bei dem der Test H_0 ablehnt.

Der p-Wert

ist das kleinste α , bei dem wir H_0 ablehnen können.

Test_t_p_value

p-Wert

T: (zufällige) Teststatistik, t: beobachtete Teststatistik

Werkzeuge der empirischen Forschung

W. Kössle

Einleitung

Datenbehandl Syntax

Tastatur Transformationen Externes File Input-Anweisung

Zusamenfügen
Output-Anweisung

Wkt.rechnung
Population
Wahrscheinlichkeit
Zufallsvariablen
Diskrete Zufallsvariable
Stetige Zufallsvariable
Normalverteilung (1)
Erwartungswert

Zweiseitige Alternative: $\mu \neq \mu_0$

 $p\text{-Wert} = P_0(|T| > |t|)$

Einseitige Alternative: $\mu < \mu_0$

 $\mathsf{p\text{-}Wert} = P_0(T < t)$

Einseitige Alternative: $\mu > \mu_0$

 $p\text{-Wert} = P_0(T > t)$

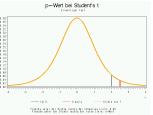
Der p-Wert heißt auch

Überschreitungswahrscheinlichkeit.

p-Wert Illustration

Werkzeuge der empirischen Forschung

Einseitiger Test

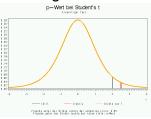


295/330 Reschreibende

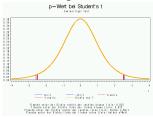
p-Wert Illustration

Werkzeuge der empirischen Forschung

Einseitiger Test



Zweiseitiger Test

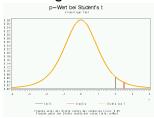


295/330 Reschreihende

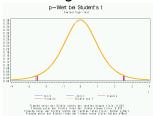
p-Wert Illustration

Werkzeuge der empirischen Forschung

Einseitiger Test



Zweiseitiger Test



Fäche unter der Dichte rechts der schwarzen Linie: 0.050.025

Fäche unter der Dichte rechts der roten Linie: p-Wert halber p-Wert

links entsprechend.

Bewertung von p-Werten

Werkzeuge der empirischen Forschung

W. Kössler

Datenhehand

Tastatur
Transformationen
Externes File
Input-Anweisung
SAS-Files
Zusamenfügen

Wkt.rechnung
Population
Wahrscheinlichkeit
Zufallsvariablen
Diskrete Zufallsvariablen
Normalverteilung (1)
Erwartungswert
Varianz

Der p-Wert ist also, grob, ein Maß für den Grad dafür, dass die Nullhypothese nicht zutrifft.

(vorsichtige) Interpretation		
p-Wert	Grad des Nicht-Zutreffens von H_0	
< 0.01	sehr streng gegen H_0	
$0.01 \dots 0.05$	streng gegen H_0	
$0.05 \dots 0.1$	schwach gegen H_0	
> 0.1	wenig oder gar nichts gegen H_0	

Bewertung von p-Werten

Werkzeuge der empirischen Forschung

W. Kössler

inleitung

atenbehandlung

Transformationen

SAS-Files
Zusamenfügen
Output-Anweisung

Wkt.rechnung
Population
Wahrscheinlichkeit
Zufallsvariablen

Diskrete Zufallsvariablen Stetige Zufallsvariablen Jormalverteilung (1) Erwartungswert Der p-Wert ist also, grob, ein Maß für den Grad dafür, dass die Nullhypothese nicht zutrifft.

(vorsichtige) Interpretation	
p-Wert	Grad des Nicht-Zutreffens von H_0
< 0.01	sehr streng gegen H_0
0.01 0.05	streng gegen H_0
$0.05 \dots 0.1$	schwach gegen H_0
> 0.1	wenig oder gar nichts gegen H_0

Warnung:

der Test niedrige Güte hat!

Ein großer p-Wert heisst noch lange nicht, dass H_0 zutrifft. H_0 kann zutreffen, Der große p-Wert kann aber auch daran liegen, dass

p-Wert und kritischer Wert

Werkzeuge der empirischen Forschung

W. Kössle

Einleitung

Datenbehandlung Syntax Tastatur

Transformationen
Externes File
Input-Anweisung

SAS-Files
Zusamenfügen

Zusamenfügen
Output-Anweisung
DO-Schleifen

Population
Wahrscheinlichkeit
Zufallsvariablen
Diskrete Zufallsvariab

Stetige Zufallsvariabler Normalverteilung (1) Erwartungswert Varianz

Einseitiger Test, $t_{krit} = t_{1-\alpha}$

 $t \leq t_{krit} \Leftrightarrow \text{p-Wert} \geq \alpha \Longrightarrow H_0$ angenommen,

 $t > t_{krit} \Leftrightarrow \text{p-Wert} < \alpha \Longrightarrow H_0 \text{ abgelehnt.}$

Zweiseitiger Test, $t_{krit} = t_{1-\alpha/2}$

 $|t| \le t_{krit} \Leftrightarrow \mathsf{p-Wert} \ge \alpha \Longrightarrow H_0$ angenommen,

 $|t| > t_{krit} \Leftrightarrow \mathsf{p ext{-}Wert} < \alpha \Longrightarrow H_0 \text{ abgelehnt.}$

Ausgabe bei SAS

Wenn nicht anders vermerkt: zweiseitige p-Werte.