URBI Tutorial for Urbi 1.0
(book compiled from Revision 245M)

Jean-Christophe Baillie
Mathieu Nottale
Benoit Pothier

URBI Tutorial for Urbi 1.0: (book compiled from Revision 245M)
by Jean-Christophe Baillie, Mathieu Nottale, and Benoit Pothier

Published
Copyright © 2006-2007 Gostai ™

This document is released under the Attribution-NonCommercial-NoDerivs 2.0 Creative Commons licence (http://creativecommons.org/licenses/
by-nc-nd/2.0/deed.en).

http://creativecommons.org/licenses/by-nc-nd/2.0/deed.en
http://creativecommons.org/licenses/by-nc-nd/2.0/deed.en

Table of Contents

O [gL oo (8 1o o R P T PP PP PPPPPTI 1
2. INSEAIING URBIeieeeii ettt ettt e ettt et e et e et e b e e et e e e na e e eaaas 2
Installing the MemOrystick fOr ATDOooeue i e 2

R 1 £ 1116 TSP PPT P PUPPPTTRPPPPTN 5
Setting and reading 8 MOLOT VBIUEuuiiiiii ettt e et e e et e e eabe e eeees 5
Setting speed, time or SINUSOIdal MOVEMENEScouutiiiiiiii ettt 6
DiISCOVEITNG VAITADIES ...t ettt e e ettt e et et e e et e e e enbn e eeenes 6
General Structure for Varialleso.uueiiii e 7

Device values and .Val @I85iiiiiiiiiii e 7

Making "global" VariabIESccoouiiiii 7
EXIIESSIONS ...ttt et e e e e e et e e e e e e e aeen 7

[S PP PTTT TP 8
Running commands in Paralleleioiiiiie e 8
COoNFlIICHING BSSIGNIMENTSeeete ettt ettt e e ettt e et e e et et e e e e et e e e e et e e eeenn s 9
Useful device variables and Propertiescoeeueoiii et 10
USEFUL COMIMEINGS ...ttt et e ettt e e et et e e et et e e e e e ta e e e e ebe e eeeenn e eeees 10

4. MOre aiVanCed FEAIUIEScoeiti ettt e e et e et e et e e e e et e e e e eba s 12
Branching and [O0PINGuoieeitieiiii ettt et e e ettt ettt e e et et e e e et e e erb e een 12

] PSP PP PP 12

WHETE L et 12

L0 0 [0 (=" o: o [PPSR 13

[ole] o [T o] F PP PPTTRPPPPPI 13

Event catChing MEChANISMScoiiiiei et e s 13
TSP PP UPPPTINN 13

0= 0TS = PSP SPPPTTI 14

WA, WaITUNTI oo e ettt et e et e et e e e et e e eaaeaaas 14

timeout, StOPIf, FrEEZEIT e 14

S0 (= £ PP PPT P PPPPPTRR PPN 15

Mt @VENES ..o ettt 15

Command tags, flags and command CONLIOLcoouuuiiiiiii e 16

10 o] o o [0 11 o] oo E T PSPPI PPP PR 17
FUNCEION AEFINITION ...ttt et e et e e et eeeena s 18
Error messages and SYSLEIM MESSAJEScveuruueeiiti ettt e e ettt e e e eete e e et et e e e eate e e e eeta e e eenta e eeentaaaeeenes 19

5. ODJECES IN URBI ...ttt et et e ettt e ettt e ettt e e et ebb e r e e e e rb e e eera e aaes 20
DEFINING G CIBSS ... eeiti ettt ettt e ettt e et et e e et et e e e e ab e e e enb e eeee 20
Virtual methods and attribDULEScoouuniiiii e 21
Lo o PP 22

T g0r= e (o = 1] o TP PPTER PP 23

6. The ball tracking EXamMPIE i et 25
Ball ELECHION ...ttt ettt ettt et e 25

THE MEIN PIOGIAIM ... ettt ettt ettt ettt et et e et e e e et et e e et et e e e e et n e e e enaaeeeenan s 25
Programming as @ behavior graph ... 27
Controlling the execution Of the DENAVIONiiiiii e 28

7. IMBGES BNA SOUNCSeeeiteeeett ettt e e et e ettt e e et et e et e et e e et eb e e e e ab e e e enaanes 30
ReBAING DINAIY VAIUBS ...ttt ettt e et e e e e e e 30
SEtiNG DINANY VAIUBSottt e ettt e ettt e e e et e e e eena e eaeee 30
ASSOCIALEA GEEITDULES ...ttt ettt ettt e et e e e e e 31
Binary Operation EXAMPIESuuiiiiiiiiee ittt e et et e e e e e e e a e aees 32

8. The TBUIDI TN Ct e e e e ettt e e et ettt e e ettt e e e et e e eantnaaeeees 33
WAL IS TTDUPDI? ... ettt et e et e et e e e eba s 33
Components and TIBUIDIu e 33

URBI Tutorial for Urbi 1.0

LT 1110 TS - (<o 34
= 0T [T o w0 0100 T= o 34
Sending binary data and SOUNCSouiiiiiiiii e e e eaa 35
RECEIVING MIESSAgES ...iitueiii ettt e et e et e e e et e et e e et e e et e e et e e et e e et e et e e et e e st e eetn e eaneeat e eennaeeennns 35

(D= = 1Y 0= PRI 36

L0 1SS o = TP 36

LU PSP 36

L] 27T YR N 37

LU0 11 o PSP 37

L 1107 o PP PRSP 37
Y1 e 001U Sy o o= = o) S 38
Synchronous read of @ deVICE VAIUEcouuniiii e 38

Getting an image SYNCAIONOUSTYc.uuiiiiiiii e e e e e e e e e e eaaas 38

Getting SouUNd SYNCAIONOUSTYcvvuiiii e e e e e e e e e et e e et eean e eees 38

100001V £ To o I 11 o1 o] PP 39

The "Urbiimage” EXaMPIE .. .oue e e e e 39

9. Create components: the UODLJECt arChitECIUIEc.uiiiiiieii e e e e e e e e e aes 41
L@ o] = o SRR 41

LI L= 7= = k=P 41

y o (o] g To =1 o0 1= P 43

Binding fUNCLIONS N0 BVENESuiiiiicii e e e e e e e e e e eaa s 44

LI PP 45

Advanced tyPeS fOr DINAIEScciiu i e e e e e e e e aen 45

The "10ad" @HIOULE ... e e e e e e e e eanas 46

The "remMOtE” GHIDULE ..o e 47

The Colormap EXAMPIE ... i e e e e e e et e e e eaaees 47

The practical side: how to use create an UODJECE?ovvviiiii i 50

O . 0 a g To =L (T 1= i 4T N 57
TYPICAl USBOES EXAMPIES ... iiiieii et e e e e e e e e et e e et e e et e e et e et e e et e e eaneeeees 59

N 0T oY/ 1 o | o) 60

List of Figures

4.1. A typical MOtOr deviCe NIEIraICHYociiiii e
6.1. The ball tracking DENAVIOr graphco.uuiiii e e e e
10.1. The general URBI architecture, putting all togetheroooeiiiiiii e

Vi

Chapter 1. Introduction

URBI (Universal Real-time Behavior Interface) is a scripted interface language designed to work over
a client/server architecture in order to remotely control arobot or, in a broader definition, any complex
system. Asit will be showninthistutorial, URBI for robotics is more that a simple driver for the robot, it
isauniversal way to control the robot, add functionalities by plugging software components and develop
afully interactive and complex robotic application in a portable way.

The main distinctive qualities of URBI are the following:

» Simplicity: easy to understand, but with high level capabilities, makes it suitable both for educational
and professional applications.

* Flexibility: independent of the robot, system, OS, platform, interfaced with many languages (C++,
Java, Matlab,...)

» Modularity: object based component architecture is available to extend the language. The components
can be remote or plugged in the URBI Engine, they can be written in any language.

» Pardlelism: Paralel processing of commands, concurrent variable access policies, event based
programming,...

Probably one of the most important point for this tutorial is the first one: URBI has been designed from
the beginning with a constant care for simplicity. There is no "philosophy” or "complex architecture” to
be familiar with. It is understandable in a few minutes and can be used immediately. The way URBI has
been designed is to have layered levels of complexity: the more complex your application is, the more
complex things you have to learn, but simple applications remain simple to develop. If al you want isto
move the robot joints, you can do that in one minute. And if you want to build Al applications, the tools
are there for you to do so.

URBI is available with many robots and the number is increasing. Currently, there is an URBI version
for Aibo, for the HRP-2 humanoid robot, for the Webots universal smulator and the Pioneer robots, the
PhilipsiCat robot, and other humanoids are on the way.

The Webots simulator compatibility means that it is possible to switch from the real robot to simulation
with asimple IP address change, and this makes URBI particularly suitable for applications that need to
frequently go back and forth between real/simulated robots.

In thistutorial, we have tried to make a step by step description of URBI which goes from simple motor
commands up to more complex programming including software components integrated in URBI. It is
meant to be understandabl e by people having little or no background in robotics and programming (except
for the C++ sections, which require that you understand C++ at a basic level). However, from time to
time, we have inserted explanations or complements that will probably make sense only for advanced
users or academics/industrials. These inserts are presented with a small academic sign as shown on the
left of this text.

Chapter 2. Installing URBI

We cannot detail in thistutorial how to install URBI for any particular robot type, but the general ideaisto
have the URBI server program loaded and running on your robot. The processto do so should be described
inthe INSTALL file of the package you have downloaded. In theideal situation, URBI is preinstalled on
your robot anyway.

Since we will use many Aibo examples in the tutorial, we give here the instructions on how to install
URBI onan Aibo robot. We also describe how to install URBIL ab which isasimple and convenient cross-
platform graphical client to replace telnet.

Installing the memorystick for Aibo

First, download the precompiled memorystick for your specific robot. There are two possibilities at the
moment:

o ERS2xx : http://www.urbiforge.com/ers200
* ERS7: http://www.urbiforge.com/ers7
Quick instructions:

Unzip the archive and put the content of the MS-xxx directory on a blank memorystick, updating the
WLANCONF.TXT file with your specific network config.

Detailed instructions:

Untar/Unzip the memorystick archive corresponding to your Aibo. Y ou should get adirectory named
MS-ERS7 or MS-ERS200. Enter into this directory.

Fromthe MS-ERS7 (or M S-ERS200) directory, go to the OPEN-R/SY STEM/CONF directory. There
should be a WLANCONF.TXT file here (or you must create it), to configure the network properly.
There is no official documentation on the how to write the WLANCONF.TXT file, but here is an
example that you can customize for your robot:

HOSTNAME=ai bo. mydonai n. com

ETHER | P=192. 168. 1. 111 # <—your |P here
#

WLAN

#

ESSI D=0a3902 # <—your SSID here
WEPENABLE=1 # <—WEP or not
WEPKEY=0x4B2241785B # <—the key: hexa
#WEPKEY=ABCDE # <—ASCI| w th ERS2xx
APMODE=1

#

http://www.urbiforge.com/ers200
http://www.urbiforge.com/ers7

Installing URBI

| P network
#

USE_DHCP=0
SSDP_ENABLE=1

This part can be omitted

Your network config here —
ETHER_NETMASK=255. 255. 255. 0

| P_GATEWAY=192. 168. 0. 3
DNS_SERVER 1=192.168.1.1

Y ou can use URBI on Aibo without the network if you don't have awifi access point, by putting your
URBI programsin the URBI.INI file.

Copy the content of the MS-ERS7 or MS-ERS200 directory in the root of a blank programmable
pink memorystick (a"PM S")l. Be careful that thisis*not* the Aibo Mind memorystick or one of the
blue memorysticks: actually, you must go and buy a specific aibo programming memorystick from
Sony, it is unfortunately not included in the Aibo package. Then, put this memorystick in the robot
and start it. Your URBI robot is ready.

Y ou can run telnet? on port 54000 of the robot to check if everything is OK:
tel net ai bo. gostai.com 54000

Y ou should get a URBI Header at start, which looks like this:

[000203805‘:3.”:] khkk kkhkkkhkkhhkkhhkkhkhkkhhkkhhhhhkhhhkhhkhhkkhhkhhkkhhkkhhhdhhkkhhkkhhkkkhkkhkhkdkx*%

[00020380:start] *** URBI Language specif 1.0 - Copyright (C) 2006 Gostai SAS
[00020380:start] *** URBI Kernel version 1.0 rev. 100

[00020380:start] ***

[00020380:start] *** URBI Engine 1.0 for Aibo ERS2xx/ERS7 Robots
[00020380:start] *** (C) 2004-2006 Gostai SAS

[00020380:start] ***

[00020380:start] *** URBI comeswith ABSOLUTELY NO WARRANTY;
[00020380:start] *** This software is free, and you are welcome to use
[00020380:start] *** it under certain conditions; see LICENSE for details.
[00020380:start] ***

[00020380:start] *** See http://www.urbiforge.com for news and updates.

[000203805‘:3.”:] khkk kkhkkkhkkhhkkhhkkhkkhhkhhhhhkhhhhhkhhkkhhkhhkhhkkhhhkhhkkhhkkhhkhkhkkhkhkkdkx*%

[00020380:ident] *** 1D: U595075704

One interesting benefit of the client/server architecture of URBI is that you can start right away to send
commandsto your robot with asimpletelnet client. It is of course possible and desirable to interface URBI
with a C++, Java or Matlab program, which will be described later with the liburbi (chapter "The liburbi
in C++"), but for the moment we will use asimple telnet interface.

However, telnet is a very crude and limited client (which does not always work well under Microsoft
Wi ndows3), and we have developed a cross-platform graphical alternative called URBI Remote that you
are encouraged to use. URBI Remote is free and released under a GNU-GPL License. Y ou can download
it here (available mid 2007):

31t works if you use cygwin, otherwise carriage returns are badly interpreted by the native Windows implementation of telnet

Installing URBI

http://www.urbiforge.com/index.php?option=com_content& task=view& id=75& ltemid=136

Other free third-partie graphical interfaces, like "Aibo-Telecommande" can be downloaded right now on
urbiforge.com.

http://www.urbiforge.com/index.php?option=com_content&task=view&id=75&Itemid=136

Chapter 3. First moves

In the following, we will use examples from the Aibo robot, but you can easily transpose them to your
particular robot. Each element of the robot (sensors, motors, camera,...) is an object and it has aname. In
the Aibo, you have objects for the head motors called headPan and headTilt. The camera object is called
camera. In the following will often use the term 'device' to refer to an object that handles some piece of
hardware in the robot. We have the camera device, the motor devices, etc.

Y ou can find out what devicesare availablefor your particular robot by checking the associated URBI Doc
online documentation (http://www.gostai.com/doc.php), or simply by typing the command group objects,

Setting and reading a motor value

We will make use of the motorsin the following, so first of all we have to start them:

nmot ors on;

"motors off" is of course also available and you can on/off any device (or more generally, objects) with
"device_name on/off". Now, let's start by moving the headPan motor to 30 degrees:

headPan = 30;

Now, let's ask what is the value of the headPan device:

headPan;
[139464: not ag] 30. 102466

The server responds with a server message (written in italic font here to make it easier to distinguish it
from commands) prefixed by atimestamp and a tag between brackets. Since there is no tag associated to
the command in this example, notag is used by default. It is very simple to associate a tag to a command
in URBI by prefixing the command with the tag and a colon:

nyt ag: headPan;
[139464: nyt ag] 30. 102466

The message has now the mytag tag. This will be crucia to know who is sending what when several
commands are running in parallel, or to stop commands that are running in the background.

You can try to set different motors, like legRF1 or tail Tilt, or play with LEDs like ledF1 or ledBMC, or
read sensor values like the distance detector distanceNear or the accelerometer accel X, accelY, accelZ.
The syntax is aways the same: device = value;.

What isreally behind the scene hereis not device = value, but device.val = value; which is actually setting
the val variable of the device object to 'value'. But to make life simpler for beginners, all devicesin aibo
have an alias which looks like that:

al i as headPan headPan. val

So, you won't see the hidden .val which is not necessary in normal operations and for beginners. Y ou can
remove those aliases (which are defined in URBI.INI) with unalias.

http://www.gostai.com/doc.php

First moves

Setting speed, time or sinusoidal movements

The above examples set the value of the device as fast as the hardware of the robot allows it. Of course,
you might want to do more complicated things like reaching avalue in a given time (in milliseconds):
headPan = 30 time: 3000;

Which will reach the value 30 (degrees) in 3000ms. Whenever you need to express atime valuein URBI,
you can explicitly use units like this:

headPan = 30 ti ne: 3s;
headPan = 30 ti ne: 3000ns;
headPan = 30 tine: 3m
headPan = 30 ti ne: 3h26ni5s;

Y ou can assembl e days (d), hours (h), minutes (m), seconds (s) and milliseconds (ms), with decimal values.
By default the unit is milliseconds if no unit is specified or when a variable expression is used.

Alternatively, you can also set the speed used to reach the value, expressed in unit/s:

headPan = 30 speed: 1. 4;

Or the acceleration (expressed in unit/s?):

headPan = 30 accel : 0. 4;

One very useful way of assigning a variable with a dynamic profile isto use asinusoidal oscillation:

headPan = 30 sin:2s anpli: 20,

Thiswill makethe headPan device oscillate around 30 degreeswith an amplitude of 20 degreesand aperiod
of 2s. Note that the command ends with a comma and not a semicolon. We will explain why later, but the
reason isthat the sinusoidal assignment never terminates and the comma sort of "putsit in background" to
allow other commands coming after it to be executed. Otherwise, with a semicolon, nothing coming after
this sinusoidal assignment could be executed since the command never ends. This is a common mistake
by beginners using URBI.

time, speed or sin are called modifiers. Many other modifiers are available like phase, getphase or smooth.
Check the URBI Language Specification for a comprehensive description of modifiers, or just play with
them to see what they do.

One particularly powerful modifier is function which assigns an arbitrarily complex function of time as
the variable trgjectory. Thisis described in the URBI Language Specification and will only be available
in servers with kernel 2.0 or above.

Discovering variables

You can use variables in URBI. Simply assigning a value to x will create a variable x local to your
connection:

X = 4;

First moves

X;
[146711: notag] 4.000000

General structure for variables

In URBI kernel 1.0, variable names are always of the form prefix.suffix and when no prefix is supplied,
a prefix local to the connection is silently added so that x in one connection will not interfere with x in
another connection.

For example, when you type x URBI will in fact use U596851624.x in its memory, with U596851624
being the identifier of your current connection (where you typed x in). In the same way, function calls
have alocal hamespace attributed, so that you can do recursive function calls without interferences. This
will be redesigned in URBI 2.0 with advanced name resol ution and name space support.

Device values and .val alias

Aswealready said before, thereisoneimportant exceptionto therule saying that variableswithout prefixes
are local: when you type headPan, URBI do not treat this as a local variable, but instead it applies an
alias that transforms the expression into headPan.val, which is a standard URBI variable containing the
devicevaue. So, inreality, headPan do not refersto alocal variable but to the global variable headPan.val.
Aliases are usually defined in the URBI.INI file.

Making "global" variables

There is no real concept of local or global variable in this version of URBI, as we have explained.
Everything is of the form prefix.suffix. Without prefix, the variableislocal to the connection but you can
use your own prefix to make your variable "global":

nmyprefix.x = "hello";

Actually, myprefix can be seen, and also defined, as an URBI object, as we will describe it in the chapter
"Objectsin URBI" which details the object oriented features of URBI.

Expressions

Note that the type of the variable (numeric, string, list or even binary aswe will seelater) isautomatically
inferred by URBI.

You can evaluate arbitrary complex expressions, including variables or known functions like sin, cos or
random (see the URBI Specification for the full list):

x=pi [/ 2;
calc:sqrt(1+sin(x));
[148991: cal c] 1.414213

One interesting feature is that modifiers in complex assignments are constantly reevaluated so that if
they contain variables, the value of the modifier might change over time as the corresponding variable is
evolving. Consider the following example which assigns to x a sinusoidal oscillation within a sinusoidal
envelop between 15 and 25:

the_anplitude = 20 sin:10s anpli:5,
X = 0 sin:2s anpli:the_anplitude,

First moves

Complex interactions between variables and devices value can be established with this feature.

Y ou can store severa elementsin alist with URBI, simply by putting them between brackets:

nylist =[1,2,35.12,"hello0"];

nylist;
[139464: notag] [1.000000, 2. 000000, 35. 120000, "hel | 0"]

You can easily add elements or add alist:

nylist =[1,2] + "hello";

nylist;

[146711: notag] [1.000000, 2. 000000, "hel | 0"]

x =1,

nylist + [45,X];

[148991: notag] [1.000000, 2. 000000, "hel | 0", [45. 000000, 1. 000000]]

Then, you can scan the content of alist with aforeach command:

list =[1,2];

foreach nin list { echo n };
[151228: notag] *** 1.000000
[151228: notag] *** 2.000000

Note that, for technical reasons, the code executed in the foreach command must be enclosed between
brackets, even if thereis only one command in it.

You can aso directly access an element of alist with its position, like in an array:

nylist =[1,2,"hello"];

nylist[2];
[146711: notag] "hell 0"

If you have lists containing lists, you can use multiple indexes like mylist[3][4] to access sub-elements.

Finally, you can also "traditionnaly” get the first element with head and the rest of the list (excluding the
first element) with tail:

nylist =11,2,"hello"];
head(nylist);

[146711: not ag] 1.000000

tail (nmylist);

[146711: not ag] [2. 000000, "hell 0"]

Running commands in parallel

Commands in URBI can last during a certain amount of time, this is completely new compared to most
other languages. We have seen so far that we can assign values with a certain time or with a certain speed,

First moves

or even assign values in asinusoidal way, which lasts forever. There are many waysin URBI to get these
commandsto run in parallel. We have already seen how to do it by using acommato separate commands
instead of a semicolon.

There is another way to specify that commands should be run in parallel, by using the & separator:

x=4 tine:1ls & y=2 speed:0.1;

The difference with the comma separator is that & forces the two commands to start at exactly the same
time. In particular this means that the first command cannot start until the second command is fully
available. So, typing x=4 time:1s & in the console will not start anything, because URBI is waiting for
what comes next, after the & (that's why we have the comma separator, which is less constraining and
allow you run commands interactively).

In the same way commands can be run serially, exactly one after the other, by using a pipe separator:

x=4 tinme:1ls | y=2 speed:O0.1;

Therewill be no time gap between the two commands so, here again, URBI waitsfor the second command
to be available: unlike the semicolon separated commands, the second command must start exactly after
the first, so it must be ready in advance.

Using semicolon or comma separatorsis more permissive, becauseit will start immediately any command
standing before the separator. But you might need strong time synchronization constraints, and that's why
& and | separator are here for.

Note that you can group commands between brackets and build a more complex architecture of parallel
and serial commands, like this:

{ { x=4 tine:1s | y=2 speed:0.1 } & z=0 sin:200ms ampli:4 } | t=2,

TIP: In general, it isagood ideato end commands entered in a console (URBILab or telnet) by acomma,
to avoid blocking the connection after entering a never-ending command.

Conflicting assignments

Since it is possible to run commands in parallel, possible conflicts might arise. For example, what will
happen if something like this is executed?

x=1 & x=5;

x=5 is a conflicting assignment since it accesses the variable x at the same time together with the first
assignment. URBI has several blending modesto handlethese conflicts, and you can specify these blending
modes with the blend property of the variable. For example:

x->bl end = add;

This will tell URBI to add the numerical values of any conflicting assignments on x. So, the result of
the above command will be 6. There is also a mix mode available, which does an average of conflicting
assignments (the result would be 3) and aqueue mode which will queue conflicting assignments (the result
will be 5). Other blending modes are available and described in the URBI Language Specification.

First moves

Variablesin URBI have properties which can be accessed with a-> redirector. Properties are not identical
to object attributes, they are part of the language semantics and therefore cannot be redefined. There are
many properties available, like rangemin, rangemax, speedmax, delta. They are described in the URBI
Language specification.

Note that blending modes al so apply for sound devices, like speaker on the Aibo, and changing itsblending
mode from mix to queue will either superimpose sounds or queue them when they are played together.

The add and mix modes are very useful to superimpose sinusoidal assignments to design complex

periodical movements, using a Fourier transform of the signal and keeping only the most significant
coefficients.

Useful device variables and properties

For the Aibo robot, and for most standard robots, you will find the following motor device variables useful
(replace device by the actual device name):

» deviceload : setsthe torque power in ajoint, between O (totaly loose) and 1 (rigid).
» device.PGain: set the P gain of ajoint in the associated PID.

e devicelGain: setthel gain of ajoint in the associated PID.

e device.DGain: set the D gain of ajoint in the associated PID.

Y ou @ so have useful properties, which arenot variablesin astrict sense (properties are part of the language
semantics), but you can read and set them:

» device->rangemin : minimal value of the device

» device->rangemax : maximal value of the device

» device->delta: precision of the device,used in fuzzy tests

e device->unit : unit of the device (for information only in URBI 1)

» device->blend : the device blend mode (normal, mix, add, queue, discard, cancel)

» device->info : some information about the device.

Note that the above properties are not properties of the device, but they are in fact properties of the
device.val variable, since we still assume here that aliases are defined on the device name.

Useful commands

Hereisashort list of useful commands that you might need in your URBI programs:

» reset: doesavirtual softwarereboot of the robot. Useful to erase a set of scriptsand send anew version
in the development stage.

» stopall : stop all commandsin every connections. A bit radical, but useful sometimes.

» reboot : reboot the robot.

10

First moves

shutdown : stops the robot.
uservars: display alist of the user variables.
strict : start the strict variable definition control policy (see the URBI Language Specification).

unstrict : cancels the effect of strict.

11

Chapter 4. More advanced features

At this point, you are already capable of reading and setting sensors and motors in your robot, execute
complex scripts or actions and superimpose motion patterns. This could be already enough for most users,
but there is more in URBI and the URBI language gives you access to al the programming constructs
found in modern languages plus other new constructs useful for robotics.

Branching and looping

while

The branching and looping constructs of C/C++ are also available in URBI: if else, for, while. The
following examples illustrate these constructs (the echo command that you will see smply displays the
EXpression as a system message).

if performs a single test and executes the associated command if the test is true:

i f (backSensorM > 0) {
pressed = 1;
echo "Back sensor pressed";

b

Note that the last command between brackets doesn't need to be ended by a semicolon like in the above
example. Thisis because semicolons are command separators and not command terminators. Y ou can put
asemicolon at theend likein C, but it is not required and it has not effect (it adds an empty command).

if (distance < 10)
echo "Cbstacl e detected"”
el se
echo "No obstacle";
[167322: notag] *** No obstacle

Note that, unlike in C, there is no semicolon before el se, but there is a semicolon (or any other command
separator) after the concluding }.

distance and backSensorM are two Aibo devices related to the head infrared distance sensor and to the
middle (M) back sensor.

The while construct is similar to what is availablein C:

i =0;
while (i<=2) {
i :echo i;
i ++;
b
[151228:i] *** O
[151228:i] *** 1

[151228:i] *** 2

12

More advanced features

for, foreach

The for construct is similar to what is availablein C:

for (i=0;i<=2;i++)
i :echo i;
[151228:i] *** 0O
[151228:i] *** 1
[151228:i] *** 2

Unlikein C, URBI has specific constructs to handle parallel and seria loops: for&, for| and whilel. These
constructswill start every iterationin parallel (with &) or in series(with |) with aguaranteed time constraint.
More details are available in the URBI Language Specification.

Aswe already mentioned before, there is also aforeach and foreach& construct to iterate lists:

foreach i in [0,1,2] {
i :echo i;

b

[151228:i] *** O

[151228:i] *** 1

[151228:i] *** 2

foreach is an exception: even when theiterated command is a single command, like in the above example,
you must enclose it between brackets.

loop, loopn

For practical reasons, URBI has added two more constructs, loop and loopn to create infinite loopsin the
first case and loops iterating n times in the second case. The syntax is:

loop { ... }

and

loopn (n) { ... }

Event catching mechanisms

at

at works abit like if, expect that isit always running in the background:

at (di stance < 50)
echo "Cbstacl e appears”;

The echo command in the above example will start at the time when the test becomes true, only once. To
be more precise, at triggers the command when the test switches from false to true. It is very useful to
start an action when a condition is met to react to this condition. If you run the above code, the message
"Obstacle appear" will be displayed once when you move your hand in front of the Aibo.

onleave is a hit like else and is followed by an action that will be executed when the test switches from
trueto false:

13

More advanced features

at (di stance < 50)
echo "Cbstacl e appears”
onl eave
echo "The obstacle is gone";

whenever

whenever works a bit like while, except that it never terminates and run in the background:
whenever (di stance < 50)
echo "There is an obstacle";

The echo command will be executed whenever the test istrue. Then, it will be executed again if thetestis
till true, and so on, until the test becomesfalse. Whenever the test switches to true again, the loop restarts
and the command is executed. Compared to the at example above, the differenceisthat the message " There
is an obstacle" will be displayed several times, as long as you leave your hand near the head of the robot.

Alternatively, you aso have an else construct available to specify something to do when the test isfalse:
whenever (distance < 50)

echo "There is an obstacle"
el se

echo "There is no obstacle";

whenever and at are the two fundamental constructs that you will use when doing reactive programming
and event catching mechanisms on your robot.

wait, waituntil

The command wait (n) will wait for n milliseconds before ending. It is useful to have atemporal bresk in
a series of commands, typically motor commands:

headPan = 0 | wait(1ls) | headPan = 90;

The command waituntil (test) waits until the test becomes true and can be useful to synchronize different
parallel programs on a given condition.

timeout, stopif, freezeif

The command timeout (n) cmd will execute the command cmd and stop it after n millisecondsiif it is not
already finished.

ti meout (10s) loop | egRF2 = | egLF2;
The command stopif (test) cmd will execute the command cmd and stops it when the test becomes true.

Of course, if the command is already finished, nothing special happens.

st opi f (di stance<50) robot . wal k() ;

14

More advanced features

The command freezeif (test) cmd will execute the command cmd and freeze it when the test becomestrue.
When the test is false again, cmd is unfreezed.
freezeif(!ball.visible) trackball ();

This can be very useful to specify that certain portions of code should run only when certain conditions
are met.

Soft tests

Thetestsused in event catching commandslike at, whenever, waituntil, stopif or freezeif can be associated
to time constraints, becoming "soft tests":

at (headSensor >0 ~ 2s)
echo "Head touched...";

This means that the test has to be true for 2 seconds before it becomes actually true for the at command.
You can specify the timein s or ms by using the appropriate suffix and it should be separated from the
test by atilde ~

Soft tests are usable with any event catching command and they are very useful in robotics as a simple
noise filter for sensor inputs.

Emit events

Event programming is a very useful feature and a good way of doing robot programming. The basic idea
of event programming is that some command emit an event and some other catches this event and do
something.

Simple events
To emit an event, the emit command is available in URBI, and you can use at or whenever to catchit:
at (boon()) echo "boom";

emit boom
[139464: notag] *** booml

Note that the boom event hereislocal to the connection. If you want to make the event visible from other
connection, you should use a prefix, like myprefix.boom.

Events with parameters

Y ou can add parameters to events like this:

emt myevent(1,"hello");

The parameters can be retrieved when the event is catched:

at (nyevent(x,y))
echo "catch two: " + x + " " +vy;

15

More advanced features

at (nyevent (1, x))
echo "catch one: " + Xx;

The second at here is interesting asit is doing a filtering on the event parameters, accepting only events
whose first parameter equals 1:

emt myevent(1,"hello");
[146711: notag] *** catch two: 1.000000 hello
[146711: notag] *** catch one: hello

emt myevent (2, 15);
[148991: notag] *** catch two: 2.000000 15.000000

Event duration

Events usually have a virtually null duration, they are just spikes (Dirac functions of time). However,
you can explicitly request that an event lasts for a certain duration by specifying this duration between
parenthesis like this:

em t(10s) boom
em t(15h12m) nyevent (1, "hello");

Thiswill make adifference between at and whenever event catcher for example: whenever will loop during
the whole event duration.

Pulsing events: the every command

Y ou can have any command repeated at specific time intervals in URBI, using the every command. The
following example will say "hello" every 10 minutes:

every (10m echo "hello";
Onetypical usage isto use the every command to pulse events at regular intervals:
every (100nms) enit pul se;

To stop the emission, just use stop on the every command with the appropriate tag :

nmypul se: every (100ns) enmit pul se;
stop nypul se;

Command tags, flags and command control

The tagging mechanism described in the beginning of this tutorial is actually more than just a message
tagging facility. For example, you can stop any running command with the stop command, from any
connection:

nyl oop: | oop | egRF2 = | egLF2,
stop nyl oop;

You can aso freeze a command with the freeze command and unfreeze it (it will restart where it was
before freezing) with the unfreeze command. Thereisalso ablock/unblock pair of commandsto block new

16

More advanced features

commands with a given tag and prevent them to be executed. Note that tags can prefix a set of commands
between brackets, like{ ...}, and it can be associated to large portions of code, not only single commands.

Next to the tag, it is possible to use one or more flags. Flags are keywords prefixed by a+ sign. The most
useful flags are +begin and +end which send a system message when the command starts or stops, or +bg
which puts the command in background. Here are a set of illustrating examples:

nyt ag+begi n:
| oop | egRF2 = | egLF2,
[139464: nytag] *** begin

+begi n+end:

wait (1s);

[521200: mytag] *** begin
[522200: mytag] *** end

More flags are described in the URBI Language Specification.

Since URBI 1.0, you can use hierarchical tags like mytag.subtag. The advantage is that you can stop a
whole hierarchy based only on the highest tag: the above tag can be stopped with a stop mytag.subtag and
astop mytag aswell, and you can group commands more easily with this mechanism. Future version will
also include multi-tagging to even increase the possibilities.

Objects grouping

Animportant feature of URBI isthe capacity to group objectsinto hierarchies. Thisis done with the group
command: group groupname { objectl, object2, ...}, for example:

group | egLF {legLFl, |egLF2, |egLF3};
group legs {legLF, legLH |egRF, |egRH};

Figure4.1. A typical motor device hierarchy

leqs

=

rd—f /N

leglF leglH leaRF legRH

«-"’_,’-’-' /\x‘h
leaLF1 legLFZ leglF3

This grouping feature is associated to the notion of "broadcasting”, which is used for several things. One
isto make multi-object assignments: any assignment is executed for the group and is recursively passed to
child subgroups. In other words, using the example above, the command legLF.val = 0 will set the value
of legLF1.val, legLF2.val and legLF3.val to O (note that aliases work also here if you want).

17

More advanced features

group ab {a, b};
ab.n = 4;

a:a.n, b:b.n,

[167322:a] 4.000000
[167322: b] 4.000000

For any robot, there will usually be a hierarchy of object grouping available at start. Thisis usualy done
inthe URBI.INI file, or std.u.

For example, with the Aibo, there is a motors group to store all motors and a leds group which contains
all led devices. You can easily set every LEDs to arandom value with acommand like this:

| eds = random(2); // alias applies here
For fun, you can run something like: fun: loop leds = random(2), and see the result.

There is more about groups and broadcasting, which is a very powerful feature of URBI. We will come
back on this subject in the chapter "Objectsin URBI".

Function definition

To definefunctions, you will be using thefunction keyword, followed by the function namein prefix.suffix
notation (or simply suffix for a function local the connection), and the parameters between brackets (or
an open/close bracket () if there is no parameters). You can use return to return a value or to exit from
the function, likein C:

function addi ng(x,y) {
Z = X+y,
return z;

b

function print(x) {
echo x;
if (x<0)
return
el se
echo sqrt(x);

b

Note that there must be a semicolon or another command separator after the function definition, since
defining a function is a command like any other command in URBI.

The parameters are always local to the function call. Non-global (i.e. without prefix) variables in the
function body are aso local to the function call. Consider the following example:

a=4;

b=5;

function display(b) {
display_b:b; // b is local
var a=b; // creates a local variable a
di spl ay_a: a;

1

di spl ay(10); a: a; b: b;

18

More advanced features

[139464: di spl ay_b] 10. 000000
[139464: di spl ay_a] 10. 000000
[139464:a] 4. 000000
[139464: b] 5. 000000

A good ideaisto put all your functions in a separate file like "myfunc.u”, and load them with the load
command: load("myfunc.u"); This can be done from the URBI.INI file for example, or when you actually
need them.

To undef afunction, smply use:

del ete nyfunction;

Error messages and system messages

When a command failsin URBI, it will send an error message, prefixed by three exclamation marks:

i mpossi bl e: 1/ 0;
[167322:inmpossible] !!'! Division by zero
[167322:inmpossible] !!! EXPR eval uation failed

Note that the tag of the command is used in the error message, which is extremely convenient to know
what has failed in a complex program.

Error messages are different from system messages prefixed by three stars, and which usually display
information normally outputted or requested by the command. A typical example is echo with a +begin
and +end flag:

nmyt ag+begi n+end: echo "hell o there!";
[146711: nytag] *** begin

[146711: mytag] *** hello there!

[146711: nytag] *** end

19

Chapter 5. Objects in URBI

Object oriented programming is integrated in URBI, with many innovative features like virtual attributes
and broadcasting. This chapter introducesthe most important features of objectsin URBI. It can be skipped
by novice programmers but it is not very complex and can be useful reading for everyone.

Defining a class

Likein C++, you define aclass in URBI with the class keyword:

cl ass nycl ass;

Y ou can of course define what will be in the class, including three types of elements: variables, functions
and events:

class nycl ass {
var Xx;
var vy;
function f(a,b);
event signal nysel f(s);
1
It isimportant to notice here that, unlike C++ classes, myclass in the above example is also an instance®
and you can very well assign values to myclass.x and useit.

One important function that you might want to defineisinit, which is the class constructor (thisis another
differencewith C++, the constructor isnot named with the class name). Thisfunction should return nothing
or return O to indicate success or any other value to indicate failure.

To define the body of a class method, you should do it outside the class definition, like this:

class nycl ass {
var Xx;
function init(a);

};

function nyclass.init(a) {
X = a;

b

Y ou can defineasubclass (or instance, remember thereisno difference), with anew command, likein C++:

nysubcl ass = new mycl ass(42);
Thiswill create mysubclass and call mysubclass.init(42);

mysubclassinherits from myclass, so every attribute or method of myclassisalso availablein mysubclass,
we will 2see in the next section how you can have default definition, or re-definition, and how they are
handled”.

Mhisiscalleda prototype-based object oriented language, like javascript
’Thereisno public/private/protected accesses in the current version of URBI, but it will be integrated in version 2.0

20

Objectsin URBI

Note that mysubclass can inherit from several classes by calling new on these different classes:

nmysubcl ass
nmysubcl ass

= new nycl ass (42);
= new nyot herclass ();

Thisisavery special way of dealing with multiple inheritance, compared to C++.

Calling new without parenthesis, just the class name, will execute the init constructor with no parameters:

nmysubcl ass = new nycl ass; // sane as new
nmycl ass();

Note that if init is not defined, or of init returns a value indicating a failure (non void and not zero), an
error message will be output and the class creation will fail.

Classes can be extended at runtime, simply by creating new functions or new attributes related to them.
For example:

cl ass nycl ass {

var Xx;
i

var mycl ass. newattri bute;
nmycl ass.s = "hel | 0o";

function nyclass.f(a) {
s = a;

b
Virtual methods and attributes

In URBI, every method and every attributeisvirtual, which meansthat if your classredefinesit, it becomes
its own definition, otherwise the definition (or value) of the parent class will be used.

Consider the following example:

class nycl ass {

var X;
function f();

}s

function nmyclass.f() {
echo "I'min nycl ass";

}s

Then:

sub = new mnycl ass;
sub. f();
[139464: notag] *** I'min nyclass

The definition of f isretrieved from myclass. Now, we can redefineit:

21

Objectsin URBI

function sub.f() {

echo "I"'min sub!";
b
And call it again:
sub. f();

[139464: notag] *** I'min sub!

In the same way, attributes get their value from the parent class, unless redefined in the child class. The
following example illustrates the case with the above myclass and sub prototypes:

nycl ass. x = 1;

sub. x;

[146711: not ag] 1.000000
sub.x = 4;

sub. x;

[146711: not ag] 4. 000000
nycl ass. x;

[146711: notag] 1.000000

Groups

We have already seen in previous chapters how groups can be used as a way to assign values to severa
object variables at the same time. In fact, the mechanism is more general and associated to the concept of
broadcasting that we will define precisely in the next section.

First, afew words about groups. We have already seen how we can define groupswith the group command.
In the same way, you can ssimply add amember in an already existing group with the addgroup command,
and remove one with delgroup, which allows you to handle dynamic group creation, if you ever need to:

group a {al, a2};
addgroup a {c,d};
del group a {al, d};

Y ou can examine the content of a group by invoking the group command with the group name only:

group a {u,v,b};
group a
[146711: notag] ["u","v","b"]

Group subgrouping is possible, in that case the group content evaluation will return the list of terminal
members only:

group a {u,v,b};

group b {x,y};

group a

[146711:notag] ["u","v","x", "y"]

22

Objectsin URBI

A classical usage of the above feature isto iterate through alist of device objects, like motors, who have
been gathered in the same motors group:

foreach min group notors {
$(m = ...
}

Note: The $ construct will return the variable whose name is the string given as parameter. In the above
example, we suppose that thereisa.val alias, otherwise you would use: $(m+".val")

Now, we will see how you can make pratical use of groups with broadcasting.

Broadcasting

When you execute a command at the level of a group, which can be afunction call or an assignment, the
command will be propagated in parallel to each element of the group and their subgroups. Thisis called
broadcasting. This can also apply to classes, since you can define a group taking care of every sub class
instanciation. A conventional practiceisto namethe group associated to a class with the plural of the class
name, usually adding asimple's.

First, let's see how assignements are broadcasted. Consider the following example:
cl ass a;

al = new a;
group as {a, al};

al.x = 42;

as.x = 4;

a. x;

[139464: not ag] 4. 000000
al. x;

[146711: not ag] 4.000000

Broadcasting on functions works similarily:

class a {
var Xx;
function f();

};

function a.f() {
echo x;
1
al = new a;
group as {a, al};
a.x = 1;
al.x = 2;
as.f();
[139464: notag] *** 1.000000
[139464: notag] *** 2.000000

The above function call on f isin fact executed as:

23

Objectsin URBI

a.f() &al.f();
Broadcasting is duplicating the commandsin parallel.
Asusual, subgroups are explored in the process.

Broadcasting functions can be very useful to execute tasks in parallel in a group of objects, without
having to use for& or similar constructs. Broadcasting and inheritance complement each other, so when
the broadcasting is finished, the function definition can be searched upward in the class hierarchy, like
in this example:

class a {
var Xx;
function init(v);
function f();
1
function a.init(v) { x=v; };
function a.f() {

echo x;
b
al new a(1);
a2 new a(2);
a3 new a(3);
function al.f() { echo "I"'mdifferent!"};
group oneandtwo {al, a2};
oneandt wo. f () ;
[139464: notag] *** 2.000000
[139464: notag] *** |'mdifferent!

Broadcasting is clearly a new feature in the hands of programmers. Y ou might or might not useit, but we
believe that it will help to make many codes more concise by grouping logical actionsin oneline, instead
of using for loops or similar iterating concepts. It also makes clear that certain actions should be executed
in parallel on agroup of objects, which is semantically meaningful.

24

Chapter 6. The ball tracking example

The best way to learn a new language is to study simple examples to see what can be done in practice.
In this tutorial, we will concentrate on the red ball tracking application on the Aibo which is interesting
because it is a simple behavior with two states and it involves a perception/action loop which is very
typical of robotic applications. We will see how URBI can help to control the execution of the behavior
in asimple way with command tags.

Ball detection

Detecting aball involves image processing and cannot be written directly in URBI for obvious efficiency
reasons. The best way to provide such al gorithmic components (like visual processing or sound processing)
isto write a UObject Component in C++, Java or Matlab, and to plug it in URBI. We will not describe at
this stage how to write such a component, but instead we will already use one: the ball object.

The ball object is directly integrated in the Aibo URBI Engine and you can use it directly, just like any
physical device. It has no ball.val variable but it has a ball.x and ball.y variable which are equal to the
coordinate of the ball intheimage, expressed between -1/2 and 1/2. When thereisaball visible, ball.visible
is equal to 1, zero otherwise. It also have a ball.ratio variable which give the ratio of pixels of the ball
in the image, expressed as a percentage of the total image size. These simple object variables are already
enough to do many interesting applications, as we will see below.

The main program

The ball tracking program is given as an example in the Sony SDK (OPEN-R) and does the following:
when thereisaball in front of therobot, it will track it by moving the head in the ball direction, otherwise
it will scan the surrounding environment by moving the head in circles.

Moving the head in the direction of the ball can be written very simply in URBI with these two lines of
code:

headPan = headPan + canera.xfov * ball.x &
headTilt = headTilt + canera.yfov * ball.y;

The effect isto move at the same time (this is the meaning of the & separator) the head motorsin pan and
tilt directions, by an amount proportional to the x and y position of the ball in the image. The cameraxfov
and camera.yfov coefficients are coming from the camera device that we will discover in the next chapter.
They represent the x-angular and y-angular field of view of the Aibo camera, which are used here to
convert the [-1/2;1/2] unit segment of ball.x and ball.y into actual anglesin degrees.

To actually track the ball, and not simply move once in its direction, we will use awhenever command:

whenever (ball.visible) {
headPan headPan + canera.xfov * ball.x
headTi | t headTilt + canera.yfov * ball.y;

b

Thisprogram isonly threelineslong and does the ball tracking behavior expected. However, on the Aibo,
it might be too reactive and lead to small oscillations of the head around the ball position. To avoid this,
a simple technique from robotic control is to use an attenuation coefficient, ball.a, to limit the reactivity
of the system. For example:

&

25

The ball tracking example

ball.a = 0.8;
whenever (ball.visible) {
headPan = headPan + ball.a * camera.xfov * ball.x &
headTilt = headTilt+ ball.a * camera.yfov * ball.y;
b

The next step is to switch from this behavior to the scanning behavior when the ball is not visible. The
scanning behavior can be expressed with a simple sinusoidal movement on both headPan and headTilt.
We use in the following example the 'n variable extensi on! which indicates that we are worki ng with the
normalized value of the variable, between 0 and 1, calculated from the known rangemin and rangemax
properties. It isvery convenient to avoid checking the actual range of adevice and useit in amore general

way:

period = 10s;
headPan'n = 0.5 sin:period anpli:0.5 &
headTilt'n = 0.5 cos: period anpli:O0.5,

The cos modifier isidentical to sin with a phase shift of pi/2. Note how the central value of 0.5 with the
amplitude of 0.5 allows to cover the full range of the device: [0..1]

The above command does the circular movement required but when this behavior is started, the first
position in the circle will be reached abruptly from wherever the head was before the command starts. To
avoid this, we can precede the command with asmooth transition in one second towardstheinitial position
in the circle, which is headPan'n = 0.5 and headTilt'n = 1:

0.5 snoot h:1s &
1 snoot h: 1s;

headPan' n
headTilt'n

The smooth modifier is similar to time but with a smooth S-shaped movement, instead of a linear
movement.

Now, we can connect everything into one single behavior, using the 'at' event catcher asa glue. To avoid
switching from the circular sweeping to the ball tracking too often, we also add a soft test, and we use the
loadwav function to preload two wav files that we assign to the speaker device (described later) to play
a sound when the ball is found or lost:

// Paranmeters initialization

ball.a = 0.9;

peri od = 10s;

found = | oadwav("found. wav");
| ost = | oadwav("l ost.wav");

/1 Main behavi or

whenever (ball.visible ~ 100ms)

headPan = headPan + ball.a * canera.xfov * ball.x
headTilt = headTilt+ ball.a * camera.yfov * ball.y;

b

&

other extensions are available in URBI. Extensions are a powerful way to modulate the evaluation of a variable. Check the URBI Language
Specification for more details

26

The ball tracking example

at (!ball.visible ~ 100mns)

search: {
{ headPan'n = 0.5 smpoth:1s &
headTilt'n = 1 smooth:1s } |
{ headPan'n = 0.5 sin:period anpli:0.5 &
headTilt'n = 0.5 cos:period anpli:0.5 }
b

at (ball.visible) stop search;

/1 Sound behavi or
at (ball.visible ~ 100ns) speaker = found
onl eave speaker = |ost;

You can also use the onleave construct to group the two at (ball.visible) commands, but you must use
the at& command in that case, to put the search command in background (because it is a never-ending
command and at would never get the hand again otherwise).

Programming as a behavior graph

The above program works fine and is easy to understand and maintain. However, it iscommon in robotics
to design programs in terms of behaviors expressed as finite state machines, which are graphs of states
connected together with transitions. Fig. 6.1 illustrates the behavior graph of the ball tracking program,
which isavery simple example of atwo states behavior.

Figure6.1. The ball tracking behavior graph

. JPERY T
Lo L

N~

Ball visible == true

Irack bal

The ellipses represent states (in which the robot is doing some basi ¢ action/perception loop) and the arrows
are the transitions, expressed over conditions. The sguares attached to the transition specify some action
to trigger when the transition occurs.

The best way to program this kind of behavior graph in URBI is to use a conjunction of functions with
at and stop commands to link everything. First, let's define the two functions related to the two states of
the ball tracking program:

/1 Tracking state
function tracking() {

27

The ball tracking example

whenever (ball.visible) {

headPan = headPan + ball.a * canmera.xfov * ball.x
&
headTilt = headTilt+ ball.a * camera.yfov * ball.y;

}
b

/1 Searching state
function searching() {
peri od = 10s;

{
headPan'n = 0.5 snpooth:1s &
headTilt'n = 1 smpoot h: 1s
}o
{
headPan'n = 0.5 sin:period anpli:0.5 &
headTilt'n = 0.5 cos:period anpli:0.5
}

b

Now, we can simply "glue" the states together by stating the transitions as two at commands with stop
commands to terminate the previous state:

/1 Transitions

at (ball.visible ~ 100ms) {
stop search;
speaker = found;
track: tracking();

}s

at (!ball.visible ~ 100nms) {
stop track;
speaker = |ost;
search: searching();

}s

The advantage of rewriting the ball tracking program in terms of finite state machine behavior may not
appear very clear at this stage, becausethe program isvery simple. However, with more complex behaviors
including tens of different states, each with several transitions, thisis the best and safest way to program.
It makes the code modular, clear and easy to maintain.

Finite state machines are a good way to describe behaviors for robots. They are certainly not perfect,
but it's currently the most used technique in robotics. URBI as a programming language is also capable
to describe subsumption-based architectures, hiearchical architectures or reactive architectures and many
other behavior definition paradigm.

Controlling the execution of the behavior

The possibility to freeze, stop or block commandsin URBI isavery powerful tool to control the execution
of a behavior. For example, if the transitions which are expressed with a at command are prefixed by a
tag, like this:

28

The ball tracking example

track_transition:
at (ball.visible ~ 100ms) ({
stop search;
speaker = found;
track: tracking();

b

search_transiton:
at (!ball.visible ~ 100ms) {
stop track;
speaker = |ost;
search: searching();

b

It becomes very easy to temporarily suspend or reactivate atransition by commands like:

freeze track_transition;

unfreeze track transition;

Also, it is possibleto block the execution of astate, but still accept transitionsto this state (waiting silently
for another transition to make the robot move to another state):

bl ock search;

unbl ock search;

Using freeze, block and stop, it is simple to modify behaviors or reassign priorities online during the
execution of aprogram, whichisavery useful featurefor robotics. The possibilitiesare numerous, sincethe
behavior tuning can be controlled by events or other programs running in parallel, or even by acontrolling
remote program or a user over atelnet session.

29

Chapter 7. Images and sounds

Until now, we have only used numerical variables, like headPan.val. This, of course, is not sufficient to
transmit images or sounds. Some devices, like for example camera, micro or speaker in Aibo, are binary
devices. In that case, the device.val variableis not anumerical value but a binary value.

Reading binary values

Y ou might have already tried to evaluate one of those binary variables:

caner a;
[139464: notag] BIN 5347 jpeg 208 160
................. 5347 bytes.................
m cro;

[139464: notag] BIN 2048 wav 2 16000 16 1
................. 2048 bytes.................

URBI simply prefixes the binary data with a header starting with the keyword BIN, followed by the size
(in octets) and akeyword indicating the type of the data. Optional parameters, like the size of theimage or
the sampling rate and stero/mono status of a sound might follow. Then, after a carriage return, the actual
binary data is returned (displayed above as a series of dots:), which might confuse a telnet client but
not a software client or URBI Remote™.

What we call a "software client”" is a client or a component written in a language like C++ or Java, as
described in detail in the chapter "The liburbi in C++". Thisis the normal way of handling binary data
when you want to do complex signal processing with URBI.

Setting binary values

As you might expect, setting a binary value into a speaker device for example is not more complex than
reading it. To play asound on Aibo, you could send to the server acommand like this:

speaker = bin 54112 wav 2 16000 16;
.............. 54112 bytes..............

It is important that the header ends with a semicolon (and nothing else). The binary content starts
immediately after the semicolon, so you don't have to add an extra carriage return.

Of course, aswe already said it, thiskind of binary assignment will obviously not be done from atelnet or
URBIRemote client, since you probably want that a program sendsthe binary content, and you cannot type
it yourself in the terminal! (However, we will see in the next section how you can simply play arecorded
sound from atelnet client if you need to).

This simple example illustrates a binary assignment and a binary reading in URBI from atelnet client,
however itisa"toy" example:

nybin = bin 3; ABC

1URBI Remote understands URBI headers and di splaysimages or plays sounds according to the type

30

Images and sounds

nybi n;
[146711: notag] BIN 3
ABC

Note that you can pass any parameters after the size of the binary data and they will be stored together
with the binary content, inside the header:

nmybin = bin 3 hello world 33; ABC
nybi n;

[146711: notag] BIN 3 hello world 33
ABC

Do not confuse binary data and string data. The above exampleis different from:

nystring = "ABC';

nystring;
[148991: not ag] " ABC"

Associated attributes

Usually, with a binary device object you have a set of associated attributes available. A typical example
is the camera device which provides the following attributes on Aibo:

e camera.shutter : the camera shutter speed: 1=SL OW (default), 2=MID, 3=FAST

e camera.gain: the cameragain: 1=LOW, 2=MID, 3=HIGH (default)

» camerawb : the camera white balance: 1=INDOOR (default), 2=OUTDOOR, 3=FLUO

» cameraformat : the cameraimage format: 0=Y CbCr 1=jpeg (default)

» camerajpegfactor : the jpeg compression factor (0 to 100). Default=80

o cameraresolution : the image resolution: 0:208x160 (default) 1:104x80 2:52x40

» camerareconstruct : reconstruction of the high resolution image(slow): 0:no (default) 1:yes
» camerawidth : image width

e camera.height : image height

» cameraxfov : camerax Field Of View (degrees)

» camerayfov : cameray Field Of View (degrees)

In the case of the speaker device, in charge of the speaker producing sound in the Aibo, you have:
» speaker.playing : equal 1 when thereis asound playing, O otherwise

» speaker.remain : number of milliseconds of sound to play, O when the buffer is empty.

With the speaker object, there is also amethod that can be used to play a sound directly from afile stored
on the memorystick:

31

Images and sounds

speaker . pl ay(" nysound. wav") ;

Alternatively, to avoid having adisk access which might be slow, you can decide to store the content of the
"mysound.wav" filein abinary variable kept in memory for frequent use, and then do a simple assignment.
For this, use the loadwav function:

nybi n = | oadwav(" mysound. wav");
speaker = nybin;

Binary operation examples

There is a possibility in URBI to add binaries, which is typically used for sound concatenation. For
example, consider the following program:

sound = bin O;
ti meout (10s) | oop sound = sound + micro;
speaker = sound;

This code will record 10 seconds of sound from the micro device and store it in the sound variable, and
thenwill play it back be assigning sound to the speaker device. It showshow simpleit can be to manipulate
binary buffers with URBI for simple tasks like concatenation.

32

Chapter 8. The liburbi in C++
What is liburbi?

Using URBI with atelnet client istoo limited. Y ou need to be ableto send commands and receive messages
using a programming language of your choice, or in amore general way, you need to be able to interface
URBI with other languages.

That's why we call URBI an "Interface Language": it's more than a ssmple protocol because it's a full
featured script language acting as a protocol. In most applications where you have computer vision or
sound processing, you use URBI together with C++ or another fast language to do the algorithmic part.
URBI is here to run the architecture of your behaviors, your action/perception loops and other high level
elements, using the output of the fast C++/Java/Matlab code as inputs for its decisions.

What isliburbi?Y ou could program a TCP/IP layer for C++ or for your favorite language but thisistrivial
and should be done once and for all. This is why we made liburbi. What you want to be able to do are
thingslike:

» Open aconnection to your robot from within your favorite language (like C++)
» Send acommand to your robot from within that language

» Askfor avariable value and receive it

» Listen to incoming messages from your robot and react to them appropriately

Actualy, the last point is the most important and, even if it might differ from the way you may be used
to write programs, it is essential to adapt to this way of thinking (called "asynchronous programming')
because it is best suited for robotics. Robots are fundamentally asynchronous systems. Y ou usually wait
for messages from your robot and react to them (it's also called "event-driven programming"). That'swhat
arobot does most of the time: react to events'.

This chapter isabrief introduction to liburbi. Y ou should read the official liburbi documentation on http://
www.gostai.com/docs.php if you want acomprehensive description. If you program with C++, we suggest
to use the UObject architecture described later in this tutorial, liburbi being only a complement to the new
and more powerful UObject technology.

Components and liburbi

Extending URBI with code written in C++, Java or Matlab that will be made available to your URBI
scripts can be donein two different ways. Thefirst way it to use one of the liburbi flavor for your preferred
language (C++/Java/lMatlab) and build a software client. That is what we are going to describe in this
chapter.

The second option, which ismore powerful and described in the chapter " Create components. the UObject
architecture” isto create a UObject Component which refersto an object in C++, accessible like any other
URBI object from your URBI programs, sharing methods and object attributes. It isthe most portable and
flexible way of adding functionalities to URBI by mirroring objects, but |et's start with the basic liburbi.
One of the interest of liburbi is also that it is available for with many more language (the object binding
is not always possible otherwise and is currently limited to C++), and in any case, knowing the liburbi

1Traditionally in Al, the way the robot reacts might by modified by higher level cognitive activities (hierarchical architecture) or by priorities
(subsumption architecture) or by a complex combination of deliberative and reactive processes (hybrid architecture)

33

http://www.gostai.com/docs.php
http://www.gostai.com/docs.php

Theliburbi in C++

approach is a good idea, since it might be more suited to your need in certain cases and it gives a good
introduction to asynchronous programming.

There is currently a C++, Matlab, Java and Python version of liburbi if you want to control your robot
using C++, Matlab, Java or Python, and a liburbi-OPENR version if you want to recompile a liburbi-C
++ based program to let it run on the Aibo, as an OPENR object (in that case, your robot will remain
completely autonomous). However, we strongly suggest to abandon the OPENR version and switch to the
UODbject architecture to embed components in the Aibo. This only interest of this OPENR version is that
it allows to have a sort of implicit non-blocking thread, which is otherwise impossible with the Aperios
operating system from Sony.

Wewill not describeall theliburbi implementations here but only the C++ version, which givesthe general
ideas. Other versions are similar and have a specific documentation. We assume in the following that you
have abasic understanding of C++. If not, please refer to asimple C++ tutorial, since the notion devel oped
here will remain basic.

Getting started

To start with, you need to be able to compile a liburbi-based program. There are several ways to do so,
depending on the fact that you are on Linux or Windows, with Borland or Microsoft compiler, etc. In
genera, you are simply supposed to include liburbi.h and link your code with the "-lurbi" parameters (gcc)
or similar syntax specific to other compilers. See the appropriate documentation for more details.

On the code side, the first thing you need to do is to create a client connected to your robot
"myrobot.mydomain.com”. For this purpose, you have a UClient classin liburbi-C++:

UCient* client = new Ud ient("nyrobot. nydomai n.cont');

If you have an |P address, you can useit instead of the server name.

Alternatively to explicitly caling the UClient class, you might want to use a function from the urbi
namespace instead:

UCient* client = urbi::connect("nmyrobot. nydomain.coni);

Of course, you can create as many clients as you like with these methods.

Sending commands

The UClient object has a send method which works like printf:

client->send("motor on;");
for (float val =0; val <=1; val +=0. 05)
client->send("neck'n = %;wait (%);", val, 50);

Y ou can a'so use your client object as a stream if you prefer a more C++ like approach:

client << "headPan = " << 12 << ";";

There is also a very convenient way of sending blocks of URBI code from a C++ program, using the
URBI((...)) macro:

Theliburbi in C++

URBI ((
headPan = 12,
echo "hello" | speaker.play("test.wav') & leds =1

)

The text between the double parenthesis will be sent verbatim to the first client created by your program,
by default. This can be set with a call to urbi::connect(...). The first described approach, using the send
method, is more appropriate in general and the URBI macro should only be used to send initialization
scripts in a convenient way at the beginning of your program, or for fast prototyping.

Remember that you can always give your robot a fresh start (a virtual reboot) by sending the reset
command. This will avoid the multi definition of functions or restarting several occurrences of an at
command each time you rerun your liburbi-based client. So many liburbi main programs will start with
client->send("reset;");

Sending binary data and sounds

To send binary data, you will use the sendBin method, instead of send:

cl i ent->sendBi n(soundDat a, soundDat aSi ze,
"speaker = BIN % raw 2 16000 16 1;",
soundDat aSi ze) ;

Thefirst two parameters are the binary dataitself and the size. Then, the header, with optional parameters
using aprintf like syntax.

To send a sound, there is specialized method called sendSound, which is more convenient and also more
efficient:

cl i ent ->sendSound(sound, "endsound");

Thefirst parameter isaUSound structure, describing the sound to send. The second is an optional tag that
will be used by the server to issue a"stop" system message when the sound has finished playing.

The function convert described in the documentation can be used to convert between various sound
formats.

With sendSound, there is no limit to the size of the sound buffer, since it will be automatically cut into
small chunks by the library. Since the data is copied by liburbi, the USound parameter and its associated
data can be safely freed as soon as the function returns.

Recelving messages

URBI tagsare going to prove very useful for receiving incoming messages from the server: each command
has an associated tag (notag by default), and this tag is transmitted in any message originating from this
command. The UClient class handles the reception of those messagesin an independent thread created by
the constructor, parses them and fills a UMessage structure. Then, callback functions with the associated
tag can be registered with the method setCallback: each time a message with thistag is sent by the server,
the callback function will be called with the UM essage structure as a parameter.

35

Theliburbi in C++

typedef UCal | backActi on (*UCal | back) (const UMessage &nsgQ);

UCal | backl D set Cal | back (UCal | back cb, const char *tag)

The first parameter cb is a pointer to the function to call. The callback function must return
URBI_CONTINUE, or URBI_REMOVE, in which case the function will be unregistered.

The best way to learn about how callbacks can be used with the liburbi is to look at some example, like
the one described in the liburbi documentation page at:

http://www.gostai.com/doc/en/liburbi-1.0/

Data types

The data type used by the liburbi are described below:

UMessage

The UMessage structure is capable of storing the informations contained in any kind of URBI message by
using a"type" field and an UValue (union of type-dependant structures). These two structures are defined
asfollows:

cl ass UMessage
{
public:
/11 Connection fromwhich originated the nessage.
UAbstractClient &client;
/1l Server-side tinestanp.
int tinmestanp;
/1l Associated tag.
std::string tag;

UMessageType type;

ur bi : : Uval ue *val ue;
std::string nessage;
/1l Raw nessage wi thout the binary data.
std::string rawMessage;
b

UValue

cl ass Uval ue
{
publi c:
UDat aType type;
ufl oat val; [// value if of type DATA DOUBLE

uni on

{
std::string *stringVal ue; /1 value if of type DATA_STRI NG
UBi nary *bi nary; /1 value if of type DATA BI NARY

36

http://www.gostai.com/doc/en/liburbi-1.0/

Theliburbi in C++

ULi st *|ist; /1 value if of type DATA LIST
UChj ect St r uct *obj ect ; /1 value if of type DATA OBJ
b
}

The type fiddd UMessageType can be MESSAGE SYSTEM, MESSAGE ERROR or
MESSAGE_DATA. If the type is MESSAGE_DATA, the message contains an UValue. The UVaue
itself contains an UDataType which can take the valuess DATA_DOUBLE, DATA_STRING,
DATA_BINARY, DATA LIST, DATA_OBJECT, DATA VOID. Depending of this field, the
corresponding vaue in the union will be set. If the UValue is of the binary type, it contains an UBinary
structure defined hereafter. The UBinaryType in the UBinary structure will give additional informations
on thetype of data (BINARY _NONE, BINARY_UNKNOWN, BINARY _IMAGE, BINARY _SOUND),
and the appropriate sound or image structure will be filled.

UBinary

cl ass UBi nary

{
publi c:
UBi naryType type;
uni on

{

struct

{
void *data; /// binary data
int size;

} common;

U nage i mage;

USound sound;

1
}

USound

cl ass USound ({

public:

char *dat a; /1 pointer to sound data

i nt si ze; /1 total size in byte

i nt channel s; /!l number of audi o channels
i nt rate; /!l rate in Hertz

i nt sanpl eSi ze; /1 sanple size in bit
USoundFor nat soundFor nat ; /!l format of the sound data

/1 (SOUND_RAW SOUND WAV, SOUND MP3. ..

USoundSanpl eFor nat sanpl eFor nat ; /1 sanple fornat
1

Ulmage

cl ass U mage {
publi c:

37

Theliburbi in C++

char *dat a; /1 pointer to image data

i nt si ze; /1 image size in byte

i nt wi dt h, hei ght; /1 size of the inage

U nageFor mat i mageFor mat ; /1 1 MAGE_RGB, | MAGE YCbCr, | MAGE JPEG. ..

b
Synchronous operations

The derived class USyncClient implements methods to synchronously get the result of URBI commands.
You must be aware that these functions are less efficient, and that they will not work in the OPEN-R
version of theliburbi, for instance. Asageneral programming rule with robots, synchronous programming
should be avoided.

Synchronous read of a device value

To get the value of a device object (with a val attribute), you can use the method syncGetDevice. The
first parameter is the name of the device (for instance, "neck"), the second is a double that is filled with
the received value:

doubl e neckVval ;
syncd i ent - >syncCet Devi ce(" neck", neckVal);

Getting an image synchronously

You can use the method syncGetimage to synchronously get an image. The method will send the
appropriate command, and wait for the result, thus blocking your thread until the imageis received.

client->send("canera.resolution = O;canera.gain = 2;");
int width, height;
client->syncGetl mage("canmera", myBuffer, myBufferSize,
| MAGE_RGB, URBI _TRANSM T_JPEG, w dth, height);

The first parameter is the name of the camera device. The second is the buffer which will be filled with
the image data. The third must be an integer variable equal to the size of the buffer. The function will set
this variable to the size of the data. If the buffer istoo small, datawill be truncated .

The fourth parameter is the format in which you want to receive the image data. Possible values are
IMAGE_RGB for araw RGB 24 bit per pixel image, IMAGE_PPM for a PPM file, IMAGE_Y CbCr for
raw Y CbCr data, and IMAGE_JPEG for ajpeg-compressed file.

Thefifth parameter can be either URBI_TRANSMIT_JPEG or URBI_TRANSMIT_Y CbCr and specifies
how the image will be transmitted between the robot and the client. Transmitting JPEG images increases
the frame rate and should be used for better performances.

Finally the width and height parameters are filled with the with and height of the image on return.

Getting sound synchronously

The method syncGetSound can be used to get a sound sample of any length from the server.

38

Theliburbi in C++

client->syncGet Sound("m cro”, duration, sound);

The first parameter is the name of the device from which to request sound, the second is the duration
requested, in milliseconds. Sound is a USound structure) that will be filled with the recorded sound on
output.

Conversion functions

We also have included a few functions to convert between different image and sound formats. The usage
of theimage conversion functionsis pretty straightforward:

i nt convert RGBtoYCrCh(const byte* source, int sourcelen, byte* dest);

i nt convert YCr Cbt oRGB(const byte* source, int sourcelen, byte* dest);

i nt convertJPE&G oYCr Cb(const byte* source, int sourcelen, byte* dest, int &size);
i nt convert JPEG oRGB(const byte* source, int sourcelen, byte* dest, int &size);

The size parameter must be set to the size of the destination buffer. On return it will be set to the size
of the output data.

To convert between different sound formats, the function convert can be used. It takes two USound
structures as its parameters. The two audio formats currently supported are SOUND_RAW and
SOUND_WAV, but support for compressed sound formats such as Ogg V orbisand MP3isplanned. If any
field is set to zero in the destination structure, the corresponding value from the source sound will be used.

The "urbiimage" example

URBIimage is a simple program written in C++ with the liburbi-C++ to get and display images from an
URBI server. URBIlimage does two things: it sets a callback on a tag named uimg and then receives the
images in this callback and send them to a display object Monitor. Let's have alook at the general code
and the main function. First, the callback interface:

Moni t or *non;

/* Qur callback function */
UCal | backActi on show nage(const UMessage &nsQ)

{
}

Then, the main function:

int main(int argc, char *argv[])

{
mon = NULL;
client = new Uddient(argv[2]);
if (client->error() != 0)
exit(0);

client->set Cal | back(showl nage, "uinmg");

/1 Some image initialization

39

Theliburbi in C++

client->send("canera.resolution
client->send("canera.j pegfactor

/1 Start the |oop
client->send("l oop uing: canera,");
urbi::execute();

}

The code to handle the image is stored in showlmage:

UCal | backActi on show nmage(const UMessage &neg)
{
if (nmsg.type ! = MESSAGE_DATA || ((U nmage)nsg).inmageFormat == | MAGE_UNKNOVN)
return URBI _CONTI NUE;

U nmage i g = (Ul nmage) neg;
unsi gned char buffer[500000];
int sz = 500000;

static int tnme = O;

if (!non)
non = new Monitor(nsg.inage.w dth, msg.image. hei ght);

convert JPEG oRGB((const byte *) inyg.data,
i mg.size, (byte *) buffer, sz);

non- >set | mage((bits8 *) buffer, sz);
return URBI _CONTI NUE;
}

It first tests for the msg type, and returns without doing anything if this is not the type expected (for
example, if the callback is waken up by an error message).

Then, the conversion function convertJPEGtoRGB is used to transform the image buffer in something
readable for the Monitor object, which then receives the image.

Finally, URBI_CONTINUE isreturned to carry on receiving future callbacks.

This little program illustrates very well how a liburbi-based URBI program is built: set callbacks, send
URBI scripts, receive callbacks in specified functions. Y ou might have alook at the GPL source code of
URBILab which is built with liburbi-C++ and shows a more advanced use of this methodology.

40

Chapter 9. Create components:. the
UODbject architecture

The UObject architecture is the most advanced way to extend URBI and integrates powerful components
in the language. It's currently limited to C++ but should generalize to other languages in the future. The
ideaisto take a C++ class and, after afew small modifications, to be able to plug this classin the URBI
language so that one can access its methods and attributes as if they were pure URBI objects. A few
words about terminology: the UObject architecture enables to add a component to the language, and this
component will be seen as an object.

There are actually two ways of integrating your C++ classinside URBI:

* Mode plugin: You can plug the object directly in URBI (link it to the URBI Engine) and it will be part
of the binary code of the URBI Engine.

» Moderemote: You can run it as an autonomous remote process that will connect itself to your URBI
Engine and transparently add the object to the language, just like in the plugin mode, but remotely.

In both cases, we provide the necessary tools to make the link (described below). The good news is that
the C++ source code of your object is exactly the same in both cases, and the way you use it inside URBI
is also transparent. So, you can decide to plug/remote-run a component at will (hopefully in the future,
you will be able to relocate the object at runtime, but not for now).

We will now see how to turn your C++ classinto an UObject class, and we will see then how to connect
the methods and attributes of the C++ classto URBI.

UODbject

The basics

L et's create a colormap object, composed of colormap.cpp and colormap.hh. The colormap.hh should start
like this:

#i ncl ude <ur bi / uobj ect. hh>
usi ng namespace urbi;

class colormap : public UObject

{
public:
col ormap(std::string);

};...

Whatever constructor you previously had should be renamed init. The default constructor
myclassname(std::string) which is appropriate for UObjects must be used instead. For example, you might
define the constructor init which takes a RGB point as a color definition like this:

publ i c:
col ormap(std::string);

41

Create components: the
UODbject architecture

int init (int r, int g, int b);

For the moment, that's all what you need on the class definition side. Let's have a look at the main code
in colormap.cpp:

#i ncl ude "col or map. hh"
USt art (col or map) ;

col ormap: : col ormap(std::string s) : UCbject(s)

{ UBi ndFuncti on(col ormap, init);
}
int colormap::init(int r, int g, int b)
{
return O;
}

Two new things here: you haveto invokethe"magic"” line UStart(myobject) in order to let the system know
about it. Then, you must make sure that the default constructor calls the UObject constructor and passes
the string, and also bind the init function to make it visible and export it in URBI. Thisisrequired if you
want theinit constructor to be called by URBI upon anew abject creation. Theinit method should return 0
upon success, anything else in case of failure (you can aso return void which is considered as a success).

There is nothing else to know, at this stage you aready have a exportable object called 'colormap’ with a
method 'init'. Now, you can compile it and get a binary code ready to link.

Let's assume than you have linked this code to the URBI Engine, to make it a component in plugin mode
(we will see how later). Now, how to use this new colormap object? Well, not much has to be done: it's
already there. Remember that in URBI there is no difference between a class and an instance (prototype-
based language), so defining colormap is enough to have a functionnal colormap object. You can try to
evaluate it to seethis:

col or map;
[139464: notag] OBJ [| oad: 1. 000000]

NB: By default, there is an exported load attribute in UObject, let's ignore it for the moment.

Let's define a subclass of colormap. This action will call the init constructor on the C++ side and spawn
anew instance of the C++ colormap class, but of coursethisisall done automatically and you don't have
to take care of that:

bal | = new col ormap(123, 45, 12);
bal I ;
[139464: notag] OBJ [| oad: 1. 000000]

Y ou see that the syntax to create a new object in URBI isidentical to the C++ syntax. Each timeis was
possible, we have kept the familiar C/C++ syntax in URBI, because thereisno point to waste time learning
stuffswe already know (as long as there is no confusion in term of semantics).

42

Create components: the
UODbject architecture

Adding attributes

Our colormap object is not much fun so far. To make it more useful, we can start to add attributes to the
object and bind them to URBI. To add ax variable, wewill simply add UV ar x; inside the class definition:

#i ncl ude <ur bi / uobj ect. hh>
usi ng namespace urbi;

class colormap : public UObject

{
public:
col ormap(std::string);

War x; // definition of the exported variabl e

};...

and then add the binding code in the init method:

int colormap::init(int r, int g, int b)

{

UBi ndVar (col or map, Xx);

}

Actually, you can put your binding code (UBindVar) anywhere you want, in particular it can bein the C
++ object constructor or in the object init method. If you put it in the C++ constructor, it will make the
variable available to the base instance (the one that is there at start and that you don't have to ‘new’), or if
you put it in the 'init' method, only 'newed' objectswill haveit. Thisisuseful if the baseinstanceis useless
because you need to derive it to specify it. In that case you put all your bindings in the 'init" method only
and the base instance isjust a sort of ghost instance. Note that UObject::derived is a boolean that tellsyou
if your class has been derived with a'new’ or if it is the base class.

Y ou can check, now the colormap.x and ball.x will be there.

To assign a value to x from within your C++ class, simply use it as a normal variable, UObject will do

therest for you:
X = 42;

or
x= "hel |l 0";

The = operator in C++ has been redefined for UVar, so that you don't have to worry and you can assign
valuesto x as you would do it from within URBI.

Now, how to read the variable? We've tried to keep things ssmple again: you can ssimply use a C-style
casting to get avalue in the appropriate C++ type. For the moment, thereis not exception raised if an error
occurs, so be careful to what you are doing:

X = 42;
printf("Value of x: % n",(int)Xx);

43

Create components: the
UODbject architecture

x iscalled a"hook" to the URBI colormap.x variable. Actually, you can define hooks on any variable you
like by defining your own UVar instance wherever you like (it will be automatically binded, no need to
use UBindVar, the UVar constructor doesit). Here are afew examples:

War ("camera. val ") ;
War ("canera", "val ") ;
War* nyvar = new War (" headPan", "val");

Thereason why you haveto call UBindVar for aUVar defined in the body of your classisthat thisUVaris
anon-dynamically allocated UVar called with the default UVar() constructor. Such a UVar doesn't know
its name at this stage and the UBindVar macro simply tellsit who it is. You don't need this stage with a
direct cal to the UVar(std::string) constructor who takes the name as its parameter.

Of course, your C++ object can contain many attributes that will not be exported to URBI and will remain
"private" to the C++ class. To make an attribute available to URBI, you need to define it asa UVar or to
"UBindVar" onethat is part of your object definition.

One important thing that one wants to do with attributes is to monitor them for changes or accesses. This
is done by assigning a callback function to the variable, specifying whether you want to be called back
on changes or on accesses:

UNot i f yChange(x, &ol or map: : mycal | back) ;
UNot i f yAccess(Uvar (" doo. daa", &col or map: : myot her cal | back) ;
UNot i f yChange("anot her. vari abl e", &ol or map: : anot her cal | back) ;

Notify on change means that the callback will be called each time the variable is modified on the URBI
side (for variables attached to sensors, it means "each time the sensor valueis updated"). Notify on access
means that the callback will be called each time someone eval uates the variable on the URBI side, so that
you have a chance to update its value before the evaluation. In that case, you are advised to put a time-
based caching mechanism in your callback if the variable is called frequently inside expressions.

You will typically put those "Notify" lines in the init function or in the constructor of your object, the
choice of one over the other being dictated by the same rationale than with UBindVar. Notice that you
must pass a pointeur to a function, which must be a method of your object. Y ou have only two types of
prototypes available for these callbacks:

URet urn mycal | back();
URet urn mycal | back(Uvar &) ;

Thefirst oneisthe simplest and obvious one: the function is called when the condition is met. The second
one doesthe same thing but passesthe UV ar as areference parameter so that you can use the same callback
with several variables and get the one that isrelated to the current call.

Binding functions and events

Just like you did with attributes, you can easily bind a function to the mirrored URBI object. Thereis not
much to do there, simply use the following construct:

int colormap::init(int r, int g, int b)

{

UBi ndFuncti on(col or map, dostuff);

Create components: the
UODbject architecture

std::string col ormap::dostuff(int, float)

{

}

Thiswill make the method dostuff visible to the outside. Y ou don't need to worry about parameters, they
will berecognized an exported for you. For the moment, you cannot overload afunction with thismecanism
(and in particular, you cannot overload the init constructor).

Similarily, you can bind an event to amethod of your object, so that thismethod will be called eachtimethe
corresponding event is emitted on the URBI side, and you will get the parameters on the way. Simply do:

UBi ndEvent (col ormap, reacttothis);

You can also ask to be notified when the event terminates (as you know, events can last during a certain
amount of time in URBI). For example, if you want to be notified by calling the endthis method of your
object, simply use:

UBi ndEvent (col ormap, reacttothis);
UBi ndEvent End(col ormap, reacttothis, endthis);

endthis must have a simple prototype like this one:

voi d col ormap: : endt his();

Timers

You can easily set timers to be called back at regular timeintervals. The syntax is:

USet Ti mer (ti me_i n_nms, &nyobject:: nycall back);

With mycallback being a method of your object with the following prototype:

URet urn nyobj ect: : nycal | back();
Y ou cannot use a callback function coming from outside of your object.
Advanced types for binaries
For integers, floats and strings the assignement and reading-by-casting of UVar isstraitforward. For binary

data, like images and sounds, you will need two appropriate types. Ulmage and USound. Here is a copy
of their definition from uobject.hh

/11Cl ass encapsul ati ng an i mage.
cl ass U mage ({

publi c:
char *dat a; /1/< pointer to image data
i nt si ze; /1/< image size in byte
i nt wi dt h, hei ght; /1< size of the image

45

Create components: the
UODbject architecture

U nageFor mat i mageFor mat ;

b

/11Cl ass encapsul ati ng sound i nformations.
cl ass USound ({

publi c:
char *dat a; /1< pointer to sound data
i nt si ze; /1/< total size in byte
i nt channel s; /1< nunmber of audio channels
i nt rate; /[l/<rate in Hertz
i nt sampl eSi ze; /1< sanple size in bit
USoundFor mat soundFor mat ; /1/< format of the sound data
USoundSanpl eFor nmat sampl eFor mat ; /1< sanple formt

}

You recognize them, they are the types used in liburbi, no surprise. If your UVar is an image, like
"camerarraw", you can simply cast it to a Ulmage and you will retrieve the relevant information in the
appropriate attributes, in particular the binary content will be in data and the size in size. Same thing for
a sound.

Be careful if you use camera.val: it might be ajpeg-compressed binary and you should convert it with one
of those functions, as described in section #x1-690007.9:

int convert RGBtoYCrCh(const byte* source, int sourcelen, byte* dest);

i nt convert YCr Cbt oRGB(const byte* source, int sourcelen, byte* dest);

i nt convertJPE&G oYCr Cb(const byte* source, int sourcelen, byte* dest, int &size);
i nt convert JPEG oRGB(const byte* source, int sourcelen, byte* dest, int &size);

If you want to assign a sound to, let's say speaker.val, simply fill up aUSound variable and assign it to the
appropriate UV ar, the = operator has been redefined to handle this. So far, we handle only wav format.

Writting anything to an uvar will copy the memory. USound and Ulmage do no memory management at
all, so assigning an USound to an other just copies the pointer. If you want memory to be automatically
managed, you can use UBinary, which deletes its buffer when its destructor is called. As a consequence,
returning aUSound in abound functionis problematic. It would be better to wrap the USound inaUBinary
and return the UBinary.

The "load" attribute

We have already mentionned the load attribute that is defined asa UV ar and bound by default in UObject.
This attribute can be used to test in your C++ code whether the object is activated or not on the URBI side.
In URBI, acall to "myobject on;" will put load to 1 and acall to "myobject off;" will put it to 0. So, you can
easily test in your various functions if you have to do the computation or not, based on the value of load.

Thisis extremely useful if you want to be able to activate/disactivate some CPU hungry calculation that
would otherwise run for nothing in the background. For example, you can turn the ball detection off in
Aibo with:

bal | off;

Note that this is a broadcastable construct: if you on/off a group, it will recursively propagates to every
member of the group. That's exactly what happens behind the scene with a command like motors on;

NB: You also have "myobject switch;" to alternate between on and off.

46

#x1-690007.9

Create components: the
UODbject architecture

The "remote" attribute

In UObject definition, the remote attribute is available to know whether your object is running as a
remote component or a plugged one. This can be useful when you want to behave differently in both
cases, typically handling the transfer of large amount of data or images with or without compression. The
colormap example below make use of the remote attribute.

The colormap example

Here is a real example of a colormap object as it is used in the Aibo, to calculate the average position
of ablob of color defined by a subspace of the Y CrCb color space. Y ou see how we bind a callback to
source, which isusually camera. The actual callback is set to the .val or .raw attribute of the source object,
depending on the status of the object, remote or not. In remote mode, we want to use jpeg compression
and work with the resulting image value, whereas in plugged mode, we can use shared memory on the raw
buffer to get a better image without artifacts, and avoid compressing/decompressing for nothing.

You also see how we simply assign values to the x and y attributes and other attributes describing the
shape of the blob:

First the colormap.hh file (extracts only):

#i ncl ude <ur bi/ uobj ect. hh>
usi ng nanmespace urbi;

class colormap : public UObject

{
public:
col ormap(std::string);
int init(std::string,int,int,int,int,int,int,ufloat);
Uvar X;
Uvar y;
Uvar vi si bl e;
Uvar ratio;
Uvar t hreshol d;
Uvar orientation;
Uvar el ongati on;
Uvar ym n, ymax, cbmin, cbmax, crmn, crmex;
URet urn newl mage(Uvar &) ;
1

Here, we use ufloat instead of float because ufloat can be adapted to 32bits or 64bits or even no-FPU
motherboards and thus it is more suitable for embedded applications.

Now, the main code:

#i ncl ude "col or map. hh"

USt art (col or map) ;

47

Create components: the
UODbject architecture

/1! col ormap constructor.

col ormap: : col ormap(std::string s)
Uhj ect (s)

{

UBi ndFunction(col ormap,init);

}

/1! colormap init function

i nt

colormap: :init(std::string source,
int _Ymn,

nt _Ymax,

nt _Comin,

nt _Cbmax,

nt _Crmin,

nt _Crmax,

ufl oat _threshol d)

UBi
UBi
UBi
UBi
UBi
UBi
UBi
UBi
UBi
UBi
UBi
UBi
UBi

ndVar (col or map, x) ;

ndVar (col or map, y) ;

ndVar (col or map, vi si bl e) ;
ndVar (col or map, rati o) ;
ndVar (col or map, t hreshol d) ;
ndVar (col or map, ori entati on);
ndVar (col or map, el ongati on);
ndVar (col or map, ym n) ;

ndVar (col or map, ymax) ;

ndVar (col or map, cbmi n);
ndVar (col or map, cbmax) ;
ndVar (col or map, crmn);
ndVar (col or map, cr max) ;

if (renote)

UNot i f yChange(source+".val ", &ol or map: : new mage) ;
el se

UNot i f yChange(source+".raw', &ol or map: : new mage) ;

// initialization

ymn = _Ymn;
ymax = _Ymax;
cbmn = Cbnmin;
cbmax = Chnax;
crmn = Crmin;
Cr max = _Crmax;
t hreshol d = threshol d;
X = -1,

y =-1
visible = 0;
orientation = O;

el ongation = O;
ratio = 0;

48

Create components: the

UODbject architecture
return O;
}
/1! col ormap i mage update
URet urn
col or map: : newl mage(Uvar & i ng)
{

if ((ufloat)load < 0.5) return(l);
Urmge ingl = (U nmage)ing; //ptr copy

if (renote)
convertYCrCb(ingl); // this function is available in UGbject 1.0 only

int w
int h

= inmgl. wi dth;
= i ngl. hei ght;
/llets cache things
int ymax = this->ymax; int ymn = this->ymn;
int crmin = this->crmn; int crnmax = this->crmax;
int cbmn = this->cbmn; int cbmax = this->cbmax;
l ong I ong x=0, y=0, xx=0, yy=0, xy=0;
int size = 0;
for (int i=0;i<wi++)

for (int j=0;j<h;j++) {

i ngl. data[(i+j *w)*3];
i ngl.data[(i+j *w)*3+1];
i ngl. data[(i +j *w)*3+2];

unsi gned char | um
unsi gned char cb
unsi gned char cr

if ((lum >= ynmin) &&
(lum <= ymax) &&
(cb >= cbmin) &&
(cb <= cbmax) &&
(cr >= crmn) &&
(cr <= crmax)) {

S| ze++;
X += i;
y +:j;
XX += 0 *i;
yy +=j*j;
Xy +=1%);

}
}

this->ratio = ((ufloat)size)/((ufloat)(wh));
if (size > (int)((ufloat)threshold * (ufloat)(wh))) {

this->visible = 1;

49

Create components: the
UODbject architecture

this->x = 0.5 - ((double)x /
((doubl e)size * (double)w));

this->y = 0.5 - ((double)y /
((doubl e)size * (double)h));

/lorientation: first eighenvector of covariance matrice

doubl e nD0 = (doubl e)xx - (double)(x*x)/(double)(size);
doubl e nmll = (double)yy - (double)(y*y)/(double)(size);
doubl e nD1 = (doubl e)xy - (double)(x*y)/(double)(size);

/I bi gest ei ghenval ue
double I = (mDO+nLl1)/2.0 + 0.5*sqgrt ((mDO+nll) *
(m00+m1) - 4* (m00* nL1- m01* nD1)) ;

//first eighenvector orientation
doubl e angle = atan2(l-nD0, n01);
this->orientation = angle* 180.0 /MPI;

[lvariance on new axis => el ongation
doubl e angle2 = angle + M PI/2.0;

doubl e X = x*cos(angl e) +y*si n(angl e);
doubl e Y = x*cos(angl e2) +y*si n(angl e2) ;

doubl e XX = xx*cos(angl e) *cos(angl e) +yy*si n(angl e) *si n(angl e) +
2. 0*xy*cos(angl e) *si n(angl e) ;

doubl e YY = xx*cos(angl e2)*cos(angl e2) +yy*si n(angl e2) *si n(angl e2) +
2. 0*xy*cos(angl e2) *si n(angl e2) ;

double vX = XX - X*X/ (doubl e)si ze;

doubl e vY = YY - Y*Y/(doubl e)si ze;
t hi s->el ongation = sqgrt(vX/ vY);

}

el se {
t hi s->x=-1;
t his->y=-1;
this->visible = 0;

}

return(l);

}

The colormap object is then plugged in the URBI Engine and it is used to create a ball detector in the
URBI.INI file:

ball = new col ormap("canera", 0, 255, 120, 190, 150, 230, 0. 0015) ;

The practical side: how to use create an UObject?

You'll havetoinstall an appropriate SDK (see hereafter), then to use umakein unix environmentsor visual
sudio™.,

50

Create components: the
UODbject architecture

We have seen that you can create two different types of UObjects. remote UObjects and plugged in
UODbjects. At the moment, with an Urbi-SDK, you can create remote UObjects only. To create a new
engine with plugged-in UObjects, you must use the urbiengine-SDK which allows you also to create
remote UObjects.

How to install a sdk to build/link components for your robot?
To build or use componentsfor agiven URBI server, you need to install the engine SDK corresponding to
the server. Download it from the URBI website (or from the robot manufacturer's website). theinstallation
procedure depends on the format of the downloaded file and of the OS:

minGW
If you are using amingw under windows, unzip the packagein theroot mingwdir. In amingw console, type:
cd /
unzi p DOANLOADED_SDK. zi p

Visual sudio/Visual C++ express edition
If you are using visual c++ express or visua studio under windows, unzip the package in the any dir
you want using your favorite zip tool. You will find inside an "include" dir and a"lib" dir. Provide this
directoriesin your visual project respectively in the include dir list and in the link path list.

mac, zip file
Usually x86 and powerPC versions are available. In a console, type:
cd /
unzi p DOANLOADED SDK. zi p

rpm
If you are using a rpm based linux distribution (redhat, mandrake, fedora...), you can run as root in the
directory where is your downloaded package:
rpm-ivh downl oaded_SDK. rpm
Y ou can a'so use your favorite graphical or command line package installer.

deb
If you are using adeb based linux distribution (debian, ubuntu...) you can run asroot in the directory where
isyour downloaded package:
dpkg --install downl oaded SDK.rpm

with ubuntun there is no root account, use:

sudo dpkg --install downl oaded_ SDK.rpm

51

Create components: the
UODbject architecture

tarball

sources

Y ou can also use your favorite graphical or command line package installer.

If you are using adeb or rpm based linux distribution, you can either use the tar binary package. Asroot:

cd /
tar -xvzf downl oaded_SDK. tgz

or

cd /
tar -xvjf downl oaded SDK.tar.bz2

If you want to use (if available) a source package, use the standard commands:

tar -xvzf downl oaded_SDK.t gz
cd new dir

./ configure; make

sudo make install

Some robots requires build chains. For exemple, with aibo, you will need to have an installed OPENR-
SDK. There is a good tutorial on how to install it there: http://aibostuff.iofreak.com/wiki.php?n=0pen-
R.Ubuntulnstall

How to use umake to create engines and components?

Plugins and remote components are built the same way, using umake.

Basic usage

To compile all source files in the current directory and link them with the Remote SDK, simply type
umake. To compile all source files in the current directory and produce a library, type umake-lib. To
compile all source filesin the current directory and link with the Engine SDK, type umake-engine.

$1s
foo.cc foo. hh
$ umake

/usr/ | ocal/gostai/core/linux/libtoo

--tag=CXX --node=compile g++ -2 -pthread
-1/usr/local/gostai/core/include -c foo.cc -0 foo.lo g++ -2 -pthread
-1 /usr/local/gostai/core/include -c foo.cc -0 foo.o
/fusr/local/gostai/core/linux/libtool --nobde=link --tag=CXX g++ -2
-pthread -L/usr/local/gostai/core/linux/renote -0

ur bi engi ne-1inux-renmote ./foo.0
/fusr/local/gostai/core/linux/remote/*.la nkdir .libs Iibtool: link:
warni ng: library

52

http://aibostuff.iofreak.com/wiki.php?n=Open-R.UbuntuInstall
http://aibostuff.iofreak.com/wiki.php?n=Open-R.UbuntuInstall

Create components: the
UODbject architecture

“/usr/local/gostai/core/linux/renotel/libkernel-remote.la'" was noved.
libtool: link: warning: library
“/usr/local /gostai/core/linux/renotel/libkernel-renmote.la'" was noved.

g++ -2 -pthread -o urbiengine-linux-remote ./foo.0
-L/usr/local /gostai/core/linux/renote
/fusr/1local/gostai/core/linux/renote/libkernel-renpte. a
-L/tnp/ urbi/gostai/core/linux/renote

$1s

foo.cc foo.hh foo.lo foo.o urbiengine-Iinux-renote

Specifying the source

Y ou can pass to umake alist of files and directory. Files can be sources, headers and libraries. Directory
will be searched and all the sources and libraries they contain will be included in the build.

$1s -R.

uobj 1 uobj2

./ uobj 1:
nmyuobj 1. cc

. [uobj 2:
nmyuobj 2. cc

$ umake uobj 1 uobj2

/fusr/|local/gostai/core/linux/libtool --tag=CXX --node=conpile g++ -2
-pthread -1/usr/local/gostai/core/include -c uobj1l/nyuobjl.cc -0 uobjl/1.10
g++ -2 -pthread -1/usr/local/gostai/core/include -c uobj1l/ nyuobjl.cc -0
uobj 1/ 1.0 /usr/local/gostai/core/linux/libtool --tag=CXX
--node=conpile g++ -2 -pthread -1/usr/local/gostai/core/include -c
uobj 2/ myuobj 2.cc -0 uobj2/2.10 g++ -2 -pthread
-1 /usr/local/gostai/core/include -c uobj2/ myuobj2.cc -0 uobj2/2.0
/fusr/local/gostai/core/linux/libtool --nobde=link --tag=CXX g++ -2
-pthread -L/usr/local/gostai/core/linux/renote -0
ur bi engi ne-1inux-renote uobj1/1.0 uobj2/2.0

fusr/local/gostai/core/linux/remote/*.la nkdir .libs Iibtool: link:
warni ng: library
“/usr/local/gostai/core/linux/renotel/libkernel-renmote.la'" was noved.
libtool: link: warning: library

“/usr/local/gostai/core/linux/renotel/libkernel-renmote.la'" was noved.
g++ -2 -pthread -o urbiengine-linux-renote uobj1/1.0 uobj2/2.0
-L/usr/local /gostai/core/linux/renote
/fusr/local/gostai/core/linux/renote/libkernel-renpte. a

-L/tnp/ urbi/gostai/core/linux/renote

$1s -R.

53

Create components: the
UODbject architecture

uobj 1 uobj2 wurbiengine-linux-renote

./ uobj 1:
nmyuobj 1. cc

. [uobj 2:
nmyuobj 2. cc

Specifying a different host or SDK

To compile for adifferent host, you can usethe- H host option. A SDK for the specified host must be
installed. To specify the SDK to use, - C sdk.

$1s
foo.cc foo. hh
$ umake --core webots

/fusr/|local/gostai/core/linux/libtool --tag=CXX --node=conpile g++ -2
-pthread -1/usr/local/gostai/core/include -c foo.cc -o foo.lo g++ -Q2
-pthread -1/usr/local/gostai/core/include -c foo.cc -0 foo.o0
/fusr/local/gostai/core/linux/libtool --nobde=link --tag=CXX g++ -2
-pthread -L/usr/local/gostai/core/linux/webots -0

ur bi engi ne-1i nux-webots ./foo.0

/usr/local/gostai/core/linux/webots/*.la libtool: Iink: warning:
library “/usr/local/gostai/core/linux/webots/I|iburbicore.la" was
nmoved. libtool: link: warning: library

“lusr/local /gostai/core/linux/webots/liburbicore.la" was noved. g++
-2 -pthread -o urbiengine-linux-webots ./foo0.0

-L/usr/local /gostai/core/linux/webots

/usr/ | ocal /gostai/core/linux/webots/liburbicore.a

- L/t np/ urbi/ gostai/core/linux/webots

-L/tnp/ urbi/gostai/kernel/linux/engine -L/usr/local/webots/lib

-1 Controller

$1s

foo.cc foo.hh foo.lo foo.o urbiengine-Iinux-webots

Specifying the output file

The option - 0 can be used to set the output file name. It defaults to urbiengine-HOST-CORE when
building engines, and uobject-HOST.awhen building libraries.

$1s
foo.cc foo. hh
$ umake --core webots -0 urbi

/fusr/local/gostai/core/linux/libtool --tag=CXX --node=conpile g++ -2
-pthread -1/usr/local/gostai/core/include -c foo.cc -o foo.lo g++ -Q2
-pthread -1/usr/local/gostai/core/include -c foo.cc -0 foo.o0
/fusr/local/gostai/core/linux/libtool --nobde=link --tag=CXX g++ -2

54

Create components: the
UODbject architecture

-pthread -L/usr/local/gostai/core/linux/webots -0
ur bi engi ne-1i nux-webots ./foo.0

/usr/local/gostai/core/linux/webots/*.la libtool: Iink: warning:
library “/usr/local/gostai/core/linux/webots/l|iburbicore.la was
nmoved. libtool: link: warning: library

“lusr/local /gostai/core/linux/webots/liburbicore.la" was noved. g++
-2 -pthread -o urbiengine-linux-webots ./foo0.0

-L/usr/local /gostai/core/linux/webots

/fusr/ |l ocal /gostai/core/linux/webots/liburbicore.a

- L/t np/ urbi / gostai/corel/linux/webots

-L/tnp/ urbi/gostai/kernel/linux/engine -L/usr/local/webots/lib

-1 Controller

$1s
foo.cc foo.hh foo.lo foo.o urbi

Passing parameters to make
All the umake options of the form 'var=value' will be passed to make. To pass flages to the compiler and
the linker, use the variables EXTRA_CPPFLAGS and EXTRA_LDFLAGS.

$ |Is foo.cc foo.hh $ unmake --core webots *.cc
EXTRA CPPFLAGS=-1/usr/ | ocal /webots/include -0 urbi -V

/usr/local/bin/umake: run. [usr/local/bin/umake: |ibs=""
/fusr/local/bin/fumake: sources=" 'foo.cc'' /usr/local/bin/umake:
headers=""' /usr/l ocal / bi n/fumake: objects=""'foo0.0""

/usr/ | ocal /bi nfumake: make options=

" EXTRA _CPPFLAGS=-1/usr /1 ocal / webot s/ i ncl ude

-1/ home/ t hormas/ proj ect/|iburbi-cpp/trunk/lib" QUTBI N=urb

URBI _ENvV=webot s prefix=/usr/local' /usr/local/bin/umake: invoking make
-f /usr/local/gostai/core/linux/paramnk urb
/fusr/local/gostai/core/linux/libtool --nobde=link --tag=CXX g++ -2
-pthread -L/usr/local/gostai/core/linux/webots -o urbi foo.o
/usr/local/gostai/core/linux/webots/*.la libtool: Iink: warning:
library “/usr/local/gostai/core/linux/webots/liburbicore.la" was
noved. libtool: link: warning: library

“lusr/local /gostai/core/linux/webots/liburbicore.la" was noved. g++
-2 -pthread -o urbi foo.o -L/usr/local/gostai/core/linux/webots
/usr/ | ocal /gostai/core/linux/webots/liburbicore.a

-L/tnp/ urbi/ gostai/core/linux/webots

-L/tnp/ urbi/gostai/kernel/linux/engine -L/usr/local/webots/lib

-1 Controller /usr/local/bin/umake: done.

$1s
foo.cc foo.hh foo.lo foo.o urbi

Examples
Suppose you have a module whose sources are in the current directory.
e umake produces ur biengine-linux-remote, a remote object executable

e umake-lib -0 mymodule produces mymodule.a, alibrary that can be linked using umake to a sdk.

55

Create components: the
UODbject architecture

e umake-engine -o urbi . libs/other module.a produces urbi, an URBI server containing the module
othermodule.a and the module made by compiling the sources in the current directory

* umake-engine --cor e=aibo --host=mipsel-linux produces urbi, an URBI engine for aibo which can
run on the aibo host.

* umake-engine -H arm EXTRA_CPPFLAGS=/usr/local/myLib/include produces urbiengine-
arm, an URBI engine for arm architecture containing your object, if you have the arm-engine URBI
SDK installed. It will search for headersin the /usr/local/myLib/include directory.

How to distribute one of your components and make them available
to others?

You can either distribute the sources of your component, or the library file (.@) generated by the build
process as described above (umake-lib). People will then be able to link it to an URBI server as explained
above. Please note that the library is architecture dependant: a component compiled for the Aibo can't
be relinked as a remote module, the sources have to be recompiled. We strongly advice to publish both
the source code for rebuilding purposesif your license allows it, AND one or several binary versions for
people who just want to link it and use it as a remote component.

The website http://www.urbiforge.com is a platform to exhange components and URBI scripts. You can
upload your work there so that the community can benefit fromit.

56

http://www.urbiforge.com

Chapter 10. Putting all together

Thefollowing diagram showsatypical setting of clientsand software architecturefor an URBI application.
You have clients in C++, Java and Matlab running on different machines (with Linux, Windows, Mac
0SX), remote UODbjects plus onboard clients and plugged UObjects and some telnet/URBI L ab scripting.
There is also a bench of controlling scripts running from the URBI.INI file. This example shows how
flexible URBI can be, having all those systems running in parallel to control your robot.

57

Putting all together

Figure 10.1. The general URBI architecture, putting all together

telnet or urbilab client (}‘;x\

C++ client

tn liburbi C++

« simple commands

3 « functions definition . . .
T — — ca::n_?pﬁex scripts !_x'
— /
tava code with liburbi Jawva — {"f III_\ ﬁ
- \ / ;

/ URBLINI
f ‘b" onboard scripts

Onboard client - -

other integrated clients NUE— T
- ! t liburbi OFEHM-R

(matlab, python, . . .) . e

58

Putting all together

Typical usages examples

Y ou have an URBI server running on your robot and...

Remote control of arobot

Your robot is equipped with a wifi connection, like Aibo, and you run a complex Al program on a
powerful desktop computer to control it. This program is actually an URBI client written in C++ and
uses the liburbi C++ or UObject library to send URBI commands to the robot when needed and to
receive URBI messages from the server asynchronously and react to them. Y ou can replace C++ by
Java, Matlab or any language you like if you don't want C++. You aso have some UObject-based
components running some nice vision algorithm for example.

Fully autonomous robot with an onboard URBI client / UObjects

This time, you run the URBI client or UObjects on the robot and not remotely. Just like before, it
is written in C++ with the liburbi C++ or with the UObject architecture. Instead of a TCP/IP wifi
based connection between your client and the server, you have a direct interprocess communication
on localhost or direct shared memory access with UObject plugin mode.

Fully autonomous robot controlled only by URBI scripts

In that case, it means that you have found all the functionalities you need in URBI (no need for
external C++ or Javaprogramming) and you write directly all the action-perception loops with URBI
scripts running in the URBI server, making use of some pre-existing or downloaded components in
plugin mode. Y ou need asimple telnet or URBI Remote to send your URBI scripts to the server and
itisset. You can aso store the script directly in the URBI.INI file and your robot will start it at boot
up (no need at all for an external client or computer).

A mixof 1,2and 3

You have a robot controlled by several URBI clients at the same time, some on the robot, some
on a desktop computer, some in C++, some in Java and Matlab. On top of that, you have several
URBI scripts running in the server to perform reactive action-perception loops using some powerful
UODbjects written by you and also downloaded from the Internet, all this started from URBI.INI but
also dynamically loaded by some of the clients when needed. This is the most interesting situation,
making afull use of the URBI flexibility.

59

Appendix A. Copyright

THE WORK (AS DEFI NED BELOW | S PROVI DED UNDER THE

TERMS OF TH S CREATI VE COVMONS PUBLI C LI CENSE (" CCPL" OR

"LICENSE"). THE WORK | S PROTECTED BY COPYRI GHT ANDY OR OTHER APPL| CABLE
LAW ANY USE OF THE WORK OTHER THAN AS AUTHORI ZED UNDER THI S LI CENSE
OR COPYRI GHT LAW I S PRCH BI TED.

BY EXERCI SI NG ANY RI GHTS TO THE WORK PROVI DED HERE, YQOU ACCEPT AND
AGREE TO BE BOUND BY THE TERMS OF THI'S LI CENSE. THE LI CENSOR GRANTS
YOU THE RI GHTS CONTAI NED HERE | N CONSI DERATI ON OF YOUR ACCEPTANCE OF
SUCH TERMS AND CONDI Tl ONS

1. Definitions

1. "Collective Wrk" neans a work, such as a periodical issue,

ant hol ogy or encycl opedia, in which the Wirk inits entirety in
unnodi fied form along with a nunber of other contributions,
constituting separate and i ndependent works in thensel ves, are
assenbled into a collective whole. A work that constitutes a
Collective Work will not be considered a Derivative Wrk (as
defined bel ow) for the purposes of this License. 2. "Derivative
Wor k" means a work based upon the Wbrk or upon the Wrk and ot her
pre-existing works, such as a translation, musical arrangenent,
dramati zation, fictionalization, notion picture version, sound
recordi ng, art reproduction, abridgnent, condensation, or any other
formin which the Wrk nmay be recast, transfornmed, or adapted,
except that a work that constitutes a Collective Work will not be
consi dered a Derivative Wrk for the purpose of this License. For
t he avoi dance of doubt, where the Wrk is a nusical conposition or
sound recording, the synchronization of the Work in timed-relation
with a noving image ("synching") will be considered a Derivative
Wrk for the purpose of this License. 3. "Licensor" neans the

i ndividual or entity that offers the Work under the terns of this
Li cense. 4. "Original Author" neans the individual or entity who
created the Work. 5. "Wrk" means the copyrightable work of

aut horship offered under the terms of this License. 6. "You" means
an individual or entity exercising rights under this License who
has not previously violated the terns of this License with respect
to the Work, or who has received express pernission fromthe

Li censor to exercise rights under this License despite a previous
vi ol ati on.

2. Fair Use Rights. Nothing in this license is intended to reduce,
l[imt, or restrict any rights arising fromfair use, first sale or
other limtations on the exclusive rights of the copyright owner under
copyright Iaw or other applicable |aws.

3. License Grant. Subject to the terns and conditions of this License,
Li censor hereby grants You a worldw de, royalty-free, non-exclusive,

60

Copyright

perpetual (for the duration of the applicable copyright) license to
exercise the rights in the Wrk as stated bel ow

1. to reproduce the Wirk, to incorporate the Wirk into one or nore
Col l ective Wrks, and to reproduce the Wrk as incorporated in the
Col l ective Wirks; 2. to distribute copies or phonorecords of,

di splay publicly, performpublicly, and perform publicly by means
of a digital audio transm ssion the Wrk including as incorporated
in Collective Wrks;

The above rights may be exercised in all media and formats whet her now
known or hereafter devised. The above rights include the right to make
such nodi fications as are technically necessary to exercise the rights
in other nmedia and formats, but otherw se you have no rights to make
Derivative Wrks. Al rights not expressly granted by Licensor are
hereby reserved, including but not limted to the rights set forth in
Sections 4(d) and 4(e).

4. Restrictions.The license granted in Section 3 above is expressly
made subject to and limted by the followi ng restrictions:

1. You may distribute, publicly display, publicly perform or
publicly digitally performthe Wrk only under the terns of this

Li cense, and You mnust include a copy of, or the Uniform Resource
Identifier for, this License with every copy or phonorecord of the
Work You distribute, publicly display, publicly perform or
publicly digitally perform You may not offer or inpose any terns
on the Wirk that alter or restrict the terns of this License or the
reci pients' exercise of the rights granted hereunder. You may not
subl i cense the Work. You nmust keep intact all notices that refer to
this License and to the disclainmer of warranties. You may not
distribute, publicly display, publicly perform or publicly
digitally performthe Wirk with any technol ogi cal nmeasures that
control access or use of the Work in a manner inconsistent with the
terms of this License Agreenent. The above applies to the Wrk as

i ncorporated in a Collective Wrk, but this does not require the
Col l ective Wrk apart fromthe Wrk itself to be nade subject to
the terms of this License. If You create a Collective Wrk, upon
notice fromany Licensor You must, to the extent practicable,
renove fromthe Collective Wrk any reference to such Licensor or
the Original Author, as requested. 2. You may not exercise any of
the rights granted to You in Section 3 above in any manner that is
primarily intended for or directed toward conmerci al advantage or
private nonetary conpensation. The exchange of the Wrk for other
copyri ghted works by means of digital file-sharing or otherw se
shal | not be considered to be intended for or directed toward
commer ci al advantage or private nonetary conpensation, provided
there is no paynment of any nonetary conpensation in connection with
t he exchange of copyrighted works. 3. If you distribute, publicly
di splay, publicly perform or publicly digitally performthe Wrk
You nmust keep intact all copyright notices for the Wrk and give
the Oiginal Author credit reasonable to the nedium or nmeans You
are utilizing by conveying the nane (or pseudonymif applicable) of
the Original Author if supplied; the title of the Wrk if supplied;

61

Copyright

and to the extent reasonably practicable, the Uniform Resource
Identifier, if any, that Licensor specifies to be associated with
the Work, unless such URI does not refer to the copyright notice or
licensing information for the Wrk. Such credit may be inpl enented
i n any reasonabl e manner; provided, however, that in the case of a
Col l ective Wrk, at a m nimum such credit will appear where any

ot her conparabl e aut horship credit appears and in a manner at | east
as prom nent as such other conparable authorship credit. 4.

For the avoi dance of doubt, where the Work is a nusica
conposition: 1. Performance Royalties Under Bl anket
Li censes. Licensor reserves the exclusive right to collect,
whet her individually or via a performance rights society
(e.g. ASCAP, BM, SESAC), royalties for the public
performance or public digital perfornmance (e.g. webcast) of
the Work if that performance is primarily intended for or
directed toward comrerci al advantage or private nonetary
conpensation. 2. Mechanical R ghts and Statutory
Royal ties. Licensor reserves the exclusive right to collect,
whet her individually or via a nmusic rights agency or
designated agent (e.g. Harry Fox Agency), royalties for any
phonorecord You create fromthe Wrk ("cover version") and
di stribute, subject to the conmpul sory license created by 17
USC Section 115 of the US Copyright Act (or the equivalent in
other jurisdictions), if Your distribution of such cover
version is primarily intended for or directed toward
commer ci al advantage or private nonetary conpensation
5. Webcasting Rights and Statutory Royalties. For the
avoi dance of doubt, where the Wirk is a sound recording,
Li censor reserves the exclusive right to collect, whether
i ndividually or via a performance-rights society
(e.g. SoundExchange), royalties for the public digita
performance (e.g. webcast) of the Work, subject to the
conpul sory license created by 17 USC Section 114 of the US
Copyright Act (or the equivalent in other jurisdictions), if
Your public digital performance is primarily intended for or
directed toward comrerci al advantage or private nonetary
conpensati on.

5. Representations, Warranties and Di scl ai mer

UNLESS OTHERW SE MUTUALLY AGREED BY THE PARTIES | N WRI TI NG, LI CENSOR
OFFERS THE WORK AS-1S AND MAKES NO REPRESENTATI ONS OR WARRANTI ES OF
ANY KI'ND CONCERNI NG THE WORK, EXPRESS, | MPLIED, STATUTCRY OR
OTHERW SE, | NCLUDI NG, W THOUT LI M TATI ON, WARRANTI ES OF TI TLE,
MERCHANTI BI LI TY, FI TNESS FOR A PARTI CULAR PURPGCSE, NONI NFRI NGEMENT, OR
THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF
ABSENCE OF ERRORS, WHETHER OR NOT DI SCOVERABLE. SQOVE JURI SDI CTI ONS DO
NOT ALLOW THE EXCLUSI ON OF | MPLI ED WARRANTI ES, SO SUCH EXCLUSI ON MAY
NOT APPLY TO YQU

6. Limtation on Liability. EXCEPT TO THE EXTENT REQUI RED BY
APPLI CABLE LAW I N NO EVENT WLL LICENSOR BE LI ABLE TO YOU ON ANY
LEGAL THECRY FCOR ANY SPECI AL, | NCI DENTAL, CONSEQUENTI AL, PUNI TI VE OR

62

Copyright

EXEMPLARY DAMAGES ARI SING QUT OF THI S LI CENSE OR THE USE OF THE WORK
EVEN | F LI CENSCR HAS BEEN ADVI SED OF THE PGOSSI BI LI TY OF SUCH DAMAGES.

7.

Term nati on

1. This License and the rights granted hereunder will term nate
automatically upon any breach by You of the terms of this

Li cense. Individuals or entities who have received Collective Wrks
from You under this License, however, will not have their |icenses
term nated provided such individuals or entities remain in ful
conpliance with those |licenses. Sections 1, 2, 5, 6, 7, and 8 wll
survive any termnation of this License. 2. Subject to the above
ternms and conditions, the license granted here is perpetual (for
the duration of the applicable copyright in the

Wor k). Notwi t hstandi ng the above, Licensor reserves the right to
rel ease the Wrk under different license terns or to stop
distributing the Woirk at any tinme; provided, however that any such
election will not serve to withdraw this License (or any ot her
license that has been, or is required to be, granted under the
ternms of this License), and this License will continue in ful
force and effect unless term nated as stated above.

M scel | aneous

1. Each tine You distribute or publicly digitally performthe Wrk
or a Collective Wrk, the Licensor offers to the recipient a
license to the Wirk on the same terns and conditions as the |icense
granted to You under this License. 2. If any provision of this

Li cense is invalid or unenforceabl e under applicable law, it shal
not affect the validity or enforceability of the remai nder of the
terms of this License, and without further action by the parties to
this agreenment, such provision shall be reforned to the m ni mum
extent necessary to nmake such provision valid and enforceable.

3. No termor provision of this License shall be deemed wai ved and
no breach consented to unl ess such waiver or consent shall be in
witing and signed by the party to be charged with such waiver or
consent. 4. This License constitutes the entire agreenent between
the parties with respect to the Wirk |licensed here. There are no
under st andi ngs, agreenents or representations with respect to the
Work not specified here. Licensor shall not be bound by any
addi ti onal provisions that may appear in any communication from
You. This License may not be nodified without the nutual witten
agreement of the Licensor and You.

63

