Searching (Sub-)Strings

UIf Leser

This Lecture

e Exact substring search
— Naive
— Boyer-Moore

e Searching with profiles
— Sequence profiles

— Ungapped approximate search
— Statistical evaluation of search results

UIf Leser: Bioinformatics, Summer Semester 2011

»,Searching Strings” (aka Pattern Matching)

e Exact matching
— Given strings s and t: Find all occurrences of sin t
— Given S and t: Find all occurrences of any seSin t

e Approximate matching
— Given s and t: Find all approximate occurrences of s in t
e With or without gaps? With or without specific replacement scores?

— Given s and t: Find s/, t’ such that s’ similar tot"and s’ is a
substring of s and t’ is a substring of t

— Givensand T
e Find all teT that are similar to s
e Find all teT containing a t’ similar to a s’ contained in s

e Many more variants ...

UIf Leser: Bioinformatics, Summer Semester 2011

Strings

e A string (or sequence) S is an ordered list of characters
from an alphabet X
— |S] is the length of S
— S[i] is the character at position i in S
S[i..j] is the substring from position i to position jin S
— SJ[i..j] is an empty string if i > j
S[1..i] is a prefix of S ending at position i
— SJi..] is a suffix of S starting at position i
o Alphabet
— Usually: =={A, C, G, T}
— Often, we need blanks: X'={A, C, G, T, _}
e Lower/upper case: S may denote a set of strings, or a
sequence of characters (a string)

UIf Leser: Bioinformatics, Summer Semester 2011

Exact Matching

e Given P, T with |P| << |T]|
e Find all occurrencesof Pin T

e Example of application: Restriction enzymes
— Cut at precisely defined sequence motifs of length 4-10

— Are used to generate fragments (for later sequencing)
— Example: Eco RV - GATATC

tcagcttactaattaaaaattctttctagtaagtgctaagatcaagaaaataaattaaaaataatggaacatggcacattttcctaaactcttcacagattgctaatgat
tattaattaaagaataaatgttataattttttatggtaacggaatttcctaaaatattaattcaagcaccatggaatgcaaataagaaggactctgttaattggtactat
tcaactcaatgcaagtggaactaagttggtattaatactcttttttacatatatatgtagttattttaggaagcgaaggacaatttcatctgctaataaagggattacga
aaaactttttaataacaaagttaaataatcattttgggaattgaaatgtcaaagataattacttcacgataagtagttgaagatagtttaaatttttctttttgtattac
ttcaatgaaggtaacgcaacaagattagagtatatatggccaataaggtttgctgtaggaaaattattctaaggagatacgcgagagggcttctcaaatttattcagaga
tggatgtttttagatggtggtttaagaaaagcagtattaaatccagcaaaactagaccttaggtttattaaagcgaggcaataagttaattggaattgtaaaafatatet
aattcttcttcatttgttggaggaaaactagttaacttcttaccccatgcagggccatagggtcgaatacgatctgtcactaagcaaaggaaaatgtgagtgtagacttt
aaaccatttttattaatgactttagagaatcatgcatttgatgttactttcttaacaatgtgaacatatttatgcgattaagatgagttatgaaaaaggcgaatatatta
ttcagttacatagagattatagctggtctattcttagttataggacttttgacaagatagcttagaaaataagattatagagcttaataaaagagaacttcttggaatta
gctgcctttggtgcagctgtaatggctattggtatggctccagettactggttaggttttaatagaaaaattccccatgattgctaattatatctatecctattgagaaca
acgtgcgaagatgagtggcaaattggttcattattaactgctggtgctatagtagttatccttagaaagatatataaatctgataaagcaaaatcctggggaaaatattg
ctaactggtgctggtagggtttggggattggattatttcctctacaagaaatttggtgtttactgatatecttataaataatagagaaaaaattaataaagatgatat

UIf Leser: Bioinformatics, Summer Semester 2011 5

How to do it?

e The straight-forward way (naive algorithm)
— We use two counter: t, p
— One (outer, t) runs through T
— One (inner, p) runs through P
— Compare characters at position T[t+p] and P[p]

for t =1 to |T] - |P] + 1
match := true;
p = 1;

while ((match) and (p <= |P]))
if (T(t + p - 1) <> P(p)) then

match := false;
else
p :=p +1;
end while;
1T (nmatch) then
-> QUTPUT t

end for;

UIf Leser: Bioinformatics, Summer Semester 2011

Examples

Typical case Worst case
T ctgagatcgcgta T aaaaaaaaaaaaaa
P gaggg%C P aaaaat
gagatc aaaaat
gag%ggc aaaaat
gatatc
gatatc

e How many comparisons do we need in the worst case?
e trunsthrough T
e p runs through the entire P for every value of t
e Thus: |P|*|T| comparisons

Indeed: The algorithm has worst-case complexity O(|P|*|T|)

UIf Leser: Bioinformatics, Summer Semester 2011

Other Algorithms

o Exact substring search has been researched for decades
— Boyer-Moore, Z-Box, Knuth-Morris-Pratt, Karp-Rabin, Shift-AND, ...
— All have WC complexity O(|P| + |T|)

— Real performance depends much on size of alphabet and
composition of strings (most have their strength in certain settings)

e In practice, our naive algorithm is quite competitive for
random strings and non-trivial alphabets (e.g., DNA)

e But we can do better: Boyer-Moore
— We present a simplified form
— BM is among the fastest algorithms in practice

e Note: Much better performance possible if T maybe
preprocessed (up to O(|P]))

UIf Leser: Bioinformatics, Summer Semester 2011 8

This Lecture

e Exact substring search
— Naive
— Boyer-Moore

e Searching with profiles
— Sequence profiles

— Ungapped approximate search
— Statistical evaluation of search results

UIf Leser: Bioinformatics, Summer Semester 2011

Boyer-Moore Algorithm

e R.S. Boyer /].S. Moore. ,A Fast String Searching
Algorithm®, Communications of the ACM, 1977

e Main idea
— Again, we use two counters (inner loop, outer loop)
— Inner loop runs from right-to-left

— If we reach a mismatch, we know
e The character in T we just haven't seen
— This is captured by the bad character rule
e The suffix in P we just have seen
— This is captured by the good suffix rule

e Use this knowledge to make longer shifts in T

UIf Leser: Bioinformatics, Summer Semester 2011

Bad Character Rule

e Setting 1
— We are at position t in T and compare right-to-left
— Let i by the position of the first mismatch in P
e We saw n-i+1 matches before
— Let x be the character at the corresponding pos (t-n+i) in T
— Candidates for matching x in P

e Case 1: x does not appear in P at all — we can move t such that t-n+i
is not covered by P anymore

T xXabxfabzzabxzzbzzb T xabxfabzzabwzzbzzb
P abwxyabzz P abwxyabzz
— —
What next?

UIf Leser: Bioinformatics, Summer Semester 2011 11

Bad Character Rule 2

e Setting 2
— We are at position t in T and compare right-to-left
— Let i by the position of the first mismatch in P
— Let x be the character at the corresponding pos (t-n+i) in T
— Candidates for matching x in P

e Case 1: x does not appear in P at all

e Case 2: Let j be the right-most appearance of x in P and let j<i — we
can move t such that j and i align

T xabxkabzzabwzzbzzb T xabxkabzzabwkzbzzb

P abzwyabzz P ab abzz
11 —
] What next?

UIf Leser: Bioinformatics, Summer Semester 2011

Bad Character Rule 3

e Setting 3
— We are at position t in T and compare right-to-left
— Let i by the position of the first mismatch in P
— Let x be the character at the corresponding pos (t-n+i) in T
— Candidates for matching x in P

e Case 1: x does not appear in P at all

e Case 2: Let j be the right-most appearance of x in P and let j<i
e Case 3: As case 2, but j>i — we need some more knowledge

T xabxkabzzabw4izhzzb
P abzwyaldzz

h

UIf Leser: Bioinformatics, Summer Semester 2011

13

Preprocessing 1

e In case 3, there are some “x" right from position |
— For small alphabets (DNA), this will almost always be the case
— Thus, this case 3 is the usual one

e These are irrelevant — we need the right-most x left of i

e This can (and should!) be pre-computed
— Build a two-dimensional array A[|2],|P]|]
— Run through P from left-to-right (pointer i)
— If character c appears at position i, set all A[c,j]:=i for all j>=i

— Needs time (complexity?), but negligible because
e Pissmall
o Complexity is independent from T

e Array: Constant lookup, needs some space (lists ...)

UIf Leser: Bioinformatics, Summer Semester 2011

14

(Extended) Bad Character Rule

o Simple, effective for larger alphabets

e For random DNA, average shift-length is 4
— Expected distances to the next match using EBCR
— Thus, n# of comparisons down to |P|*|T|/4

o Worst-Case complexity does not change
— Why?

UIf Leser: Bioinformatics, Summer Semester 2011

(Extended) Bad Character Rule

o Simple, effective for larger alphabets

e For random DNA, average shift-length should be 4
— Thus, n# of comparisons down to |P|*|T|/4

o Worst-Case complexity does not change
— Why?

T 99999999999 !

9999999999¢
9999999999¢
9999999999¢
9999999999¢

UIf Leser: Bioinformatics, Summer Semester 2011

Good-Suffix Rule

e Recall: If we reach a mismatch, we know
— The character in T we just haven't seen
— The suffix in P we just have seen

e Good suffix rule
— We have just seen some matches in P (S)
— Where else does S appear in P?

— If we know the right-most appearance S’ of S in P, we can
immediately align S" with the current match in T

— If S does not appear once more in P, we can shift t by |P|

D —

UIf Leser: Bioinformatics, Summer Semester 2011

Good-Suffix Rule — One Improvement

o Actually, we can do a little better
e Not all S' are of interest to us

UIf Leser: Bioinformatics, Summer Semester 2011

Good-Suffix Rule — One Improvement

o Actually, we can do a little better
e Not all S' are of interest to us

T
P Nt BNt Bt Nt

e We only need S' whose next character to the left is not y

e Why don't we directly require that this character is x?
— Of course, this could be used for further optimization

UIf Leser: Bioinformatics, Summer Semester 2011

Concluding Remarks

e Preprocessing 2
— For the GSR, we need to find all occurrences of all suffixes of P in P
— This can be solved using our naive algorithm for each suffix
— Or, more complicated, in linear time (not this lecture)

o WC complexity of Boyer-Moore is still O(|P|*|T|)

— But average case is sub-linear

— WC complexity can be reduced to linear (not this lecture)
e Faster variants

— Often, using the GSR does not pay-off

— BM-Horspool: Instead of looking at the mismatch character X,
always look at the symbol in T aligned to the last position of P

e Generates longer shifts on average (i is maximal)

UIf Leser: Bioinformatics, Summer Semester 2011

Example

| EBCR wins | | o af i) o -

[G5R vins] o <[oI

=

. Match . Good suffix clajbjajabghb aE

. Mismatch . Ext. Bad character

Ulf Leser: Bioinformatics, Summer Semester 2011 21

This Lecture

e Exact substring search
— Naive
— Boyer-Moore
e Searching with profiles
— Splicing
— Position Specific Weight Matrices
— Likelihood scores

UIf Leser: Bioinformatics, Summer Semester 2011

22

Approximate Search (First Instantiation)

e Requiring an exact match is too strict in many applications
— And in most bioinformatics applications

e More often, one is interested in matches similar to P
— Or can describe P only vaguely

e Many definitions of “similar” are possible

e For now: Searching with Position Specific Weight Matrices
— Also called profiles
— Powerful tool for many bioinformatics applications

— We develop the idea using an example taken from Spang et al.
“Genome Statistics”, Lecture 2003/2005, FU Berlin

UIf Leser: Bioinformatics, Summer Semester 2011

Splicing

e Not all DNA of a “gene” are translated into amino acid
e Splicing: Removal of introns
e Alternative splicing: Removal of (some) exons

Introns Gene |

mRNA
Exons

Transcription, elimi-
nation of intron
transcript segments,
and splicing of exons

mRNA 1 T 1 mRNA

Figure 13.3 Protein A Protein B

UIf Leser: Bioinformatics, Summer Semester 2011

Diversity

e From a gene with n exons, alternative
splicing can create 2"-1 proteins

e Example: Troponin T (muscle protein)
— 18 exons
— 64 different isoforms
— 10 exons present in all isoforms

|| A |

0 0 6T R

I

T J SV

e Source: Eurasnet, ,Alternative Splicing"

Ulf Leser: Bioinformatics, Summer Semester 2011

Recognizing Splice Sites

e A special enzyme (spliceosome) very precisely recognizes
exon-intron boundaries in mMRNA

e To this end, it scans the sequences and is triggered by
certain motifs

e How are these motifs characterized? Can we find them?
— Very often, introns start with GT (GU) and end with AG
— But that is not specific enough - why?
— In random sequences, we expect a GT (AT) at every 16t position

— Thus, the average distance between a GT and an AT is 16, and we
find such pairs very often

— But: Introns typically are larger than 100 bases

UIf Leser: Bioinformatics, Summer Semester 2011 26

Context of a Splice Site

CTCCGAAGTAGGATT CTCCGAAGTAGGATT
TCAGAAGGTGAGGGC TCAGAAGGTGAGGGC
TTGGAAGGTTCGCAG TTGGAAGGTTCGCCAG
TACTCAGGTACTCAC TACTCAGGTACTCAC
CGCCCAGGTGACCGG CGCCCAGGTGACCGG
AGAAAGAGTAAGCTC AGAAAGAGTAAGCTC
CAATGCTGTATGTGT CAATGCTGTATCETGT
GGTCTCGGTAACTGC GGTCTCGGTAACTGC
CCTGCTGGTAAGGCC CCTGCTGGTAACGCC
TGTTGCGGTAGGTCC TGTTGCGGTAGGTCC

e Observing real splice sites, we find no crisp context
e But: columns are not composed at random either
e How can we capture this knowledge?

UIf Leser: Bioinformatics, Summer Semester 2011

Position-Specific Weight Matrices

DONOR FREQUENCY MATRIX from http://genomic.sanger.ac.uk/spldb/SpliceDB.html
1 2 3 4 5 6 7 8 9

34.08 60.36 9.14 0.00 0.00 52.57 71.26 7.08 15.98
36.24 12,90 3.27 0.00 0.00 2.82 7.56 5.50 16.46
18.31 12.48 80.34 100.00 0.00 41.94 11.76 B1.35 20.90
11.38 14.25 7.24 0.00 100.00 2.55 9.29 5.88 46.16

LI I & B

e Count in every column the frequencies of all bases

o Store the relative frequencies in an array of size |P|*|2]
— With |P| being the size of the context around the splice sites

o At "GT", all values except one are 0% and one is 100%
— Actually, GT is not perfectly conserved in real sequences

e In random sequences, all values should be 25%

UIf Leser: Bioinformatics, Summer Semester 2011

Vizualization: Sequence Logos

e Very popular

e Based on information content of each base at each position
— Which, in turn, is based on the entropy of the columns

CTCCGAAGTAGGATT
TCAGAAGGTGAGGGC
TTGGAAGGTTCGCAG
TACTCAGGTACTCAC
CGCCCAGGTGACCGG

AGAAAGAGTAAGCTC A C
® ©

CAATGCTGTATGTGT — _ A _——— S
© 0~ - e = ¥ g

p—
p—

GGTCTCGGTAACTGC 5

weblogo. berusley. ada

CCTGCTGGTAAGGCC

TGTTGCGGTAGGTCC

UIf Leser: Bioinformatics, Summer Semester 2011

Scoring with a PSWM

e Eventually, we want to find potential splice sites in a
genome G (e.g. to do gene prediction)

e We need a way to decide, given a sequence S and a PSWM
A (both of the same length): Does S match A?
— We want to assign a score to S given A
— Knowing this, we can score all subsequences of length |A] in G
— Subsequences above a given threshold are considered candidates

\AT . .

e We give this question a probabilistic interpretation
— Assume, for each column, a dice which four faces; each face is
thrown with the relative frequency as given in A for this column

— How high is the probability that this dice generates S?

UIf Leser: Bioinformatics, Summer Semester 2011

Examples

e In random sequences, all values in A are 25%, and all
possible S would get the same probability: V415

o But

1 2 3 4 5 [7] 9

A 34.08B 60.36 9.14 0.00 0.00 52.57 71.26 7.08 15.98

C 36.24 12.90 3.27 0.00 0.00 2.82 7.56 5.50 16.46

G 18.31 12.48 80.34 100.00 0.00 41.94 11.76 81.35 20.80

T 11.38 14 .25 7.24 0.00 100.00 2.55 9.29 5.88 46.16
1. P (AAGGTACGT) ~0.34*0.6*0.8*1*1*0.53*0.710.81*0.46 =0.023
2. P(CCCGTCCCC)#~0.36*0.13*0.03*1*1*0.03*0.08*0.05*0.16 =2.7e-08
3. P (CTGGTCCGA) ~0.36*0.14*0.8*1*1*0.03*0.08*0.81*0.16 =1.25e-05
4. P(TACCTCCGT)=0

e 1st sequence (S) matches A much better than the others do

UIf Leser: Bioinformatics, Summer Semester 2011

This Lecture

e Exact substring search
— Naive
— Boyer-Moore
e Searching with profiles
— Splicing
— Position Specific Weight Matrices
— Likelihood scores

UIf Leser: Bioinformatics, Summer Semester 2011

I am not Convinced (yet)

e Is S actually a match for A?

e (Observations

— The first S from the previous slide is about as good as it can get:
The best possible sequence would get a score of 0.025 (compared
to 0.023)

— If Sis not a splice site, it is an “ordinary” sequence. How likely is it
that S is generated under this “zero model™?
e “"Zero model” means: Equal probability for all bases
e p(S|"zero”) = 4% ~ 3.8E-6

e Thus, is it much more likely (app. 6000 times more likely) that S was
generated under the “"A model” than that is was generated under the
“zero model”

UIf Leser: Bioinformatics, Summer Semester 2011 33

Likelihood (Odds) Ratios

e Given two models A, Z. The likelihood ratio score s of a
sequence S is the ratio of p(S|A) / p(5|2)

— S(AAGGTACGT) ~ 6000
— S(CCCGTCCCC) ~ 140
— 5(CTGGTCCGA) ~ 3
— S(TCCGTCCCC) < 1

e Also called odds score

UIf Leser: Bioinformatics, Summer Semester 2011

1

A 34.08

C 36.24

G

18.31

T 11.38

el oA

2
60.36
12.90
12.48
14.25

3
9.14
3.27

4
0.00
0.00

80.34 100.00

7.24

0.00

5
0.00
0.00
0.00

100.00

6
52.57
2.82
41.94
2.55

7
71.26
7.56
11.76
9.29

8
7.08
5.50

81.35
5.88

P (ABAGGTACGT) = 0.34*0.60.8*1*1*0.53*0.71*0.81*0.46

9
15.98
16.46
20.90
46.16

=0.023
P (CCCGTCCCC) ~0.36%0.1370.03*1*1*0.03*0.08*0.05*0.16 =2.7e-08

P (CTGGTCCGA) »0.36*0.14*0.8*1*1*0.03*0.08*0.81*0.16 =1.25e-05

P (TACCTCCGT) =0

34

Matching with a PSWM

e Given G, A, Z: find all S in G with s(5)>t

e Straight-forward: Compute all S of length |A|, compute s(S) for each
— This requires |G|*|A| divisions and multiplications
— Divisions can be saved easily (how?)

e (Can we do better?
— Not easily

— Trick: The number of match-situations are limited. Pre-compute all
possible matches between g-grams and lookup values during the scan

UIf Leser: Bioinformatics, Summer Semester 2011

More Stable and Faster

e Values get quite small (close to 0) for longer A
e This yields problems with numeric stability in programs

e Better: Compute log-likelihood score s'=log,(s)
— Also faster: Replace multiplication with addition

< (S) m(p(swj _ ,00[0(S, [A)*..* p(S. | AH)J
A s 12)) T e(s, 12 *x p(s, 1 Z,)

= log P, [A) +...+Iog[p(8”|A”)j
p(Sl | Zl) p(Sn |Zn)

UIf Leser: Bioinformatics, Summer Semester 2011

Beware

e Assume a perfectly conserved motif of length 8

— The chance for a given S to match is 0.000015 — low
— But |G|=3.000.000.000
— Only by change, we will have ~45000 matches of S in G

e For PSWM, the chances for finding false hits depend on the
setting of the threshold t
— Higher t: Stricter search, less false hits, but may incur misses
— Lower t: Less strict, less misses, but many false hits
e A match is only an hypothesis that needs further analysis
— By additional knowledge (e.qg.: is S part of a gene?)
— By experimentation (can we find an isoform spliced at S)?

UIf Leser: Bioinformatics, Summer Semester 2011 37

Pattern Matching

e We discussed exact matching and matching with a PSWM

e But motifs also may look quite differently
— Motifs (domains) in protein sequences
— Some important positions and much “glue” of unspecified length
— Pattern here may be: [AV].*[QSA]FGK.*[IV]...
— Which positions in S should we compare to which columns in P?
— How can we compute P given S;-5.?

S M=—-AIDE----NKQKALAAALGQ--KQFGKGS IMRLGEDR-SMDYET ISTGSLSLDI
S,2 MSDN--—=——-- KKQQALELALKQ I -KQFGKGS IMKLGDG-ADHS JEAIPSGSIALDI
Sz M=——-AINTDTSGKQKALTMVLNQ I ERSFGKGAIMRLGDA-TRMRYET ISTGALTLDL
Spt Mmoo DRQKALEAAVSQ--RAFGKGS IM-LGGKD---ETEVVSTRILGLDV
Sg: M=———-—- DE---NKKRALAAALGQ I -KQFGKGAVMRMGDHE-RQA IPAISTGSLGLDI
Sg: MD——=———————— ———+-K-EKSFGKGS IMRMGEE-VVEQYEVIPTGSIA-—-

UIf Leser: Bioinformatics, Summer Semester 2011

Further Reading

e On string matching algorithms
— Gusfield

e On sequence logos and TFBS-identification
— Christianini & Hahn, chapter 10
— Merkl & Waack, chapter 10

UIf Leser: Bioinformatics, Summer Semester 2011

