Datenbanksysteme |I1I:
B / B+ / Prefix Trees

UIf Leser

Content of this Lecture

e B Trees
e B+ Trees
e Index Structures for Strings

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Recall: Multi-Level Index Files

Sparse 2nd level

10

»
>

90

N

170

250

330

410

490

570

N
2

Sparse 1st level Sorted File
10 110
30| 20
50| o T 30
70 20
90
110 20
130 60
150 70
170 80
190 90
210 100
230

AN

UIf Leser: Implementation of Database Systems, Winter Semests\zo 6/>0\17\

B-Trees (# binary tree)

e B-Tree is a multi-level index with variable number of levels
— Many variations: B/B+/B*/B++/...

e Height adapts to table growth / shrinkage Root node
e Optimized for block-based access (disc) 15 30
e >50% space usage guaranteed
e Always balanced '”tﬁggi's
e R. Bayer, E. McCreight: Organization and

Maintenance of Large Ordered , 1901, 75

Indexes. Acta

Informatica. 1972 v |16 |23 \\ !

Y
B Leaves
51 (5558 | - | -

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017 4

Formally

e Assume index on primary key (no duplicates)

e Internal nodes contain pairs (key, TID) and pointers

e Leaf nodes only contain (key, TID)

e Block can hold 2k triples (pointer, key, TID) plus 1 ptr

e Each internal node contains between k and 2k (key, TID)

— Plus between k+1 and 2k+1 pointers to subtrees
e Subtree left of pair (v,TID) contains only and all keys y<v
e Subtree right of pair (v,TID) contains only and all keys y>v
e Pairs are sorted: v, < Vi,

— Exception: Root node

e Thus, B-trees use always at least 50% of allocated space

Po (Vo.to) Py (Vi,ty) P2 (Vo,1) P3 e (Vor1,tow1) P2k

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 5

Searching B-Trees

85

88

91

N / ? = 'l
32 (38|39 |45 |49 76
1128 [4]- 9 |10|11]13]- 51|55 |58 -
Find 9 Find 60
1. Start with root node 1. Start with root node
2. Follow p, 2. Follow p,
3. Follow p; 3. Follow p,

4. Scan (binsearch) - found

4. Scan - not found

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Complexity

e B-trees are always balanced (how: Later)
— All paths from root to a leaves are of equal length

e Assume n keys; let r=|key|+|TID|+|pointer|

e Best case: All nodes are full (2k keys)

— We have b~n/2k blocks
e Actually a little less, since leaves contain no pointers

— Height of the tree h~log,,(b)
— Search requires between 1 and log,,(b) 10

e Worst case: All nodes contain only k keys
— We need b~n/k blocks
— Height of the tree h~log,(b)
— Search requires between 1 and log,(b) 10

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Example

 Assume |key|=20, |TID|=16, |pointer|=8, block size=4096
=> =44

e Assume n=1.000.000.000 (1E9) records

e Glves between 46 and 92 index records per block
e Hence, we need between 1 and 5/6 10

e Caching the first two levels (between 1+46 and 1+92
blocks), this reduces to a maximum of 3/4 10

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 8

Inserting into B-Trees

e We insert 5 (assume: 2*k=2)

— For ease of exposition, we assume 2-5 keys in leaves and 1-2 keys
In iInner nodes

30
IR
// }
32 | 38|39 [| 49 76 | 85|88] 91| -
1 1213 141°)9 T10[11]13]- 5105558 - | -

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 9

Inserting into B-Trees

e We Insert 6

e Block is full — we need to split

50

75

49

——

76

85

88

91

9

10

11

13

51

55

58

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

10

Inserting into B-Trees

e Split overflow block and propagate middle value upwards

— All values from old node plus new value minus middle value are
evenly split between two new nodes

— Thus, each has ~k keys
— Middle value is pushed up to parent node

15 30

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017 11

Inserting into B-Trees

e We Insert 40

e Block is full — split and propagate
e Propagating upwards leads to new overflow block
e Finally, the root note overflows

— B-trees grow upwards

85

88

91

a7 " |50 , |75
/ V&
32 (38|39 |45 |49 76
123"56--- 51 | 55| 58

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

12

Intermediate 1

10

30

32

38

39

50

75

407

4__——

76

85

88

91

51

55

58

45

49

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

13

Intermediate 2

10

30

32

38

39

50"

7

75

40

76

85

88

91

51

55

58

45

49

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

14

Final Tree

30

50

~

75

>
/ /

/

o/

76

85

88

91

51

58

45

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

15

Longer Sequence of Insertions

. ,
— — [+]=]] —— [1I[=1[=1]

Sphif

G T
= I

[0 =1 [0 [EIElE
It 4 i
e e —— [
l l
[+ [=0 =0 [0 [efsD 0 T CedreD 10D
3 it
—— [=][=] el B EX'EY
[0 GEIEDED [FIED T =0 D [EET
mmd Bl

Ll M=lisd =1l

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 16

Complexity of Insertion

e Let h be height of tree
e Cost for searching leaf node: h 10
e If no split necessary: Total 10 cost = h+1 (writing)

e |f split iIs necessary
— Worst case — up to the root
— We assume we cached ancestor blocks during traversal
— We thus need to read them once and write them once
— Total cost: (h+2)+2(h-1)+1 = 3h+1
e Split on all levels and create new root node

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

17

Deleting Keys

e |f found in Internal node

— Choose smallest value from right subtree and replace deleted value
e This value must be in a leaf
e Works as well for largest value from left subtree

— Delete value in leaf and progress

e |f found in leaf
— Delete value
— If blocks underflows, choose one of neighboring blocks

— If both blocks together have more than 2k records: Distribute
values evenly; adapt between-key in parent node

— Otherwise — merge blocks
e One block with records plus middle value in parent
 Remove middle value in parent block — which now might underflow

— Might work recursively up the tree

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 18

Delete with Underflow

e Delete 40 0

50

~

>
/ /

/ Sy |-
/ 76 | 85188 | 91
32
5l 98| - | -
45
Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 19

Delete with Underflow

e Borrow from
right subtree

e Underflow

30

50

b
/

~

/ / Sy |-
/ 7685|8891
32
51 (55|58 - | -
49
Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 20

Delete with Underflow

e Merge with left
neighbor

30

10

50

b
/

~

/ / Sy |-
/ 7685|8891
32
51 (55|58 - | -
45
UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017 21

Delete with Underflow

e Delete 45
e Underflow

30

e No local

50

repair

b
/

~

/ / Sy |-
/ 7685|8891
32
51 (55|58 - | -
49
UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017 22

Delete with Underflow

e Merge blocks

e Parent
underflows

30

50

N\

;
/

/ Sy |-
/ / 76 | 85188 | 91
3238|3949 | -
51 (55|58 - | -
Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 23

Delete with Underflow

e Up the tree

30
10 ; 50 75
/ 1\
/ L 76 |185|88 |91
3238|3949 '
51|55|58]| - | -

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

24

Complexity of Deleting Keys

e Going down costs h+1 10 at most
— If key found in leaf, it costs h to read and 1 to write

— |If found in internal node, we still have to read h blocks to choose
replacement value from leaf

e If no underflow, total cost is h+2

e |f local underflow (with merge), total cost is ~h+6

— Checking left and right neighbor, writing block and chosen
neighbor, writing parent

e |If blocks underflow bottom-up, total cost is at most 4h-2

— If left and right neighbors have to be checked at each level
— Similar argument as for insertion

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 25

B-trees on Non-Unique Attributes

e Option 1: Compact representation
— Store (value, TID,, TID,, ... TID,)
— Difficult— internal nodes don’t have fixed number of pairs any more
— Requires internal overflow blocks

e Option 2: Verbose representation
— Treat duplicates as different values
— Constraints on keys change from “<" to “<”
— Extreme case: Generates a tree although a list would suffice

e Better: B+ trees

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 26

Content of this Lecture

e B Trees
e B+ Trees
e Index Structures for Strings

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

27

B+ Trees

e Dense index on heap-structured data file

e Internal nodes contain only values and pointers
— Values demark borders between subtrees
— Concrete values need not exist as keys - only signposts

e Leaves are chained for faster range queries

B+ Tree as dense index

) |
\/)U\‘%/I\/ Data file organized

as heap file

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 28

Operations

e Searching
— Essentially the same as for B trees
— But will always go down to leaf — marginally worse 10 complexity

e Insertion
— Essentially the same as for B trees
— Keys are only inserted at leaf nodes
— When block is split, no value moves upwards
e Parent block still changes — new signpost
* Typical choice: avg(Viedian-1: Vimedian+1)
e Deletion
— Deletion in internal node cannot occur

— When blocks are merged, no values are moved up
e But signposts in parent node are deleted as well

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 29

Advantages

e Simpler operations

e Higher fan-out, lower 10 complexity
— No TIDs in internal nodes - more pointers in internal nodes
— Much reduced height (base of log() changes)

e Smoother balancing: Chose signposts carefully
— Can save further space — Prefix B+ Tree (later)
e Linked leaves

— Faster range queries — traversal need not go up/down the tree
— Optimally, leaves are in sequential order on disk

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

30

B* tree: Improving Space Usage

e Can we increase space usage guarantee beyond 50%7?

e Don‘t split upon overflow: Move values to neighbor blocks
as long as possible
— More complex operations, need to look into neighbors
— We only split when all neighbors and the current block is full

e When splitting, make three out of two
— We only split when all neighbors are full — choose one
— Generate three new blocks from the two full old ones
— Each new block as 4/3k keys: Guaranteed 66% space usage

e Knuth, D. E.: The Art of Computer Programming, Volume 111: Sorting and Searching
Addison-Wesley, 1973

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 31

B+ Trees and Hashing

e Hashing faster for some applications
— Can lead to O(1) 10
— Assumes relatively static data and good hash function
— Requires domain knowledge

e B+ trees
— Very few 10 if upper levels are cached
— Adapts to skewed (non-uniformly distributed) data
— More robust, domain-independent
— Also support range queries

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

32

Loading a B+ Tree

 What happens in case of
create 1ndex myrdx on LARGETABLE(1d);

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

33

Loading a B+ Tree

 What happens in case of
create 1ndex myrdx on LARGETABLE(1d);

e Naive: Record-by-record insertion
— Each insertion has 3h+2 = O(log,(b)) block 10
— Altogether: O(n*log, (b))

e Blocks are read and written in arbitrary order
— Very likely: bad cache-hit ratio

e Space usage will be anywhere between 50 and 100%
e Can’t we do better?

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

34

Bulk-Loading a B+ Tree

e First sort records
— O(n*log,,(n)), where m is number of records fitting into memory
— Clearly, m>>k

e Insert in sorted order using normal insertion
— Tree builds from lower left to upper right
— Caching will work very well
— But space usage will be only around 50%

e Alternative
— Compute structure in advance
e Every 2K'th record we need a separating key
e Every 2K'th separating key we need a next-level separating key

— Can be generated and written in linear time

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

35

Content of this Lecture

e B Trees
e B+ Trees

e Index Structures for Strings
— Prefix B+ Tree
— Prefix Tree
— PETER
— PEARL

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

36

Prefix B+ Trees

e Consider string values as keys

e Keys for int. nodes: Smallest key from right-hand subtree
— Leads to internal signposts as large as keys

e Prefix B+ trees — Shortest string separating largest key in
left-hand subtree from smallest key in right-hand subtree

g - Advantages: Reduced space usage,
OF : higher fan-out
/5 \ Disadvantages: Overhead for computing
/ \ signpost (more 10)
> 5 oG = Variable-length records in
ERs £¢ 2 E internal nodes
S5 ES £
<3) g S5 N
N i N

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

37

Prefix Tree

e |f we index many strings with many common prefixes
— ... as in Information Retrieval ...
— Why store common prefixes multiple times?

e Prefix trees

— Store common prefix / substring in internal nodes
— Searching a key k requires at most |k| character comparisons

a | Bass
Dat | 3]
e
M| odelle
Tnbank |5
u ™ p_-| rache
m v | stemn

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

Indexing Strings

e Prefix/Patricia trees traditionally are main memory
structures
— How to optimally layout internal nodes on blocks?
— Not balanced — no guaranteed worst-case 10

e More index structures for strings
— Keyword trees — searching for many patterns simultaneously
e Necessary for joins on strings
e Persistent keyword trees — challenge
— Suffix trees — indexing all substrings of a string

» Necessary e.g. to search genomic sequences
» Persistent suffix trees — challenge in advancement

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 39

PETER

e Rheinlander, A., Knobloch, M., Hochmuth, N. and Leser, U.
(2010). "Prefix Tree Indexing for Similarity Search and
Similarity Join on Genomic Data". SSDBM 2010

e Computes joins / search on large collections of long strings
much faster than traditional DB technology

e Also handles similarity search / similarity joins
e QOpen source

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 40

Prefix-Trees (also called Tries)

e Given a set S of strings cattga, gatt, agtactc, ga, agaatc
e Build a tree with
— Labeled nodes

— Qutgoing edges have
different label

— Every seS is spelled on
exactly one path from
root

— Mark all nodes where an
s ends
e Common prefixes are
represented only once

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

41

Searching Prefix-Trees

Search t="agtcc”

e Searchtin S

e Recursively match t with a
path starting from root
— If no further match: t¢$S
— If matched completely: teS

e Search complexity

— Only depends on depth of S
— Independent from |S]|

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

42

Compressed Prefix Trees

e More complex implementation
e Different kinds of edges/nodes

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

43

Large Prefix Trees

0 GD)
r \\\ S ,!\
- T — L
T ""'--.___ 1
- " L]
- - \
- ¥ R N
e, N, |up| esTstring
N
.
e AGTT
[:j TITTCCTT CATTECT et _» 3 |cToaTTICCT
1-“__'“--__ 15“"-_ _ay| 4 |CTGAGATTGGT
T —p 5 |CTGAATTTTCCTT
X ¥ 6 |acaccT
1CCE|\'I'I '--.____ ______ > ACACCTCCCA TT

e Unique suffixes are stored (sorted) on disk

e Tree of common prefixes is kept in main memory
— Most failing searches never access disc
— At most one disc 10 per search
— [If tree fits in main memory]

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

44

Similarity Search on Prefix-Trees

e |n similarity search, a mismatch doesn’t mean that tgS

e Several mismatches might be allowed
— Depending on error threshold

e |dea
— Depth-first search on the tree as usual
— Keep a counter for the n# of mismatches spent in the prefix so far
— If counter exceeds threshold — stop search in this branch
— Pruning: Try to stop early

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 45

Example: Search

Hamming distance search for t = CTGAAATTGGT, k=1

. dca=1 ()

@ CTG TGCCTGOTA
1
i
S [
e i

\\ D EST string
"
1 [TGCCTGGTA
S
A 2 |sacTTACCG
¥ 3 |cToaTrrecT
| 4 |cToacaTToCT
5 |croaaTTrrECTT
| & [ACACCT
__________ » 7 |ACACCTCCGATT

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

46

Example: Search

Hamming distance search for t = CTGAAATTGGT, k=1

/

AGTTACGO CACC

@ TG TGCCTGGTA
d(CT..AA.)>1 ﬁ d(CT AC)> 1 ﬂ
" -\"""--.__‘5 ‘\\\

%
T Y, | UID EST string
" \‘
1 [TGCCTGGTA
L
A o |aacTTACCG
¥
[T:]H ATTTTCCTT GATTGGT TITeeT).___.-¥| 3 |cTeATTTECT
H%“H -__n_""*--_ T _op| 4 |CTGAGATTGET
h o == ———-—-—-------_: ————— = 5 |CTCGAATTTTCCTT
_p 6 |ACACCT
L i -
(T e —— TTTTTTmemmmoooeTI I “» 7 |ACACCTCCGATT

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

a7

Example: Search

Hamming distance search for t = CTGAAATTGGT, k=1

==

ACTTACGO CAaCC

)

CTG TOCCTOGOTA
C_,
. I
| i
= ,
. |

L

d(CTGACTGA=0,
N
T

Ui EST strimg
1 [reccTooTA
A o |aacTTACCG
T 1“““»,%“ | 4 |cToAcaTTGET
T T e [PRV ————
¥ 6 |acaccT
--------------------- --» 7 |acaccTccoaTT

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

48

Example: Search

Hamming distance search for t = CTGAAATTGGT, k=1

TG TGCCTGOTA
1
i
= [
i
J/ ﬁ |

ACTTACGO CAaCC

e \
-\-_""-._]
- .\
“'-u.,___‘_ [
‘L\-‘\-\'\ "\
T Y, U EST string
e g
1 |TGCoTooTA
e
A o |aacTTACCG
¥
[:T:] ATTTTCCTT GATTGGT Trreet)_ _y| 3 [cTGATTTCCT
T T e ol 4 [cTGAGATTGGT
d(CTGAAATTG..,, e T e e T N gy e p——
>
! CTGAATTT...)i 1 [N e s
|eceart)me e -» 7 |acaccTocoaTT

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

49

Example: Search

Hamming distance search for t = CTGAAATTGGT, k=1

==

ACTTACGO CAaCC

CTG TOCCTOGOTA
—
1
. | i
— ,
!
|

‘-u._,___j . U EST string
{k | * 1 [roceTeeTa
.

l . A 7 |aacTTACCG

ATTTTCCTT GATTCGT h___,_____,,.a-f*' 3 |CTGATTTCCT
T o oyl 4 |cTGAGATTGET
d(CTGAAATTGGT, ——__ R P p——

CTGAGATTGGT) 1 __.-¥| & |acaccT

----------------- i ~=» 7 |ACACCTCCGATT

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

50

Example: Search

Hamming distance search for t = CTGAAATTGGT, k=1

==

— \

— \

~— .

e \

. e ',
AGTTACCC cACC @_)\ T %\,
/ T “"-\.__‘ \\.\
: ‘n_"“ _*
I
"
¥

Ui EST strimg
1 |TGCoTooTA
2 |AAGTTACGCG
L
[:T:] ATTTTCCTT GATTGGT TITCCT _y| 3 [cTGATTTCCT
. 4 |CTCAGATTCLT
______________________ = 5 |CTGAR (a
_y| 6 |ACACCT
¥) S
|eceart)me e e =@ 7 |ACACCTCCGATT

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

51

(Similarity) Joins on Prefix Trees

e \We compare growing prefixes with growing prefixes
e Essentially: Compute intersection of two trees

e Traverse both trees in parallel
— Upon (sufficiently many) mismatches, entire subtrees are pruned

e Exact and similarity join

I ENl Oy mn i 1 =1

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 52

Evaluation

, # BEST AVE.- min/max #£ treo #£ exXt.
Set . string : .
Strings length nodes suffixes
length
Tl 307,542 348 14/3,615 580,062 203,764
To 736,305 38T 12/3,707 1,482,700 680,590
Tog 368,152 382 12/2.774 711,632 352,872
Tap 184,076 385 22/2.774 349,329 77,846
Toe 92,038 383 25/2.774 171,964 850,198
Tagq 46,019 381 28/2.774 84,054 44.716
Tog 23,009 373 31/ BTH 42,375 22 366
Ty 10,000 536 16 /3,707 16,310 8,774
TX 5,000,000 3590 14/3,247 10,478,214 4,834,231

e Data: Several EST data sets from dbEST
— Search: All strings of one data set in another data set

— Join: One data set against another data set
— Varying similarity thresholds

e (Linear) Index creation not included in measurements

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

53

Search: Comparing to Flamingo (2011)

e Flamingo: Library for approximate string matching
— http://flamingo.ics.uci.edu/
— Based on an inverted index on g-grams
— Uses length and charsum filter

10000

@

(1%}

<1000

o)

S

uEﬂ 100 B FETER
= M flaminga
o O (a)grep
= 10

=

o

=

@ 1

0 1 y) 3

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 54

PETER inside a RDBMS

e We Iintegrated PETER into a commercial RDBMS using its
extensible indexing interface

— Joins: table functions

— Tree stored in separate file, suffixes stored in table
e Hope

— As search complexity is independent of |S], ...

e we might beat B+ trees for exact search on very large |S]|
e we might beat hash/merge for exact join of very large data sets

e First hope not fulfilled

— API does not allow caching of tree — index reload for every search

— Large penalty for context switch through API
e Especially for JAVA!

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 55

String Similarity Search in a RDBMS

e Peter (behind extensible indexing interface) versus UDF
Implementing hamming / edit distance calculations

e Difference: 2-3 orders of magnitude, independent of data
set, threshold, or search pattern length

B PETER (hd) EAPETER (2d) HUDF(hd) [UDF (ed)

10000 w:\

1000

100

N Z

10 w

1

Awg. execution timesin ms.

k=1 k=2

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 56

(Similarity) Join inside RDBMS

e PETER (behind extensible indexing interface) versus build-
In join (exact join, hash and merge) or UDF

e Similarity join
— Join T3 with T2e, k=2, inside RDBMS: Stopped after 24 h
— Same join with PETER: 1 minute

e Exact join

aoooon

— For long strings, PETER][] S s
Is significantly faster s - Qsantirs o
than commercial join o
Implementations J

=F I |]

(b) Join

Ulf Leser: Implementation of Database Systems, Winter Semester 2016/2017 57

PEARL: Multi-Threaded PETER

9000

8000 -

7000

6000

5000

4000

execution in seconds

3000

2000

1000

PeARL (1 threads) ---—+---
Flamingo (1 thread) ---»--- .
PeARL (24 threads) -~ %--- e o I) x
- - _'_)\{-_ .
e eememeer -
— -__'_"J
+-- ... *-
*.. | l l l
1 15 2 25 3
error

Rheinlander, A. and Leser, U. (2011), “Scalable
Sequence Similarity Search and Join in Main
Memory on Multi-Cores”, HiBB, Bordeaux, France.

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

58

Room for Improvement

PeARL speed-up
14 - limear spoed-up
amdahl p=0.9 -------
12 |-
10
2 sl
H
E -
4+ —
R .-rr_|l"'
2 - =
.--’"ﬂ
(] 1 L | I I
o 2 4 E o "

#COras

Fig. 7. PeARL speed-up for similarity search on k=2.

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017

59

Why?

UIf Leser:

canstruct I5L of
partition pairs

that reed to be g ",
|einec -' \
mapTaskList (M= === ——————— == = Magtar |
% T
extradt partison when all map threads
palr for join * 5 have finished, partition
lllll""ﬂ. | @0 nfermediats kay
Wiy
"."'-x % I
PRARL Indax for A | : i : :
! "-"‘ % Map Fhase : i | intermediate Besuits ; P Paeduce PRase G
bt : : i v :
II" "S‘ :\ Thiroad T : : I ".urnrmnu ':'-"'; —_— ; . Thraad 1
"\; 1 B 'i Fartition 1 | ¢ : .
¥ N . PR ;
x'{ % - ! | ; “ i
s, ¢ 1I'|. % oo | - ; :
. SR : : e Iy
, A Y) i S SR . .
i “ rd e i ¥ % : B o L - ")
- 1 i bermnd ate ; :
. : . —_— —_— . —_—l
load trie partitions” ™. | 1 : UL Residns) H H
inktg mam memsy - ¥ : i o "y
~ - v ot .
- ™, \ -, : ; P wrie Tial
R \ . '\-l i : - - ragilts o fle
H H i Intermadate
T i H .—-—h— i
: :‘.., Thread N I I:"fu" i M Theaad M
PelRL Index fer & compute semilarty (om
beween all iIndex tem@ooranly stone joln results 00T
partitions fram F_R ard F_S wilthim grror threshold

Fig. 2. MapReduce workflow of similarity joins in PeARL.

Implementation of Database Systems, Winter Semester 2016/2017 60

	Foliennummer 1
	Content of this Lecture
	Recall: Multi-Level Index Files
	B-Trees (≠ binary tree)
	Formally
	Searching B-Trees
	Complexity
	Example
	Inserting into B-Trees
	Inserting into B-Trees
	Inserting into B-Trees
	Inserting into B-Trees
	Intermediate 1
	Intermediate 2
	Final Tree
	Longer Sequence of Insertions
	Complexity of Insertion
	Deleting Keys
	Delete with Underflow
	Delete with Underflow
	Delete with Underflow
	Delete with Underflow
	Delete with Underflow
	Delete with Underflow
	Complexity of Deleting Keys
	B-trees on Non-Unique Attributes
	Content of this Lecture
	B+ Trees
	Operations
	Advantages
	B* tree: Improving Space Usage
	B+ Trees and Hashing
	Loading a B+ Tree
	Loading a B+ Tree
	Bulk-Loading a B+ Tree
	Content of this Lecture
	Prefix B+ Trees
	Prefix Tree
	Indexing Strings
	PETER
	Prefix-Trees (also called Tries)
	Searching Prefix-Trees
	Compressed Prefix Trees
	Large Prefix Trees
	Similarity Search on Prefix-Trees
	Example: Search
	Example: Search
	Example: Search
	Example: Search
	Example: Search
	Example: Search
	(Similarity) Joins on Prefix Trees
	Evaluation
	Search: Comparing to Flamingo (2011)
	PETER inside a RDBMS
	String Similarity Search in a RDBMS
	(Similarity) Join inside RDBMS
	PEARL: Multi-Threaded PETER
	Room for Improvement
	Why?

