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Content of this Lecture

e B Trees
e B+ Trees
e Index Structures for Strings
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Recall: Multi-Level Index Files
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B-Trees (# binary tree)

e B-Tree is a multi-level index with variable number of levels
— Many variations: B/B+/B*/B++/...

e Height adapts to table growth / shrinkage Root node
e Optimized for block-based access (disc) 15 30
e >50% space usage guaranteed
e Always balanced '”tﬁggi's
e R. Bayer, E. McCreight: Organization and

Maintenance of Large Ordered , 1901, 75
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Formally

e Assume index on primary key (no duplicates)

e Internal nodes contain pairs (key, TID) and pointers

e Leaf nodes only contain (key, TID)

e Block can hold 2k triples (pointer, key, TID) plus 1 ptr

e Each internal node contains between k and 2k (key, TID)

— Plus between k+1 and 2k+1 pointers to subtrees
e Subtree left of pair (v,TID) contains only and all keys y<v
e Subtree right of pair (v,TID) contains only and all keys y>v
e Pairs are sorted: v, < Vi,

— Exception: Root node

e Thus, B-trees use always at least 50% of allocated space

Po (Vo.to) Py (Vi,ty) P2 (Vo,1) P3 e (Vor1,tow1) P2k
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Searching B-Trees

85

88

91

N / ? = 'l
32 (38|39 |45 |49 76
1128 [4]- 9 |10|11]13]- 51|55 |58 -
Find 9 Find 60
1. Start with root node 1. Start with root node
2. Follow p, 2. Follow p,
3. Follow p; 3. Follow p,

4. Scan (binsearch) - found

4. Scan - not found
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Complexity

e B-trees are always balanced (how: Later)
— All paths from root to a leaves are of equal length

e Assume n keys; let r=|key|+|TID|+|pointer|

e Best case: All nodes are full (2k keys)

— We have b~n/2k blocks
e Actually a little less, since leaves contain no pointers

— Height of the tree h~log,,(b)
— Search requires between 1 and log,,(b) 10

e Worst case: All nodes contain only k keys
— We need b~n/k blocks
— Height of the tree h~log,(b)
— Search requires between 1 and log,(b) 10
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Example

 Assume |key|=20, |TID|=16, |pointer|=8, block size=4096
=> =44

e Assume n=1.000.000.000 (1E9) records

e Glves between 46 and 92 index records per block
e Hence, we need between 1 and 5/6 10

e Caching the first two levels (between 1+46 and 1+92
blocks), this reduces to a maximum of 3/4 10
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Inserting into B-Trees

e We insert 5 (assume: 2*k=2)

— For ease of exposition, we assume 2-5 keys in leaves and 1-2 keys
In iInner nodes

30
IR
// }
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1 1213 141° )9 T10[11]13]- 5105558 - | -
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Inserting into B-Trees

e We Insert 6

e Block is full — we need to split
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Inserting into B-Trees

e Split overflow block and propagate middle value upwards

— All values from old node plus new value minus middle value are
evenly split between two new nodes

— Thus, each has ~k keys
— Middle value is pushed up to parent node

15 30
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Inserting into B-Trees

e We Insert 40

e Block is full — split and propagate
e Propagating upwards leads to new overflow block
e Finally, the root note overflows

— B-trees grow upwards
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Intermediate 1
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Intermediate 2
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Final Tree
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Longer Sequence of Insertions
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Complexity of Insertion

e Let h be height of tree
e Cost for searching leaf node: h 10
e If no split necessary: Total 10 cost = h+1 (writing)

e |f split iIs necessary
— Worst case — up to the root
— We assume we cached ancestor blocks during traversal
— We thus need to read them once and write them once
— Total cost: (h+2)+2(h-1)+1 = 3h+1
e Split on all levels and create new root node
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Deleting Keys

e |f found in Internal node

— Choose smallest value from right subtree and replace deleted value
e This value must be in a leaf
e Works as well for largest value from left subtree

— Delete value in leaf and progress

e |f found in leaf
— Delete value
— If blocks underflows, choose one of neighboring blocks

— If both blocks together have more than 2k records: Distribute
values evenly; adapt between-key in parent node

— Otherwise — merge blocks
e One block with records plus middle value in parent
 Remove middle value in parent block — which now might underflow

— Might work recursively up the tree
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Delete with Underflow

e Delete 40 0
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Delete with Underflow

e Borrow from
right subtree

e Underflow
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Delete with Underflow

e Merge with left
neighbor
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Delete with Underflow

e Delete 45
e Underflow
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e No local
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Delete with Underflow

e Merge blocks

e Parent
underflows
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Delete with Underflow

e Up the tree
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Complexity of Deleting Keys

e Going down costs h+1 10 at most
— If key found in leaf, it costs h to read and 1 to write

— |If found in internal node, we still have to read h blocks to choose
replacement value from leaf

e If no underflow, total cost is h+2

e |f local underflow (with merge), total cost is ~h+6

— Checking left and right neighbor, writing block and chosen
neighbor, writing parent

e |If blocks underflow bottom-up, total cost is at most 4h-2

— If left and right neighbors have to be checked at each level
— Similar argument as for insertion
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B-trees on Non-Unique Attributes

e Option 1: Compact representation
— Store (value, TID,, TID,, ... TID,)
— Difficult— internal nodes don’t have fixed number of pairs any more
— Requires internal overflow blocks

e Option 2: Verbose representation
— Treat duplicates as different values
— Constraints on keys change from “<" to “<”
— Extreme case: Generates a tree although a list would suffice

e Better: B+ trees
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Content of this Lecture

e B Trees
e B+ Trees
e Index Structures for Strings
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B+ Trees

e Dense index on heap-structured data file

e Internal nodes contain only values and pointers
— Values demark borders between subtrees
— Concrete values need not exist as keys - only signposts

e Leaves are chained for faster range queries

B+ Tree as dense index

) |
\/)U\‘%/I\/ Data file organized

as heap file
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Operations

e Searching
— Essentially the same as for B trees
— But will always go down to leaf — marginally worse 10 complexity

e Insertion
— Essentially the same as for B trees
— Keys are only inserted at leaf nodes
— When block is split, no value moves upwards
e Parent block still changes — new signpost
* Typical choice: avg(Viedian-1: Vimedian+1)
e Deletion
— Deletion in internal node cannot occur

— When blocks are merged, no values are moved up
e But signposts in parent node are deleted as well
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Advantages

e Simpler operations

e Higher fan-out, lower 10 complexity
— No TIDs in internal nodes - more pointers in internal nodes
— Much reduced height (base of log() changes)

e Smoother balancing: Chose signposts carefully
— Can save further space — Prefix B+ Tree (later)
e Linked leaves

— Faster range queries — traversal need not go up/down the tree
— Optimally, leaves are in sequential order on disk

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017
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B* tree: Improving Space Usage

e Can we increase space usage guarantee beyond 50%7?

e Don‘t split upon overflow: Move values to neighbor blocks
as long as possible
— More complex operations, need to look into neighbors
— We only split when all neighbors and the current block is full

e When splitting, make three out of two
— We only split when all neighbors are full — choose one
— Generate three new blocks from the two full old ones
— Each new block as 4/3k keys: Guaranteed 66% space usage

e Knuth, D. E.: The Art of Computer Programming, Volume 111: Sorting and Searching
Addison-Wesley, 1973
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B+ Trees and Hashing

e Hashing faster for some applications
— Can lead to O(1) 10
— Assumes relatively static data and good hash function
— Requires domain knowledge

e B+ trees
— Very few 10 if upper levels are cached
— Adapts to skewed (non-uniformly distributed) data
— More robust, domain-independent
— Also support range queries

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017
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Loading a B+ Tree

 What happens in case of
create 1ndex myrdx on LARGETABLE( 1d);

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017
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Loading a B+ Tree

 What happens in case of
create 1ndex myrdx on LARGETABLE( 1d);

e Naive: Record-by-record insertion
— Each insertion has 3h+2 = O(log,(b)) block 10
— Altogether: O(n*log, (b))

e Blocks are read and written in arbitrary order
— Very likely: bad cache-hit ratio

e Space usage will be anywhere between 50 and 100%
e Can’t we do better?

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017
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Bulk-Loading a B+ Tree

e First sort records
— O(n*log,,(n)), where m is number of records fitting into memory
— Clearly, m>>k

e Insert in sorted order using normal insertion
— Tree builds from lower left to upper right
— Caching will work very well
— But space usage will be only around 50%

e Alternative
— Compute structure in advance
e Every 2K'th record we need a separating key
e Every 2K'th separating key we need a next-level separating key

— Can be generated and written in linear time

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017
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Content of this Lecture

e B Trees
e B+ Trees

e Index Structures for Strings
— Prefix B+ Tree
— Prefix Tree
— PETER
— PEARL
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Prefix B+ Trees

e Consider string values as keys

e Keys for int. nodes: Smallest key from right-hand subtree
— Leads to internal signposts as large as keys

e Prefix B+ trees — Shortest string separating largest key in
left-hand subtree from smallest key in right-hand subtree

g - Advantages: Reduced space usage,
OF : higher fan-out
/5 \ Disadvantages: Overhead for computing
/ \ signpost (more 10)
> 5 oG = Variable-length records in
ERs £¢ 2 E internal nodes
S5 ES £
<3 ) g S5 N
N i N
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Prefix Tree

e |f we index many strings with many common prefixes
— ... as in Information Retrieval ...
— Why store common prefixes multiple times?

e Prefix trees

— Store common prefix / substring in internal nodes
— Searching a key k requires at most |k| character comparisons

a | Bass
Dat | 3]
e
M| odelle
Tnbank |5
u ™ p_-| rache
m v | stemn
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Indexing Strings

e Prefix/Patricia trees traditionally are main memory
structures
— How to optimally layout internal nodes on blocks?
— Not balanced — no guaranteed worst-case 10

e More index structures for strings
— Keyword trees — searching for many patterns simultaneously
e Necessary for joins on strings
e Persistent keyword trees — challenge
— Suffix trees — indexing all substrings of a string

» Necessary e.g. to search genomic sequences
» Persistent suffix trees — challenge in advancement
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PETER

e Rheinlander, A., Knobloch, M., Hochmuth, N. and Leser, U.
(2010). "Prefix Tree Indexing for Similarity Search and
Similarity Join on Genomic Data". SSDBM 2010

e Computes joins / search on large collections of long strings
much faster than traditional DB technology

e Also handles similarity search / similarity joins
e QOpen source
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Prefix-Trees (also called Tries)

e Given a set S of strings cattga, gatt, agtactc, ga, agaatc
e Build a tree with
— Labeled nodes

— Qutgoing edges have
different label

— Every seS is spelled on
exactly one path from
root

— Mark all nodes where an
s ends
e Common prefixes are
represented only once

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017
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Searching Prefix-Trees

Search t="agtcc”

e Searchtin S

e Recursively match t with a
path starting from root
— If no further match: t¢$S
— If matched completely: teS

e Search complexity

— Only depends on depth of S
— Independent from |S]|

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017
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Compressed Prefix Trees

e More complex implementation
e Different kinds of edges/nodes

UIf Leser: Implementation of Database Systems, Winter Semester 2016/2017
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Large Prefix Trees

0 GD)
r \\\ S ,!\
- T — L
T ""'--.__\_ 1
- " L]
- - \
- ¥ R N
e, N, |up|  esTstring
N
.
e AGTT
[:j TITTCCTT CATTECT et _» 3 |cToaTTICCT
1-“__'“--__ 15“"-_ _ay| 4 |CTGAGATTGGT
T —p 5 |CTGAATTTTCCTT
X ¥ 6 |acaccT
1CCE|\'I'I '--.____ ______ > ACACCTCCCA TT

e Unique suffixes are stored (sorted) on disk

e Tree of common prefixes is kept in main memory
— Most failing searches never access disc
— At most one disc 10 per search
— [If tree fits in main memory]
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Similarity Search on Prefix-Trees

e |n similarity search, a mismatch doesn’t mean that tgS

e Several mismatches might be allowed
— Depending on error threshold

e |dea
— Depth-first search on the tree as usual
— Keep a counter for the n# of mismatches spent in the prefix so far
— If counter exceeds threshold — stop search in this branch
— Pruning: Try to stop early
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Example: Search

Hamming distance search for t = CTGAAATTGGT, k=1

. dca=1 ()

@ CTG TGCCTGOTA
1
i
S [
e i

\\ D EST string
"
1 [TGCCTGGTA
S
A 2 |sacTTACCG
¥ 3 |cToaTrrecT
| 4 |cToacaTToCT
5 |croaaTTrrECTT
| & [ACACCT
__________ » 7 |ACACCTCCGATT
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Example: Search

Hamming distance search for t = CTGAAATTGGT, k=1

/

AGTTACGO CACC

@ TG TGCCTGGTA
d(CT..AA.)>1 ﬁ d(CT AC )> 1 ﬂ
" -\"""--._\_‘5 ‘\\\

%
T Y, | UID EST string
" \‘
1 [TGCCTGGTA
L
A o |aacTTACCG
¥
[T:]H ATTTTCCTT GATTGGT TITeeT).___.-¥| 3 |cTeATTTECT
H%“H -__n_""*--_ T _op| 4 |CTGAGATTGET
h o == ———-—-—-------_: ————— = 5 |CTCGAATTTTCCTT
_p 6 |ACACCT
L i -
(T e —— TTTTTTmemmmoooeTI I “» 7 |ACACCTCCGATT
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Example: Search

Hamming distance search for t = CTGAAATTGGT, k=1

==

ACTTACGO CAaCC

)

CTG TOCCTOGOTA
C_,
. I
| i
= ,
. |

L

d(CTGACTGA=0,
N
T

Ui EST strimg
1 [reccTooTA
A o |aacTTACCG
T 1“““»,%“ | 4 |cToAcaTTGET
T T e [ PRV ————
¥ 6 |acaccT
--------------------- --» 7 |acaccTccoaTT
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Example: Search

Hamming distance search for t = CTGAAATTGGT, k=1
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Example: Search

Hamming distance search for t = CTGAAATTGGT, k=1
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Example: Search

Hamming distance search for t = CTGAAATTGGT, k=1

==

— \
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(Similarity) Joins on Prefix Trees

e \We compare growing prefixes with growing prefixes
e Essentially: Compute intersection of two trees

e Traverse both trees in parallel
— Upon (sufficiently many) mismatches, entire subtrees are pruned

e Exact and similarity join

I ENl Oy mn i 1 =1
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Evaluation

, # BEST AVE.- min/max #£ treo #£ exXt.
Set . string : .
Strings length nodes suffixes
length
Tl 307,542 348 14/3,615 580,062 203,764
To 736,305 38T 12/3,707 1,482,700 680,590
Tog 368,152 382 12/2.774 711,632 352,872
Tap 184,076 385 22/2.774 349,329 77,846
Toe 92,038 383 25/2.774 171,964 850,198
Tagq 46,019 381 28/2.774 84,054 44.716
Tog 23,009 373 31/ BTH 42,375 22 366
Ty 10,000 536 16 /3,707 16,310 8,774
TX 5,000,000 3590 14/3,247 10,478,214 4,834,231

e Data: Several EST data sets from dbEST
— Search: All strings of one data set in another data set

— Join: One data set against another data set
— Varying similarity thresholds

e (Linear) Index creation not included in measurements
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Search: Comparing to Flamingo (2011)

e Flamingo: Library for approximate string matching
— http://flamingo.ics.uci.edu/
— Based on an inverted index on g-grams
— Uses length and charsum filter

10000

@

(1%}

<1000

o)
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uEﬂ 100 B FETER
= M flaminga
o O (a)grep
= 10
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o

=

@ 1

0 1 y) 3
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PETER inside a RDBMS

e We Iintegrated PETER into a commercial RDBMS using its
extensible indexing interface

— Joins: table functions

— Tree stored in separate file, suffixes stored in table
e Hope

— As search complexity is independent of |S], ...

e we might beat B+ trees for exact search on very large |S]|
e we might beat hash/merge for exact join of very large data sets

e First hope not fulfilled

— API does not allow caching of tree — index reload for every search

— Large penalty for context switch through API
e Especially for JAVA!
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String Similarity Search in a RDBMS

e Peter (behind extensible indexing interface) versus UDF
Implementing hamming / edit distance calculations

e Difference: 2-3 orders of magnitude, independent of data
set, threshold, or search pattern length

B PETER (hd) EAPETER (2d) HUDF(hd) [ UDF (ed)

10000 w:\

1000

100

N Z

10 w

1

Awg. execution timesin ms.

k=1 k=2
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(Similarity) Join inside RDBMS

e PETER (behind extensible indexing interface) versus build-
In join (exact join, hash and merge) or UDF

e Similarity join
— Join T3 with T2e, k=2, inside RDBMS: Stopped after 24 h
— Same join with PETER: 1 minute

e Exact join

aoooon

— For long strings, PETER ][] S s
Is significantly faster s - Qsantirs o
than commercial join o
Implementations J

=F I | ]

(b) Join
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PEARL: Multi-Threaded PETER

9000

8000 -

7000
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PeARL (1 threads) ---—+---
Flamingo (1 thread) ---»--- .
PeARL (24 threads) -~ %--- e o I ) x
- - _'_)\{-_ .
e eememeer -
— -__'_"J
+-- ........................................... *-
*.. ........................... | l l l
1 15 2 25 3
error

Rheinlander, A. and Leser, U. (2011), “Scalable
Sequence Similarity Search and Join in Main
Memory on Multi-Cores”, HiBB, Bordeaux, France.
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Room for Improvement

PeARL speed-up
14 - limear spoed-up
amdahl p=0.9 -------
12 |-
10
2 sl
H
E -
4+ —
R .-rr_|l"'
2 - =
.--’"ﬂ
(] 1 L | I I
o 2 4 E o "

#COras

Fig. 7. PeARL speed-up for similarity search on k=2.
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Why?

UIf Leser:

canstruct I5L of
partition pairs

that reed to be g ",
|einec -' \
mapTaskList (M= === ——————— == = Magtar |
% T
extradt partison when all map threads
palr for join * 5 have finished, partition
lllll""ﬂ. | @0 nfermediats kay
Wiy
"."'-x % I
PRARL Indax for A | : i : :
! "-"‘ % Map Fhase : i | intermediate Besuits ; P Paeduce PRase G
bt : : i v :
II" "S‘ :\ Thiroad T : : I ".urnrmnu ':'-"'; —_— ; . Thraad 1
"\; 1 B 'i Fartition 1 | ¢ : .
¥ N . PR ;
x'{ % - ! | ; “ i
s, ¢ 1I'|. % oo | - ; :
. SR : : e Iy
, A Y ) i S SR . .
i “ rd e i ¥ % : B o L - " )
- 1 i bermnd ate ; :
. : . —_— —_— . —_—l
load trie partitions” ™. | 1 : UL Residns ) H H
inktg mam memsy - ¥ : i o "y
~ - v ot .
- ™, \ -, : ; P wrie Tial
R \ . '\-l i : - - ragilts o fle
H H i Intermadate
T i H .—-—h— i
: :‘.., Thread N I I:"fu" i M Theaad M
PelRL Index fer & compute semilarty (om
beween all iIndex tem@ooranly stone joln results 00T
partitions fram F_R ard F_S wilthim grror threshold

Fig. 2. MapReduce workflow of similarity joins in PeARL.
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