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Abstract

We study the complexity of isomorphism testing for boolean functions that are represented by decision trees
or decision lists. Our results are the following:

• Isomorphism testing of rank 1 decision trees is complete for logspace.

• For any constant r ≥ 2, isomorphism testing for rank r decision trees is polynomial-time equivalent to
Graph Isomorphism. As a consequence of our reduction, we obtain our main result for decision trees:
A 2
√
n(log s)O(1) time algorithm for isomorphism testing of decision trees of size s over n variables.

• The isomorphism problem for decision lists admits a Schaefer-type trichotomy: depending on the class
of base functions, the isomorphism problem is either in L, or polynomial-time equivalent to Graph
Isomorphism, or coNP-hard.
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1. Introduction

Two boolean functions f, g : {0, 1}n → {0, 1} are said to be isomorphic (in symbols: f ∼= g) if there is a
permutation π ∈ Sn so that fπ = g, meaning that f(xπ(1), xπ(2), . . . , xπ(n)) and g(x1, x2, . . . , xn) are identical
boolean functions. The boolean function isomorphism problem (Boolean Isomorphism for short) is to test if
two given boolean functions f and g are isomorphic. Naturally, the complexity of this problem depends on
how the boolean functions f and g are represented when given as input. For example, f and g could be given
as input simply by their respective truth-tables. In this case, of course, the input is of size N = 2n+O(1),
and the naive isomorphism algorithm that does a brute-force search for π ∈ Sn such that fπ = g runs in
time N lg lgN+O(1). Indeed, there is an NO(1) time algorithm for this case due to Luks [Luk99]. On the other
hand, if the input formulas f and g are given as 3-CNF formulas, then the problem is coNP-hard because f is
unsatisfiable if and only if f is isomorphic to the constant formula g = 0. Thus, the complexity of Boolean
Isomorphism crucially depends on the representation of the input functions.

The isomorphism problem for functions given as boolean circuits, boolean formulas (general, as well
as CNF/DNF), and branching programs has been studied before [AT00, Thi00]. It is easy to see that the
isomorphism for all these representations is in Σp2. And, as observed above, the problem is coNP-hard even
for 3-CNF/3-DNF formulas. Furthermore, Agrawal and Thierauf [AT00] also show that boolean circuit
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isomorphism is not hard for the complexity class Σp2 unless the Polynomial-Time Hierarchy, PH, collapses to
the third level Σp3. Along similar lines, Thierauf [Thi00] has further shown that the isomorphism problem for
read-once branching programs is not NP-complete unless PH collapses to Σp2.

However, interesting questions remain regarding Boolean Isomorphism, especially about its connection to
Graph Isomorphism: recall that Graph Isomorphism (GI) is the problem of checking if two input graphs
G1 and G2 are isomorphic under a bijection of their vertex sets. Suppose f and g are boolean functions given
as, say, boolean circuits of size s. Then, in O(s22n) time, we can convert them into their respective truth-
table representations and check if they are isomorphic in time 2O(n) using Luks’s algorithm [Luk99], already
mentioned above. On the other hand, the best known algorithm for Graph Isomorphism has running time
2O(
√
n logn) [BL83]. An obvious bottleneck in obtaining a faster algorithm for Boolean Isomorphism is that

any algorithm for it also solves the equivalence problem! Thus, it seems difficult to obtain a 2o(n)sO(1) time
algorithm for Boolean Isomorphism when f and g are given as boolean circuits of size s because nothing
better than a 2nsO(1) time algorithm is known for the satisfiability problem for such circuits [IPZ01].

In this context it is natural to study the following questions:

• For which representations of boolean functions is Boolean Isomorphism polynomial-time equivalent to
Graph Isomorphism?

• For a given representation of boolean functions, what influence has the complexity of the corresponding
equivalence problem on the complexity of Boolean Isomorphism?

Böhler et al. address these questions in the nice setting of constraint satisfaction problems [BHRV04,
BHRV02]. The setting is nice because of dichotomy results in the field, like Schaefer’s theorem [Sch78]. Among
the several results in [BHRV04, BHRV02], the main contribution is a trichotomy theorem (Theorem 5.3)
which classifies Boolean Isomorphism arising from CSP representations as one of: polynomial-time solvable,
equivalent to Graph Isomorphism, or coNP-hard.

A key idea in the work of [BHRV04, BHRV02] is the notion of a normal form of a boolean function f ,
represented as a CSP, where: (a) equivalent boolean functions have the same normal form, and (b) the
normal form of fπ can be obtained by first computing the normal form of f and then applying π to it.
This notion allows us to pass from a semantic to a syntactic notion of isomorphism and then reduce the
problem to Graph Isomorphism. In fact, the notion of similar normal forms also plays a crucial role in
the Agrawal-Thierauf interactive protocol result [AT00] for Boolean Isomorphism (for the boolean circuit
representation). We note that the “normal form” used in [AT00] is actually a probability distribution on
formulas and not a single normal form formula. It is the output of a randomized learning algorithm (using
an NP oracle) for boolean circuits.

In this paper, our aim is to explore boolean function representations for which the isomorphism problem
has faster algorithms than in the general case when the functions are given as circuits. We focus on the problem
when the functions are given as decision trees and decision lists. Decision trees are a natural representation
for boolean functions and are fundamental to boolean function complexity due to their conceptual simplicity.
See, for example, the beautiful survey by Buhrman and de Wolf [BdW02] on complexity measures for boolean
functions and the central role of decision tree complexity in the field. Decision lists were introduced as
a flexible representation for boolean functions by Rivest [Riv87] in the context of machine learning. In
the field of algorithmic learning theory, decision trees too have played a significant role in learnability of
boolean functions. The quasipolynomial time PAC learning algorithms of constant-depth circuits under the
uniform distribution due to Linial, Mansour and Nisan [LMN93] and the quasipolynomial time PAC learning
algorithm of decision trees under uniform distribution by Kushilevitz and Mansour [KM93] are important
basic results in the area. Our interest in these representations is the boolean function isomorphism problem,
especially in the context of the two questions raised above.

Definition 1.1. A decision tree T on variables x1, . . . , xn is an ordered binary tree in which each leaf is
labeled with a boolean value and each inner node has exactly two children and is labeled with a variable xi.
Any assignment a1, . . . , an defines a path from the root of T to a leaf: At an inner node labeled with xi,
proceed to the left child if ai = 0 and to the right child otherwise. The function value T (a1, . . . , an) is the
label of the leaf node reached along this path.
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Figure 1: The decision tree T1 computes the function x5 ∧ (x2 ∨ x3 ∧ x4) and has rank 1. The decision tree T2 computes the
function x1 ∧ x2 ∧ x3 ∧ x4 ∨ x1 ∧ x2 ∧ x3 ∧ x4 and has rank 2.

The size |T | of a decision tree T is the number of its leaves. Using a simple preprocessing step, we can
assume that on the path from the root to any leaf, each variable occurs at most once as the label of an
inner node. Indeed, querying the same variable a second time will always yield the same result as before, so
the second occurrence can be removed together with the subtree rooted at its non-reachable child without
changing the represented function. From this point on, we will assume that each variable is queried at most
once on each path of the decision tree.

The satisfiability and equivalence problems for decision trees have simple polynomial-time algorithms,
implying that the isomorphism problem for decision trees, denoted DT-Iso, is in NP. Given a decision
tree T , the boolean function represented by T is satisfiable if and only if one of the leaves of T is labeled
with the constant 1. For checking the equivalence of two boolean functions f and g given as decision trees
Tf and Tg, we can construct a decision tree T for the function f ⊕ g. Then f and g are equivalent if and
only if f ⊕ g is unsatisfiable. To construct the decision tree T for f ⊕ g, we attach the decision tree Tg to
the leaves of Tf that are labeled with 0 and we attach the decision tree Tg (obtained by complementing the
leaves of the decision tree Tg) to the leaves of Tf that are labeled with 1. We can then prune this decision
tree to remove nodes with the same label on a path to obtain the decision tree T . To check equivalence it is
sufficient to check if all the leaves of the decision tree T are labeled with the constant 0.

The rank of a decision tree T is the depth of the largest full binary tree that can be embedded into T ; a
formal definition of decision tree rank is given at the beginning of Section 2. The rank of a boolean function f
is the minimum rank over all decision trees computing f . In Section 3 we describe a logspace canonization
algorithm for decision trees that may have arbitrary rank but compute a function of rank 1. Further, it turns
out that isomorphism of rank 1 decision trees is complete for deterministic logspace.

Our main result for decision trees is in Section 4 where we give a 2
√
n(log s)O(1) time algorithm for

isomorphism testing of size s decision trees over n variables. We obtain this result by examining the
connection between bounded rank decision trees and hypergraphs of bounded rank, where the rank of a
hypergraph is the maximum size of its hyperedges. It turns out that a rank r decision tree of size s can be
encoded as a hypergraph of rank O(r) and this transformation can be carried out in time (snr)O(1). Since
decision trees of size s have rank at most log s, this gives the 2

√
n(log s)O(1) time algorithm for isomorphism

by applying the algorithm for bounded rank hypergraph isomorphism described in [BC08].
Section 5 treats the next main topic of the paper – the isomorphism problem for decision lists. Decision

lists were originally introduced by Rivest [Riv87] in learning theory.

Definition 1.2 (cf. [Riv87]). Let C be a finite class of boolean functions. A C-decision list (C-DL) L
is a sequence of pairs 〈fi, ci〉i≤m where ci ∈ {0, 1}, fm = 1, and for i = 1, . . . ,m − 1, fi(x1, . . . , xn) =
gi(xi1 , . . . , xik) for some gi ∈ C and indices 1 ≤ i1, . . . , ik ≤ n. For a boolean assignment b, the decision
list L has the value L(a) = ci, where i = min{j ≥ 1 | fj(b) = 1}.

In his original definition, Rivest [Riv87] considered r-decision lists (r-DLs in short), which are C-decision
lists where C consists of conjunctions of r literals. He observed that for any r-DNF T1 ∨ · · · ∨ Tl, there
is an equivalent r-DL 〈T1, 1〉 · · · 〈Tl, 1〉〈1, 0〉, and for any r-CNF C1 ∧ · · · ∧ Cl, there is an equivalent r-DL

3



〈C1, 0〉 · · · 〈Cl, 0〉〈1, 1〉. Rivest’s observations imply that for r ≥ 3, the satisfiability problem for r-DLs is
NP-complete, and the equivalence problem is coNP-complete. Furthermore, he proved that there are r-decision
lists for which neither an equivalent r-DNF nor an equivalent r-CNF formula exists [Riv87, Theorem 2],
showing that r-DLs are strictly more expressive than formulas in r-CNF or r-DNF.

The classes of 1-decision lists and rank 1 decision trees coincide. For example, the decision tree T1
from Figure 1 is equivalent to the decision list 〈x5, 0〉〈x2, 1〉〈x3, 0〉〈x4, 0〉〈1, 1〉. More generally, every rank r
decision tree of size s has an r-decision list of length O(s) [Blu92]. Our results on the complexity of the
isomorphism problem for C-DLs, denoted C-DL-Iso, are summarized below.

1. C-DL-Iso is in L if all functions in C are parities of at most 2 literals, or disjunctions of such parities.
It is also L-hard if C contains a non-constant function.

2. C-DL-Iso is GI-complete,1 when C consists of one of the following: (i) 2-DNFs, (ii) complements of
Horn-CNFs, (iii) complements of anti-Horn-CNFs, and (iv) disjunctions of parities of literals such that
at least one parity has size at least 3.

3. In all other cases for C, C-DL-Iso is both coNP-hard and GI-hard.2

The above results show a Schaefer-type trichotomy for the C-DL isomorphism problem. It is interesting to
compare this with the trichotomy result for C-CSP isomorphism problems proved by Böhler et al. [BHRV04].
They show that C-CSP isomorphism is in P if C consists of conjunctions of parities of size at most 2; it is
GI-complete if C consists of one of the following: (i) 2-CNFs, (ii) Horn-CNFs, (iii) anti-Horn-CNFs, and
(iv) conjunctions of parities such that at least one parity has size at least 3; and that in all other cases, C-CSP
isomorphism is both coNP-hard and GI-hard. As any C-CSP can be easily transformed into an equivalent
C-DL, where C contains all complementary constraints ¬C for C ∈ C, the representation classes appearing in
our trichotomy are extensions of the classes appearing in the Böhler et al. trichotomy result.

Additionally, we generalize the PNP
‖ upper bound of Böhler et al. for C-CSP isomorphism [BHRV02] to

C-DL isomorphism. This complexity class contains all problems that can be solved in polynomial time using
one round of parallel queries to an NP oracle.

2. Preliminaries and basic facts

We recall the notion of rank for decision trees [EH89]. Let T be a decision tree and let v be a node
in T . If v is a leaf node then its rank is rk(v) = 0. Otherwise, suppose v has children v0 and v1 in T . If
rk(v0) 6= rk(v1), define rk(v) = max{rk(v0), rk(v1)} and rk(v) = rk(v0) + 1, otherwise. The rank of the
decision tree rk(T ) is the rank of its root node. The rank rk(f) of a boolean function f is the minimum rank
over all decision trees computing f .

In general, by a representation class of boolean functions we mean a set R of finite descriptions R for
boolean functions f : {0, 1}n → {0, 1}, such that for any R ∈ R and input x ∈ {0, 1}n we can evaluate
R(x) = f(x) in time polynomial in n and the size of R. Examples of representation classes include circuits,
branching programs, formulas, decision trees, decision lists etc. Two representations R and R′ are equivalent
(denoted R ≡ R′) if they describe the same boolean function.

Let f : {0, 1}n → {0, 1} be a boolean function and let π ∈ Sn be a permutation. Then fπ denotes the
boolean function f(xπ(1), xπ(2), . . . , xπ(n)). Similarly, we assume that we can transform any representation R
of the function f into a representation Rπ for fπ by replacing each input variable xi in R by xπ(i). We call
two representations R1 and R2 syntactically isomorphic if R2 = Rπ1 for some permutation π.

Let R and R′ be representation classes of boolean functions. A normal form representation for R is a
mapping N : R → R′ such that (i) NR ≡ R for any R ∈ R, (ii) R1 ≡ R2 implies NR1

= NR2
, and (iii) for

each permutation π we have NRπ = (NR)π. This definition is a generalization of the definition of a normal

1We say that a decision problem is GI-complete if it is polynomial-time equivalent to Graph Isomorphism.
2We say that a decision problem is GI-hard if there is a polynomial-time reduction from Graph Isomorphism to it.
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form function given by Böhler et al. [BHRV04, Definition 8]. We call NR the normal form of R. Since NR
only depends on the function f represented by R, NR is also called the normal form of f and we will also
denote it by Nf . Usually, only the first two conditions are required for a normal form. Following Böhler et al.
we additionally require that it also fulfills the third condition that it is permutation preserving.

Notice that a normal form representation N : R → R′ can be used to reduce the isomorphism problem
for representations in R to the syntactical isomorphism problem for representations in R′. More precisely,
for any two representations R1 and R2 in R it holds that R1 and R2 represent isomorphic functions if and
only if NR1 and NR2 are syntactically isomorphic.

A canonical representation for R is a mapping C : R → R such that (i) for any R ∈ R, the function
represented by CR is isomorphic to the one described by R, and (ii) for any two representations R1 and R2,
the functions described by R1 and by R2 are isomorphic if and only if CR1

= CR2
. We call CR the canonical

form or simply canon of R.
We will use the following approach to compute a canonical representation C : R → R for R. First we find

a suitable normal form representation N : R → R′ for R. Secondly, we find a transformation C ′ on R′ that
maps a given representation R to a syntactically isomorphic representation C ′R such that any two syntactically
isomorphic representations R1, R2 ∈ R′ are mapped to identical representations C ′R1

= C ′R2
. The last step is

to convert a given representation R ∈ R′ back into an equivalent representation TR in R. It is easy to verify
that the concatenation C = T ◦ C ′ ◦N of these three mappings gives a canonical representation for R.

A literal is either a variable xi or a negated variable xi. We call xi a positive literal and xi a negative
literal. For a set L of literals we denote by L = {l | l ∈ L} the set of all complementary literals, where xi = xi.
Further, we denote a positive literal xi also by x1i and a negative literal xi also by x0i . Given an n-ary boolean
function f , a variable xi and a bit b ∈ {0, 1}, the function f [xi ← b] is the n-ary boolean function that is
obtained from f by setting the value of xi to b, i.e.,

f [xi ← b] : (b1, . . . , bn) 7→ f(b1, . . . , bi−1, b, bi+1, . . . , bn).

For a set L of literals we also use the notation f [L← b] for the n-ary boolean function where for any literal
x1i ∈ L, variable xi is set to b and for any literal x0i ∈ L, xi is set to 1− b. If L contains contradictory literals
x0i and x1i , we let f [L← b] be the constant 0 function.

We proceed with a few simple observations.

Observation 2.1. Given a decision tree T of size s, it can be checked in time O(s) and in space O(log s)
whether f = 0 or f = 1, where f is the boolean function represented by T .

Proof. The first step of the algorithm is to obtain a decision tree T ′ that is equivalent to T and in which
all variables occur only once on each path from the root to a leaf. As mentioned before, this amounts to
removing repeated variables and the unreachable subtrees below them. This step can be implemented in
linear time and in logspace. Afterwards, it suffices to check whether all leaves of T ′ are labeled with the
desired constant.

Observation 2.2. Let T be a decision tree of size s and rank r > 0 for some n-ary boolean function f and
let xbi be a literal. Then a decision tree T [xbi ] of rank at most r computing the function f [xi ← b] can be
computed in time O(s) and in space O(log s). Moreover, there exists some literal xbi such that T [xbi ] has rank
at most r − 1.

Proof. To obtain T [xbi ] from T , remove each inner node labeled with xi along with the subtree rooted at its
unreachable child. Then T [xbi ] computes the function f [xi ← b] and its rank is not larger than the rank of T .

To show the second part, assume that the root of T is labeled with variable xi. Since T has rank r > 0,
one of the children of the root must have rank at most r − 1. If it is the left child, then T [x0i ] has rank at
most r − 1. Otherwise T [x1i ] has rank at most r − 1.

Notice that if we eliminate several variables xi from T by using operations of the form T 7→ T [xbi ], the
result is independent of the order in which we apply these operations as long as the conjunction of the
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corresponding literals is satisfiable. Hence, for a set L of non-contradicting literals we can denote the resulting
tree by T [L].

Using the above observations, we can minimize the rank of a given decision tree.

Theorem 2.3. Given as input a number r and a decision tree T for a boolean function f, we can check if f
has rank at most r and, if so, construct a decision tree of minimal rank for f in time (nr · |T |)O(1).

Proof. Let f be the function represented by the given decision tree T. The algorithm is recursive. In the
base case r = 0, it suffices to check if f = 0 or f = 1; this can be done by Observation 2.1. If it is, the
algorithm returns a decision tree whose root is a leaf labeled by the respective constant.

In case r > 0, the algorithm first computes, for each literal xbi such that T has a node labeled by xi, the
decision tree T [xbi ] using Observation 2.2. Then it recursively checks for each tree T [xbi ] if the represented
function f [xi ← b] has rank at most r− 1. In the positive case it also obtains a decision tree Ti,b of minimum
rank ri,b for the function f [xi ← b], otherwise it lets ri,b = r. If all answers are negative, the algorithm
rejects. Otherwise, it computes for each variable xi that occurs in T the value

ri =

{
max(ri,0, ri,1) if ri,0 6= ri,1

ri,0 + 1 if ri,0 = ri,1

and determines rmin = mini ri as well as the smallest index j for which rj = rmin. If rj,b = r for some
b ∈ {0, 1}, the algorithm recursively checks if the function f [xj ← b] represented by T [xbj ] has rank at most r.
If the answer is negative, the algorithm rejects, otherwise it obtains a decision tree Tj,b of rank r for f [xj ← b].
Finally, the algorithm returns the decision tree T ′ with xj at its root, and Tj,0 and Tj,1 as its left and right
subtree, respectively.

By Observation 2.2, the algorithm never rejects if f has rank at most r. The returned decision tree T ′

has minimum rank, because the recursively computed subtrees Tj,0 and Tj,1 of T ′ have minimum rank and
because the algorithm selects the root xj of T ′ in such a way that the rank rj of the resulting tree is minimal.

In order to give a bound on the running time of the algorithm, let t(n, r, s) denote the worst case running
time on all inputs (T, r), where T is a decision tree of size at most s whose inner nodes are labeled with
n variables. Since there are exactly 2n recursive calls with parameters (n− 1, r − 1, s− 1) and at most one
with parameters (n− 1, r, s− 1), we have the recurrence

t(n, r, s) ≤ 2n · t(n− 1, r − 1, s− 1) + t(n− 1, r, s− 1) +O(n · s).

It is easy to verify by induction that t(n, r, s) = O(sn2r).

3. Canonizing decision trees for rank 1 functions

In this section we show that the isomorphism problem for boolean functions f having rank 1 is decidable in
logarithmic space if f is given as a decision tree (of arbitrary rank). In fact, we will first give a polynomial-time
algorithm and then a logspace algorithm for computing a canonical representation for this class. Additionally,
we show that the isomorphism problem for decision trees of rank 1 is complete for logspace.

3.1. Computing a normal form for rank 1 functions

Let f be an n-ary boolean function of rank 1 given by some decision tree T , not necessarily of rank 1.
For c ∈ {0, 1}, let L(f, c) =

{
xbi
∣∣ f [xi ← b] = c

}
.

Let f0 = f and for k ≥ 1, define Lk(f) = L(fk−1, k mod 2) \
⋃
j<k Lj(f) and fk = fk−1[Lk(f)← 0], and

let m be the smallest index k for which fk has rank 0.
Intuitively, the set Lk(f) contains all literals xbi for which the assignment xi = b forces fk−1 to the

constant function fk−1[xi ← b] = k mod 2, and fk is obtained from fk−1 by assigning the opposite value
to these variables. Observation 2.2 implies that for each literal xbi there is an index k ≤ m + 1 such that
xbi ∈ Lk(f). We call this index the level of xbi and denote it by lvf (xbi ).
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We also notice that there might be no literals at level 1.
To compute a normal form, we transform the decision tree T into a list

NT = S1(f), . . . , Sm(f), {〈1,m+ 1 mod 2〉},

where Sk(f) =
{
〈xbi , k mod 2〉 | xbi ∈ Lk(f)

}
. By definition, the list NT represents the same function as the

1-decision list LT obtained from it by replacing each set with the list of pairs contained in it.

Example 3.1. Consider the 5-ary boolean function f(x1, . . . , x5) represented by the decision tree T1 in
Figure 1. Then the literal sets are L1(f) = ∅, L2(f) = {x05}, L3(f) = {x02}, L4(f) = {x13, x04}, and
L5(f) = {x01, x11, x12, x03, x14, x15}. The functions fk at level k are f1 = f , f2 = x2 ∨ x3 ∧ x4, f3 = x3 ∧ x4 and
f4 = 1. Thus, m gets value 4 and the normal form for T1 is

NT1
= ∅,

{
〈x05, 0〉

}
,
{
〈x02, 1〉

}
,
{
〈x13, 0〉, 〈x04, 0〉

}
,
{
〈1, 1〉

}
.

The next lemma proves that NT is indeed a normal form for T .

Theorem 3.2. The mapping T 7→ NT defined above is a polynomial-time computable normal form represen-
tation for decision trees T that represent boolean functions of rank 1.

Proof. To compute NT on input T , starting with k = 1 iteratively compute the sets Lk(f) = L(fk−1, k mod 2)
and the decision trees Tk = Tk−1[Lk(f)] for the function fk = fk−1[Lk(f)← 0] using Observations 2.1 and 2.2,
until fk has rank 0 (i.e., k = m).

We next show that NT and T represent the same function. For a given assignment a = a1 · · · an ∈ {0, 1}n,
let j(a) be the smallest index j such that Lj(f) contains a literal xbi satisfied by a (i.e., b = ai). Then, by the
way the semantics of NT is defined it follows that NT (a) = j(a) mod 2. On the other hand, by the definition
of the sets Lj(f) it follows that also T (a) = j(a) mod 2, implying that NT (a) = T (a).

Further, since NT only depends on the function f represented by T (and not on the structure of T ),
equivalent decision trees T ≡ T ′ yield identical lists NT = NT ′ .

It remains to prove the third property of a normal form. For a permutation π, let Tπ be the decision
tree obtained from T by replacing each label xi in it by the label xπ(i). Then we have to show that the

list NTπ of Tπ coincides with the list (NT )π that is obtained from NT by replacing each literal xbi in it with
the literal xbπ(i). Since Tπ computes the function g = fπ and since the normal form NTπ only depends on g,

it suffices to prove for any level k = 1, . . . ,m that π maps Lk(f) to Lk(g).
In fact, for all bits c, b ∈ {0, 1}, we have f [xi ← b] = c if and only if g[xπ(i) ← b] = c, so π maps L(f, c)

to L(g, c), proving the claim for level k = 1. Additionally it follows that π is an isomorphism from f1 =
f [L1(f) ← 0] to g1 = g[L1(g) ← 0]. Hence, the claim follows inductively over k by using the induction
hypothesis that π is an isomorphism from fk−1 to gk−1.

Since it is easy to syntactically canonize a given normal form NT , we immediately get the following result.

Corollary 3.3. Given a decision tree T that represents a boolean function of rank 1, a canonical form CT
of T can be computed in polynomial time. Thus, isomorphism for such decision trees is decidable in P.

Proof. Define CT as the rank 1 decision tree that is obtained from the rank 1 decision list corresponding
to NT by renaming its variables (and adding missing variables if necessary) such that the inner nodes of the
longest path starting from the root are labeled by x1, . . . , xn.

We now show that rank 1 functions can even be canonized in logspace.

Lemma 3.4. Let T be a decision tree that represents a function f of rank 1, let xbi be a literal and let xj be
a variable. Then lvf (xbi ) ≤ min{lvf (x0j ), lvf (x1j )} if and only if f [xi ← b] does not depend on xj. Moreover,
the latter condition can be checked in logspace.
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Proof. Let NT = S1(f), . . . , Sm(f), {〈1,m+1 mod 2〉} be the normal form of T as defined above and suppose
that the literal xbi has level k, i.e., 〈xbi , k mod 2〉 ∈ Sk(f). Cutting off NT before level k, we obtain a list
R = S1(f), . . . , Sk−1(f), {〈1, k mod 2〉} that represents f [xi ← b]. If the levels of x0j and of x1j are at least k,

the variable xj does not occur in R and thus f [xi ← b] does not depend on xj . Conversely, if the level of x0j
or of x1j is less than k, the structure of R makes it easy to find two assignments that differ only on xj and
that lead to different values of f [xi ← b].

To prove checkability in logspace, notice that f [xi ← b] does not depend on xj if and only if the two
functions g = f [xi ← b, xj ← 0] and h = f [xi ← b, xj ← 1] are the same. Since by Observation 2.2, it is
possible to compute the decision trees Tg = T [xbi , x

0
j ] for g and Th = T [xbi , x

1
j ] for h in logspace, it remains to

note that the polynomial-time equivalence test for decision trees described in the introduction can also be
implemented in logspace.

Using this lemma, the collection of sets Lk(f), k = 1, . . . ,m of literals having the same level can be found
in logspace by determining for each literal xbi the set D(f [xi ← b]) of variables xj on which the function
f [xi ← b] depends. Based on the sizes of these dependency sets, the obtained literal sets can also be ordered
by level. If level 1 is non-empty, i.e., if there is a literal xbi such that f [xi ← b] = 1, then these literal sets can
be assigned ascending levels starting from 1, otherwise the smallest non-empty level is 2. Once the sets Lk(f)
are known, we can compute the canonical form of T as before.

Example 3.5. Consider once more the 5-ary boolean function f(x1, . . . , x5) represented by the decision
tree T1 in Figure 1. Then the dependency sets D(f [xi ← b]) are given by the following table:

i 1 2 3 4 5
D(f [xi ← 0]) {x2, x3, x4, x5} {x5} {x2, x4, x5} {x2, x5} ∅
D(f [xi ← 1]) {x2, x3, x4, x5} {x3, x4, x5} {x2, x5} {x2, x3, x5} {x2, x3, x4}

The dependency sets corresponding to literals of level at most m = 4 are in bold print.

Theorem 3.6. Given a decision tree T that represents a boolean function of rank 1, a canonical form CT
of T can be computed in logspace. Thus, isomorphism for such decision trees is decidable in logspace.

3.2. Isomorphism of rank 1 decision trees is hard for logspace

All our L-hardness results are w.r.t. DLOGTIME-uniform AC0 reductions. To show the logspace complete-
ness, we will give a reduction from the problem Ord, which is known to be complete for L [Ete97]. The
input to Ord is a directed path P (given as a set of edges) and two vertices s and t. The problem is to test
if s occurs before t on P (i.e., whether t is reachable from s).

As an intermediate step, we show that the problem DiPathCenter is L-complete, which asks whether
a given vertex u is the center of a given directed path P (which is again given as a set of its edges).
The problem PathCenter, which asks the same question for undirected paths, is already known to be
L-complete [ADKK12]. The following lemma adapts the reduction given there to the directed setting.

Lemma 3.7. DiPathCenter is L-complete. The hardness also holds for paths of even length.

Proof. The problem can easily be solved in logspace. To prove the hardness, we reduce from Ord using
(P, s, t) 7→ (P ′, n) as reduction, where n is the vertex having no successor and 1 is the vertex having no
predecessor in P , and where P ′ is defined by

V (P ′) = V (P ) ∪
{
i′
∣∣ i ∈ V (P )

}
∪
{
ŝ
}

E(P ′) =
{

(i, j)
∣∣ (i, j) ∈ E(P ) ∧ j 6= t

}
∪
{

(j′, i′)
∣∣ (i, j) ∈ E(P ) ∧ j /∈ {s, t}

}
∪
{

(ŝ, i′)
∣∣ (i, s) ∈ E(P )

}
∪
{

(s′, ŝ), (t′, 1), (1′, t), (n, n′)
}
.

The path P ′ consists of a forward and a reversed copy of P that are joined together, where the part before
the first copy of t is swapped with the part after the second copy of t, and where the second copy of s is
duplicated; see Fig. 2 for an illustration. If s precedes t in P (left side), then n is the center of P ′, but if t
precedes s then n′ is the center of P ′ (right side).
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1 s t n

7→

1 s t n

n′t′s′ŝ1′

1 t s n

7→
1 t s n

n′s′ŝt′1′

Figure 2: The reduction from Ord to DiPathCenter

Now let (P, u) be an instance of DiPathCenter. In our reduction to isomorphism of rank 1 decision
trees, we construct two decision trees T and T ′ from P : For each v ∈ V (P ) there is a variable xv, and both
T and T ′ contain one internal node for each xv. If v is the successor of v′ in P , xv becomes the right child of
xv′ in T , and xv′ becomes the right child of xv in T ′. Let v1 be the vertex having no predecessor, and let vn
be the vertex having no successor in P . In T , the node xv1 is the root and the right child of xvn is a leaf
labeled with 0. In T ′, these roles are reversed: xvn is the root, and the right child of xv1 is a leaf labeled
with 0. In both trees, the left child of xu is a leaf labeled with 0, and the left children of all other variables
are leaves labeled with 1.

Lemma 3.8. Let T and T ′ be the decision trees constructed from an instance (P, u) of DiPathCenter.
Let f and g be the functions represented by the decision trees, respectively. Then, f ∼= g if and only if
(P, u) ∈ DiPathCenter.

Proof. For the purposes of this proof, we identify the vertices of P with the integers 1, . . . , n such that the
vertex i is the successor of i− 1. To prove the lemma, it is sufficient to show that f is isomorphic to g if and
only if u = (n+ 1)/2.

In the case of T, we obtain L1(f) = {x01, . . . , x0u−1}, L2(f) = {x0u}, and L3(f) = {x0u+1, . . . , x
0
n}. Similarly

for T ′, we obtain L1(g) = {x0u+1, . . . , x
0
n}, L2(g) = {x0u}, and finally L3(g) = {x01, . . . , x0u−1}. Thus f ∼= g if

and only if u = (n+ 1)/2.

Combining Theorem 3.6 and Lemma 3.8, we obtain the following completeness result.

Corollary 3.9. The isomorphism problem for rank 1 decision trees is L-complete.

4. Isomorphism of decision trees for arbitrary functions

In this section we first generalize the normal form representation for decision trees computing rank 1
functions to arbitrary decision trees. Next, we exploit the structure of this normal form to give a polynomial-
time reduction of the isomorphism problem for decision trees computing functions of rank at most r to the
isomorphism problem for O(r) rank hypergraphs. This yields a moderately exponential time algorithm for
isomorphism testing of decision trees. We conclude this section by showing that graph isomorphism reduces
to isomorphism of rank r decision trees, for any fixed r ≥ 2.

4.1. Computing a normal form for decision trees

Let f be an n-ary boolean function of rank r ≥ 0 given by some decision tree T. If r = 0 (which can be
checked by Observation 2.1), we use the decision tree whose root is a leaf labeled by the respective constant
as its normal form.

For r > 0, the normal form is defined as follows. Let L(f) be the set of literals xbi such that f [xi ← b] has
rank at most r−1. Let f0 = f , and for k ≥ 1, let Lk(f) = L(fk−1)\

⋃
j<k Lj(f) and let fk = fk−1[Lk(f)← 0].

As before, the level lvf (xbi ) of a literal xbi is the index k such that xbi ∈ Lk(f). By Observation 2.2, all literals
occur in Lk(f) for some k, so the notion of level is well-defined. Further, let m be the smallest index k for
which fk has rank at most r − 1. Note that m ≤ n, as for each level k ≤ m, the set Lk(f) must contain
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a literal of a new variable. Indeed, Lk(f) cannot be empty as rk(fk−1) = r. Further, if Lk(f) contains a
literal which is complementary to one in

⋃
j<k Lj(f), then rk(fk−1) ≤ r − 1. Similarly, if Lk(f) contains two

complementary literals, then rk(fk) ≤ r − 1.
Generalizing the normal form for rank 1 functions, which is a list of pairs that comprise of one literal and

one constant each and that are grouped into sets, the normal form for f is a list Nf of pairs that comprise
of one literal and one normal form of a boolean function of rank at most r − 1 that are grouped into sets.
We define Nf = S1(f), . . . , Sm(f), {〈1, Nfm〉}, where Sk(f) =

{
〈xbi , Nfk−1[xi←b]〉

∣∣ xbi ∈ Lk(f)
}

and where the
normal forms Nfk−1[xi←b] and Nfm for the functions fk−1[xi ← b] and fm are defined recursively based on
the decreasing rank.

To evaluate Nf on a given assignment a = a1 · · · an ∈ {0, 1}n, find the first set in Nf that contains a pair
whose first component is satisfied by a, and recursively evaluate the normal form in the second component of
this pair.

Theorem 4.1. Given a number r and a decision tree T of size s for a boolean function f : {0, 1}n → {0, 1}
of rank at most r, the normal form Nf described above can be computed in time (snr)O(1).

Proof. We first show that the function N : T 7→ Nf is indeed a normal form representation for decision trees.
Clearly, Nf represents the function f . Also, Nf only depends on the function f (and not on the structure
of T ), so equivalent decision trees T and T ′ receive the same normal form N(T ) = N(T ′) = Nf .

To prove that N is permutation preserving, we use induction over the rank r of f . The base case is
clear. If r > 0, let T and T ′ be isomorphic decision trees for n-ary boolean functions f and g of rank r
and let π be an isomorphism from f to g. Then xbi ∈ L(f) implies xbπ(i) ∈ L(g) and vice versa, meaning

that π maps L(f) to L(g). Additionally, (f1)π = (f [L(f) ← 0])π = fπ[L(f)π ← 0] = g[L(g) ← 0] = g1.
Hence, an inductive argument over k gives (fk)π = gk and Lk(f)π = Lk(g) for k = 1, . . . ,m. Further, as
(fk−1[xi ← b])π = gk−1[xπ(i) ← b] for k = 1, . . . ,m and (fm)π = gm, we can use the induction hypothesis
for rank at most r − 1 functions to get the identities (Nfk−1[xi←b])

π = Ngk−1[xπ(i)←b] and (Nfm)π = Ngm ,
implying that (N(f))π = N(g).

The algorithm for computing Nf on input T is very similar to the algorithm in the proof of Theorem 2.3
and in fact has the same worst case running time. The only difference is that in each recursive step, the
algorithm does not only select a single variable xj for which rj = rmin but it determines all such variables
and stores all literals xbj for which xj occurs in T and rj,b ≤ r− 1 in the set L. (We assume that initially all n

variables occur in T .) For each xbj ∈ L, the algorithm collects the pair 〈xbj , Nf [xj←b]〉 in S, where Nf [xj←b] is

the normal form of T [xbj ] returned by the recursive call. Finally, it computes the decision tree T [L] and, using

a last recursive call, its normal form NT [L]. If the rank of T [L] is at most r− 1, the algorithm returns the list

S, {〈1, NT [L]〉}, otherwise it returns the list S,NT [L] obtained by prepending the set S to the list NT [L].

4.2. Reducing decision tree isomorphism to hypergraph isomorphism

We now describe our reduction of rank r decision tree isomorphism to rank O(r) hypergraph isomorphism,
where the rank of a hypergraph is the maximum size of its hyperedges.

Let T be a decision tree of size s for an n-ary boolean function f of rank r. We first compute the normal
form Nf for f in time (snr)O(1), as described in Theorem 4.1. The next step is to construct a vertex-colored
hypergraph Hf that encodes the normal form in a suitable way. The vertex set V (n, r) for Hf is

V (n, r) =
{
vdi
∣∣ 1 ≤ i ≤ n, 0 ≤ d ≤ r

}
∪
{

0, 1
}
∪
{

(j, b, d)
∣∣ 0 ≤ j ≤ n, b ∈ {0, 1}, 1 ≤ d ≤ r

}
.

The hyperedge set of Hf is E(n, r) ∪ E(Nf ), where E(n, r) =
{
{vdi | 0 ≤ d ≤ r}

∣∣ 1 ≤ i ≤ n
}

and where
E(Nf ) is defined inductively below. The vertex coloring c of Hf is defined by c(0) = −2, c(1) = −1, c(vdi ) = d
for 1 ≤ i ≤ n and 0 ≤ d ≤ r, and by c

(
(j, b, d)

)
= (j, b, d). Each permutation π ∈ Sn induces a permutation π̃

on V (n, r) that maps vdi to vdπ(i) for 1 ≤ i ≤ n and 0 ≤ d ≤ r and is the identity on all other vertices. Note

that all permutations on V (n, r) that respect the coloring c and the hyperedges in E(n, r) have this form.
We now turn to the definition of E(Nf ). In the base case r = 0, we define E(Nf ) =

{
{0}
}

if f = 0,

and E(Nf ) =
{
{1}
}

if f = 1. For r > 0, let Nf = S1(f), . . . , Sm(f), {〈1, Nfm〉} be the normal form of f
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as defined above. Then for each entry 〈xbi , Nh〉 ∈ Sj(f) and for each hyperedge e ∈ E(Nh), we include
the hyperedge e ∪

{
vri , (j, b, r)

}
in E(Nf ). We also include all hyperedges e ∈ E(Nfm) into E(Nf ). Notice

that E(Nf ) is well-defined since h and fm have rank at most r − 1. Further, the algorithm of Theorem 4.1
can be easily modified to compute Hf on input T in time (snr)O(1).

Lemma 4.2. Let Hf and Hg be the hypergraphs corresponding to the decision trees Tf and Tg. Then,
Tf and Tg compute isomorphic functions f and g if and only if the hypergraphs Hf and Hg are isomorphic.

Proof. We use induction over the rank r of f and g to prove the stronger claim that every permutation π ∈ Sn
is a syntactic isomorphism from Nf to Ng if and only if the mapping π̃ defined as above is an isomorphism
from Hf to Hg.

In the base case r = 0, the functions f and g are constant, implying that E(Nf ) =
{
{cf}

}
and

E(Ng) =
{
{cg}

}
for the respective constants cf , cg ∈ {0, 1}. As the vertices 0 and 1 have different colors, the

hypergraphs Hf and Hg are isomorphic if and only if f = g. In this case, each permutation π ∈ Sn maps Nf
to Ng, and its induced vertex permutation π̃ maps Hf to Hg.

For rank r > 0, let π ∈ Sn be a syntactic isomorphism from Nf = S1(f), . . . , Sm(f), {〈1, Nfm〉} to Ng =
S1(g), . . . , Sm(g), {〈1, Ngm〉}. In particular, for any entry 〈xbi , Nh〉 ∈ Sk(f), there must be a corresponding
entry 〈xbπ(i), (Nh)π〉 ∈ Sk(g). By the induction hypothesis, π̃ maps E(Nh) to E((Nh)π) = E(Nhπ). Thus

for any e ∈ E(Nh), the hyperedge e ∪
{
vri , (k, b, r)

}
included in E(Nf ) is mapped by π̃ to the hyperedge

eπ̃ ∪
{
vrπ(i), (k, b, r)

}
included in E(Ng). Also, the hyperedges in E(Nfm) are mapped to the hyperedges

in E(Ngm). Thus π̃ maps E(Nf ) to E(Ng).
For the converse direction, suppose that for some π ∈ Sn, the vertex permutation π̃ maps E(Nf )

to E(Ng). For each entry 〈xbi , Nh〉 in Sk(f), E(Nf ) contains for every hyperedge e′ ∈ E(Nh) the hyperedge
e = e′ ∪ {vri , (k, b, r)}. Since the image eπ̃ of e contains the two vertices vrπ(i) and (k, b, r), it follows that the

set Sk(g) contains an entry of the form 〈xbπ(i), Nh′〉. Further, by the construction of Ef and of Eg it follows
that

E(Nh) = E(Nf )i,k,b,r and E(Nh′) = E(Ng)π(i),k,b,r,

where for a set E of hyperedges, Ei,k,b,r =
{
e ∈ E

∣∣ vri ∈ e, (k, b, r) ∈ e}. Hence, π̃ maps E(Nh) to E(Nh′).
Also, π̃ must map the remaining hyperedges of E(Nf ) to those of E(Ng) and thus maps E(Nfm) to E(Ngm).
By the induction hypothesis we get Nh′ = (Nh)π and Ngm = (Nfm)π, implying that Ng = (Nf )π.

According to the construction, the hypergraph Hf corresponding to the rank r function f has O(nr) ver-
tices and rank 2r + 1.

Theorem 4.3. Let f and g be n-ary boolean functions of rank at most r given by decision trees Tf and Tg of
size at most s. There is an algorithm running in time (snr)O(1) that outputs two hypergraphs Hf and Hg of
rank at most 2r + 1 having O(nr) vertices such that f and g are isomorphic if and only if the hypergraphs
Hf and Hg are isomorphic.

By combining this with the isomorphism algorithm for hypergraphs of rank R on N vertices of Babai and

Codenotti [BC08], which takes 2R
2
√
N(logN)O(1)

time, we get an (snr)O(1) + 2
√
nr5(logn)O(1) time isomorphism

algorithm for n-ary boolean functions of rank r that are given by decision trees of size s. Since any decision
tree of size s has rank at most O(log s), this gives the following corollary.

Corollary 4.4. Given two n-ary boolean functions f and g as decision trees of size s, there is a 2
√
n(log s)O(1) time

algorithm to check if f ∼= g.

We note that the canonization problem for bounded rank decision lists also polynomial-time reduces to
the canonization problem for bounded rank hypergraphs. However, to the best of our knowledge, not even a
2O(n) algorithm is known for computing canonical forms for hypergraphs of rank 3.
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4.3. Isomorphism of decision trees is GI-hard

We next show that isomorphism testing even for rank 2 decision trees is GI-hard.
Let G = (V,E) be a graph with V = {v1, v2 . . . , vn} and E = {e1, e2, . . . , em}. We encode G as a

boolean function fG on the variable set V ∪ E as follows: fG(v1, . . . , vn, e1, . . . , em) = 1 if and only if
exactly three variables ei, vj , vk are 1, all remaining variables are 0, and ei = {vj , vk} ∈ E. Here the
boolean variables vi and ej correspond, by abuse of notation, to elements of V ∪ E. We can write fG as
fG =

∨
e={u,v}∈E

(
e ∧ (

∧
e′ 6=e e

′) ∧ u ∧ v ∧ (
∧
w 6=u,v w)

)
.

Lemma 4.5. For any graph G = (V,E), the function fG is of rank 2 and can be represented by a rank 2

decision tree of size O
(
|E|2|V |

)
.

Proof. Note that if any edge variable e is set to 1 where e = {u, v}, all the terms in fG disappear, except the
one where the variable appears un-negated. Thus, fG[e← 1] =

∧
e′ 6=e e

′ ∧ u ∧ v ∧
∧
w 6=u,v w. Since fG[e← 1]

is a conjunction of literals, it is a rank 1 function. Since fG is zero if all the edge variables are set to 0, this
proves that fG is a rank 2 function.

Theorem 4.6. Let G = (VG, EG) and H = (VH , EH) be two graphs in which all vertices have at least two
neighbors, and let fG and fH be the functions as defined above. Then, G ∼= H if and only if fG ∼= fH .

Proof. The function fG encodes the graph G in the sense that for an assignment a to the variables, fG(a) = 1
exactly if a encodes an edge e = {u, v} ∈ EG, i.e., ae = au = av = 1 and ax = 0 for all x ∈ (VG∪EG)\{e, u, v}.

Any isomorphism π from G to H can be extended to map each edge e = {u, v} ∈ EG to π(e) = {π(u), π(v)}.
Then π sends the satisfying assignments of fG to the satisfying assignments of fH , implying that fG ∼= fH .

Conversely, if π is an isomorphism from fG to fH , it induces a bijection between the satisfying assignments
of the two functions. As a variable is an edge variable if and only if it occurs in only one satisfying assignment,
π maps edge variables to edge variables and vertex variables to vertex variables. It follows that π restricted
to VG is an isomorphism from G to H.

As any pair of graphs can be modified to meet the degree requirement of Theorem 4.6 by adding two
universal vertices to each graph, we have the following corollary.

Corollary 4.7. GI ≤pm DT-Iso.

5. Isomorphism of decision lists

In this section, we consider C-DL isomorphism as defined in Section 1. We first observe that satisfiability
of C-DLs is related to the Constraint Satisfaction Problem (CSP) where the constraints come from the
class C.

Definition 5.1. A constraint of arity k is a boolean function C : {0, 1}k → {0, 1}. For a constraint C of
arity k and a sequence of variables xi1 , . . . , xik with 1 ≤ i1, . . . , xik ≤ n, the corresponding n-ary constraint
application is the boolean function f(x1, . . . , xn) = C(xi1 , . . . , xik). For a finite class C of constraints, a
C-CSP instance I is a set of n-ary applications of constraints in C and represents the conjunction of these
constraint applications. A constraint C is called

• 0-valid, if C(0, . . . , 0) = 1,

• 1-valid, if C(1, . . . , 1) = 1,

• Horn, if it is a Horn-CNF, i.e., each clause has at most one positive literal,

• anti-Horn, if it is an anti-Horn-CNF, i.e., each clause has at most one negative literal,

• bijunctive, if it is a 2-CNF,

• affine, if it is a conjunction of parities of literals, and

• 2-affine, if it is a conjunction of parities where each parity consists of at most 2 literals.
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A class C of constraints is called 0-valid, 1-valid, Horn, anti-Horn, bijunctive, affine, or 2-affine, if every
constraint in it has the respective property. C is called Schaefer if it is Horn, anti-Horn, bijunctive or affine.

Schaefer proved the following dichotomy result regarding the satisfiability of CSP instances.

Theorem 5.2 ([Sch78]). Let C be a class of constraints. The satisfiability problem for C-CSP instances is
in P if C is 0-valid, 1-valid or Schaefer, and NP-complete otherwise.

Böhler et al. considered the isomorphism problem for CSP instances, which asks whether the boolean
functions computed by two given CSP instances are isomorphic.

Theorem 5.3 ([BHRV04]). Let C be a class of constraints. The isomorphism problem for C-CSP instances is
in P if C is 2-affine, GI-complete if C is Schaefer but not 2-affine, and both coNP-hard and GI-hard otherwise.

Our main result on decision lists is the following extension of this trichotomy result to C-DLs. Most of
this section is devoted to its proof.

Theorem 5.4. Let C be a class of constraints. The isomorphism problem for C-DLs is in L if C is 2-affine,
GI-complete if C is Schaefer but not 2-affine, and both coNP-hard and GI-hard otherwise.

Recall that in a C-DL L = 〈f1, c1〉, . . . , 〈fm, cm〉, for each fi there are a function C ∈ C and indices
i1, . . . , ik such that fi(x1, . . . , xn) = C(xi1 , . . . , xik); cf. Definition 1.2. Thus fi can be viewed as an application
of the constraint C. For a class of constraints C, we define its complement as C = {¬C | C ∈ C}, and observe
the following.

Lemma 5.5. For any C-CSP instance I, there is an equivalent C-DL LI .

Proof. Given a C-CSP instance I =
{
Cj(xi(j,1), . . . , xi(j,kj)) | j = 1, . . . ,m

}
, we define

LI = 〈¬C1(xi(1,1), . . . , xi(1,k1)), 0〉, . . . , 〈¬Cm(xi(m,1), . . . , xi(m,km)), 0〉, 〈1, 1〉 .

The decision list LI represents the function
∧m
j=1 Cj(xi(j,1), . . . , xi(j,kj)) and thus is equivalent to I.

Combining this lemma with Theorem 5.3 gives the lower bounds featuring in our trichotomy for C-DLs.
It remains to show the upper bounds for the cases where C is Schaefer, i.e., where C consists of either
(i) disjunctions of conjunctions of literals of which at most one is negative, (ii) disjunctions of conjunctions
of literals of which at most one is positive, (iii) disjunctions of parities of literals or (iv) disjunctions of
conjunctions of two literals.

In Section 5.2, we show that in all these cases, the isomorphism problem for C-DLs is reducible to GI.
Moreover, in Section 5.1 we show that the isomorphism problem is even decidable in logspace when C is
2-affine, i.e., C consists of disjunctions of parities of at most two literals. Further, we show that C-DL-Iso
is L-hard, unless C contains only constant functions. Finally, in Section 5.3 we consider the general case
and show for any class C of constraints that C-DL-Iso can be solved in polynomial time by asking parallel
queries to an NP oracle.

5.1. Canonizing decision lists in the 2-affine case

A 2⊕-condition is a formula of the form xi, xi ⊕ 1, xi ⊕ xj , or xi ⊕ xj ⊕ 1. A 2⊕-DL L is a list of pairs
〈D1, c1〉, . . . , 〈Dm, cm〉 where ci ∈ {0, 1} for i = 1, . . . ,m and each Di is a disjunction of 2⊕-conditions. We
assume that each Di is represented as a set containing all the 2⊕-conditions in the disjunction. We say that
a pair 〈Di, ci〉 fires on an assignment a, if i is the least index such that p(a) = 1 for some p ∈ Di.

We next describe a normal form representation for 2⊕-DLs. The construction is very similar to the one
for functions of rank 1 which correspond to 1-DLs. We then exploit the structure of the normal form to give
a logspace algorithm for the 2⊕-DL isomorphism problem.

The normal form NL for a 2⊕-DL L computing an n-ary boolean function f is a 2⊕-DL of the form

NL = 〈P1(f), 1〉, 〈P2(f), 0〉, . . . , 〈Pm(f),m mod 2〉, 〈1,m+ 1 mod 2〉.
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The idea behind the definition of NL is to include in each level k as many 2⊕-conditions as possible, even if
some of them are redundant, as this choice does not depend on the order of the variables.

More precisely, for two n-ary boolean functions f, g and a bit c ∈ {0, 1}, let P (f, g, c) denote the set of
all 2⊕-conditions p such that f evaluates to c under all assignments that satisfy p ∧ g. Let g0 = 1 and for
k ≥ 1, let Pk(f) = P (f, gk−1, k mod 2) \

⋃
j<k Pj(f) and let gk be the function gk−1 ∧

∧
p∈Pk(f) ¬p. Further

let m be the largest index k for which gk is not the constant 0 function. The level lvf (p) of a 2⊕-condition p
is the smallest index k such that p ∈ Pk(f).

Example 5.6. The 2⊕-DL

L = 〈{x1 ⊕ x2 ⊕ 1, x2 ⊕ x3, x5 ⊕ x6 ⊕ 1}, 1〉, 〈{x1 ⊕ 1, x4 ⊕ x5}, 0〉, 〈{x1 ⊕ x6 ⊕ 1}, 1〉, 〈1, 0〉

has the 2⊕-DL NL = 〈P1, 1〉, 〈P2, 0〉, 〈P3, 1〉, 〈1, 0〉 as its normal form, where

P1 = {x1 ⊕ x2 ⊕ 1, x1 ⊕ x3 ⊕ 1, x2 ⊕ x3, x5 ⊕ x6 ⊕ 1},
P2 = {x1 ⊕ 1, x2, x3, x4 ⊕ x5, x4 ⊕ x6 ⊕ 1} and

P3 = {x1 ⊕ x4, x1 ⊕ x5, x1 ⊕ x6 ⊕ 1, x2 ⊕ x4 ⊕ 1, x2 ⊕ x5 ⊕ 1,

x2 ⊕ x6, x3 ⊕ x4 ⊕ 1, x3 ⊕ x5 ⊕ 1, x3 ⊕ x6, x4 ⊕ 1, x5 ⊕ 1, x6}.

Moreover, g0 = 1, g1 = (x1 ⊕ x2) ∧ (x1 ⊕ x3) ∧ (x5 ⊕ x6), g2 = x1 ∧ x2 ∧ x3 ∧ (x4 ⊕ x6) ∧ (x5 ⊕ x6),
g3 = x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ x6 and g4 = 0 as the set P4 contains all 2⊕-conditions over the variable set
{x1, . . . , x6} that are missing in P1 ∪ P2 ∪ P3.

The following lemma summarizes our normal form construction.

Lemma 5.7. The function L 7→ NL is a normal form representation for 2⊕-decision lists.

Proof. Let L be a 2⊕-DL computing some n-ary boolean function f . To show that L and NL represent the
same function, we assume that all pairs in L can fire and split L into subsequences C1, . . . , C` so that all pairs
〈Di, ci〉 in Ck satisfy ci = k mod 2 and all Ck (except possibly C1) are non-empty. For k = 1, . . . , `, it follows
by induction over k that the disjunction of the conditions Di with 〈Di, k mod 2〉 in Ck is equivalent to the
disjunction of the 2⊕-conditions p with p ∈ Pk(f) under all assignments for which no pair in C1, . . . , Ck−1
fires. This also proves that ` = m+ 1.

Further, since the sets Pk(f) depend only on f , equivalent 2⊕-DLs will lead to the same sets. To show
that NL is permutation preserving, suppose that π is an isomorphism between two boolean functions f and g.
Then a 2⊕-conditions p is in the set Pk(f) if and only if pπ is in the set Pk(g). Thus (Nf )π = Nfπ = Ng.

Next, we describe a logspace algorithm for computing NL. For this we need a generalized notion of
restriction of boolean functions represented by decision lists: For a decision list L = 〈f1, c1〉, . . . , 〈f`, c`〉
and a function g, let L[g] = 〈f1, c1〉, . . . , 〈fi−1, ci−1〉〈1, ci〉, where i is the smallest index for which g ∧∧i−1
j=1 ¬fj implies fi. It is clear that L[g] yields the same value as L on all assignments a for which g(a) = 1.

Moreover, an inductive argument along the same lines as in the proof of Lemma 5.7 shows that L[g] and NL[g]
compute the same function.

Lemma 5.8. Let L be a 2⊕-DL that represents a function f and let p and p′ be 2⊕-conditions. Then
lvf (p) ≤ min{lvf (p′), lvf (¬p′)} if and only if L[p, p′] and L[p,¬p′] are equivalent.

Proof. Let NL = 〈P1, 1〉, . . . , 〈Pm,m mod 2〉, 〈1,m + 1 mod 2〉 be the normal form of L. As argued above,
the decision list L[p] is equivalent to NL[p] = 〈P1(f), 1〉, . . . , 〈Pi−1(f), i − 1 mod 2〉, 〈1, i mod 2〉, where
i = lvf (p). If lvf (p) ≤ min{lvf (p′), lvf (¬p′)}, the constraint applications p′ and ¬p′ do not occur in NL[p].
By construction of NL, this implies NL[p, p′] = NL[p,¬p′] = NL[p]. Thus L[p, p′] and L[p,¬p′] are equivalent.

In case j = min{lvf (p′), lvf (¬p′)} < lvf (p), let a be an assignment such that 〈Pj+1(f), j + 1 mod 2〉 fires
upon evaluation of NL[p]. As max{lvf (p′), lvf (¬p′)} = m+ 1, we have NL[p, p′](a) 6= NL[p,¬p′](a). Thus
L[p, p′] and L[p,¬p′] are not equivalent.

14



Lemma 5.9. Given a 2⊕-DL L, its normal form NL can be computed in logspace.

Proof. The satisfiability of a conjunction of 2⊕-conditions of size at most 2 can be checked in logspace by
constructing the equivalence graph of literals and checking that no variable occurs together with its negation
in the same connected component. The latter is possible in logspace using Reingold’s algorithm [Rei08].

The decision list L[p] = 〈D1, c1〉, . . . , 〈Di−1, ci−1〉〈1, ci〉 for a given 2⊕-DL L = 〈D1, c1〉, . . . , 〈D`, c`〉 and

a 2⊕-condition p can be computed in logspace by finding the smallest i such that p ∧
∧i
j=1 ¬Di is not

satisfiable.
Two 2⊕-DLs L = 〈D1, c1〉, . . . , 〈D`, c`〉 and L′ = 〈D′1, c′1〉, . . . , 〈D′`′ , c′`′〉 are not equivalent if and only if

there are entries 〈Di, ci〉 of L and 〈D′j , c′j〉 of L′ such that ci 6= c′j and for some pi ∈ Di and p′j ∈ D′j the
following conjunction of 2⊕-conditions is satisfiable:

pi ∧ p′j ∧

i−1∧
k=1

¬Dk

 ∧(j−1∧
k=1

¬D′k

)

Thus the condition given by Lemma 5.8 can be evaluated in logspace. This allows to partition the set of all
2⊕-conditions by level and to find the linear order between the levels. It remains to check whether P1 is
empty. This can be done by checking if L[p] = 1 for some 2⊕-condition p in the smallest level.

Let L be a 2⊕-DL and let NL = 〈P1, 1〉, . . . , 〈Pm,m mod 2〉, 〈1,m+ 1 mod 2〉 be its normal form. We will
encode the structure of NL as a graph GL of tree distance width 2 such that NL and NL′ are syntactically
isomorphic if and only if GL and GL′ are isomorphic. Das et al. proved that this graph class can be canonized
in logspace [DTW12].

We can rewrite a 2⊕-condition as an equation over literals and constants. For example, the 2⊕-condition
x1 ⊕ x2 can be rewritten as the equations x01 = x12 or x11 = x02 and the 2⊕-condition x1 ⊕ 1 can be
rewritten as x01 = 1 or x11 = 0. The idea is to represent NL as a sequence of equation sets representing the

conjunctions of 2⊕-conditions
∧k
i=1 ¬Pi for k = 0, . . . ,m+ 1. More precisely, we call two literals or constants

l, l′ ∈ X(n) = {0, 1} ∪ {xbi | i ∈ {1, . . . , n}, b ∈ {0, 1}} equivalent after level k (denoted l ≡k l′) if l = l′ or if
the 2⊕-condition corresponding to l ⊕ l′ is contained in P1 ∪ · · · ∪ Pk.

Lemma 5.10. The relations ≡k are transitive on X(n) for k = 0, . . . ,m+ 1.

Proof. Assume that xi ≡k xj and xj ≡k xh (the cases that some of these three variables are negated
or replaced by a constant are handled in exactly the same way). Then P1 ∪ · · · ∪ Pk contains the two
2⊕-conditions p = xi ⊕ xj and p′ = xj ⊕ xh.

If p and p′ belong to the same set Pr, then p′′ = xi ⊕ xh is in P1 ∪ · · · ∪ Pr, since any assignment a that
satisfies gr−1 ∧ p′′, either satisfies gr−1 ∧ p or gr−1 ∧ p′, implying that f(a) = r mod 2.

If p and p′ belong to different sets Pr and Ps with r < s, then any assignment that satisfies gs−1 assigns
to xi and xj the same value, implying that gs−1 ∧ p′ and gs−1 ∧ p′′ describe the same function. Hence, the
level of p′′ is at most the level of p′, implying that p′′ ∈ P1 ∪ · · · ∪ Ps.

The relation ≡k partitions the set X(n) into the equivalence classes [l]k = {y ∈ X(n) | l ≡k y}, l ∈ X(n).
The complementary equivalence class of [l]k is [l]k = {y ∈ X(n) | l ≡k y}.

Example 5.11. Consider L = 〈{x1⊕x2⊕1, x2⊕x3, x5⊕x6⊕1}, 1〉, 〈{x1⊕1, x4⊕x5}, 0〉, 〈{x1⊕x6⊕1}, 1〉, 〈1, 0〉.
The equivalence classes of ≡1 are {0}, {1}, {x1, x2, x3}, {x1, x2, x3}, {x4}, {x4}, {x5, x6}, and {x5, x6}.
The classes [0]1 and [1]1 are complementary to each other, as are [x1]1 and [x2]1, and likewise [x4]1 and [x4]1
as well as [x5]1 and [x6]1.

The equivalence classes of ≡2 are {0, x1, x2, x3}, {1, x1, x2, x3}, {x4, x5, x6}, and {x4, x5, x6}. The
complementary pairs are {[0]2, [1]2} and {[x4]2, [x6]2}.

The equivalence classes of ≡3 are {0, x1, x2, x3, x4, x5, x6} and {1, x1, x2, x3, x4, x5, x6}. They are com-
plementary to each other.

For ≡4 there is only one equivalence class X(6), i.e., it contains all literals and constants over {x1, . . . , x6}
and is complementary to itself.
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Given a normal form NL = 〈P1, 1〉, . . . , 〈Pm,m mod 2〉, 〈1,m+1 mod 2〉, we encode the sizes and inclusion
structure of these equivalence classes in the graph GL. For each k ∈ {0, . . . ,m+ 1} and equivalence class [l]k
of ≡k, the graph GL contains a vertex ([l]k, k). By definition, the equivalence classes of ≡0 are singletons,
the equivalence classes of ≡k are a refinement of the equivalence classes of ≡k+1 for k = 1, . . . ,m+ 1, and
≡m+1 has just one equivalence class. Thus the edges

{
{([l]k, k), ([l]k−1, k − 1)}

∣∣ l ∈ X(n), 1 ≤ k ≤ m
}

form
a tree and we add them all to GL. Additionally, GL contains an edge between each pair of complementary
equivalence classes. The vertices ([0]0, 0), ([1]0, 0), and ([0]m,m) receive the colors 0, 1, and root respectively,
and for each variable xi, the vertex ([xi]0, 0) is colored with var. See Figure 3 for an example.

Lemma 5.12. If two 2⊕-DLs L and L′ represent isomorphic functions f and f ′, then the graphs GL and GL′

are isomorphic.

Proof. Let NL = 〈P1, 1〉, . . . , 〈Pm,m mod 2〉, 〈1,m+ 1 mod 2〉 and NL′ = 〈P ′1, 1〉, . . . , 〈P ′m,m mod 2〉, 〈1,m+
1 mod 2〉 be the normal forms of L and L′, and let ≡k and ≡′k denote equivalence after level k in NL and NL′ ,
respectively. By Lemma 5.7, any isomorphism π from f to f ′ is also a syntactic isomorphism from NL to NL′ .
In particular, for any l, l′ ∈ X(n) and k ∈ {0, . . . ,m+ 1}, we have l ≡k l′ if and only if π(l) ≡′k π(l′). This
implies that π induces an isomorphism from GL to GL′ .

A tree distance decomposition for a graph G = (V,E) is a rooted tree T = (X,F ) whose nodes X (which
are called bags) form a partition of V , such that

• for every edge {u, v} ∈ E, the vertices u and v are either in the same bag of T or in adjacent bags of T ,
and

• for each vertex v ∈ V , the minimum distance in G from v to a vertex in the root bag of T equals the
distance in T of the bag containing v to the root bag.

The width of T is the maximum size of its bags.
Using one bag for each pair of complementary equivalence classes results in a tree distance decomposition

of width 2 for GL, which has edges between {([l]k, k), ([l]k, k)} and {([l]k−1, k − 1), ([l]k−1, k − 1)} for each
l ∈ X(n) and k ∈ {1, . . . ,m+ 1}. Thus we can use the logspace algorithm of Das et al. [DTW12] to obtain a
canon CL of GL.

The next lemma shows that a syntactically isomorphic copy of NL can be reconstructed from the canon CL
of GL.

Lemma 5.13. Let L be a 2⊕-DL, and let GL be the graph that encodes the structure of its normal form NL
as described above. Given an isomorphic copy G′L of GL, a syntactically isomorphic copy S(G′L) of NL can
be computed in logspace.

[0]0 [1]0 [x1]0 [x1]0 [x2]0 [x2]0 [x3]0 [x3]0 [x4]0 [x4]0 [x5]0 [x5]0 [x6]0 [x6]0

[0]1 [1]1
[x1]1 [x2]1 [x4]1 [x4]1 [x5]1 [x6]1

[0]2
[1]2 [x4]2

[x6]2

[0]3 [1]3

[0]4

Figure 3: The graph representation GL of the normal form NL considered in Example 5.11. The levels are omitted from the
vertex names as they are clear from the graph structure.
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Proof. To construct S(G′L) = 〈P ′1, 1〉, . . . , 〈P ′m,m mod 2〉, 〈1,m+ 1 mod 2〉 from G′L, let n be the number of
vertices with color var in G′L and let m be the distance of the vertex colored root to any color var vertex
in G′L. Call a vertex v of G′L a level k vertex if it has distance m− k to the vertex colored root. This can
be checked in logspace [DTW12]. Let σ be the bijection from the color var vertices in G′L to {1, . . . , n}
that maps the ith color var vertex in G′L to i. Because of the colors 0 and 1 and the edges between the
vertices of complementary equivalence classes, σ induces a bijection σ′ between the level m vertices of G′L
and X(n) =

{
0, 1
}
∪
{
xbi
∣∣ i ∈ {1, . . . , n}, b ∈ {0, 1}}. Let T ′L be the tree rooted at the vertex colored root

that is obtained from G′L by dropping all edges between vertices of the same level. For each k ∈ {1, . . . ,m},
the set P ′k consists of all 2⊕-conditions σ′(v)⊕ σ′(w) such that v and w are level m vertices and there is a
level k vertex u in G′L such that v and w are in subtrees of different children of u in T ′L.

We claim that for any isomorphism π from GL to G′L, the mapping π̃(i) = j, where σ′
(
π(([xi]0, 0))

)
= xj ,

is a syntactic isomorphism from NL to S(G′L). This holds because for two literals or constants l and l′,
the set Pk contains the 2⊕-condition l ⊕ l′ if and only if [l]k = [l′]k and [l]k−1 6= [l′]k−1, i.e., if and only if
([l]0, 0) and ([l′]0, 0) are in the subtrees of different children of ([l]k, k) in GL.

Theorem 5.14. Let C be a 2-affine class of constraints. Then a canonical representation for C-DLs can be
computed in logspace.

Proof. Given a 2⊕-DL L, compute its normal form NL (by Lemma 5.9), construct its graph representation GL
(which is easily possible in logspace), obtain a canon CL for the latter using the algorithm of Das et al. [DTW12],
and return the isomorphic copy S(CL) of NL reconstructed from CL using the algorithm of Lemma 5.13 as
the canonical form of L.

By Lemmas 5.7 and 5.13, S(CL) and L represent isomorphic functions. By Lemma 5.12, two 2⊕-
DLs L and L′ that represent isomorphic input functions have isomorphic graph representations GL and GL′ ,
implying that CL = CL′ . As the canonical form S(CL) only depends on CL, we have S(CL) = S(CL′) as
required.

We conclude this subsection by showing that deciding isomorphism of C-CSP instances is L-hard, unless
C contains only constant functions.

Theorem 5.15. Let C be a class of constraints that contains a non-constant function. Then C-DL-Iso is
L-hard.

Proof. As Graph Isomorphism is L-hard even for trees [JKMT03], by Theorem 5.3 and Lemma 5.5 it suffices
to consider the case that C is 2-affine. Note that if ¬C is a non-constant and 2-affine constraint, then
there is a constraint application f(x1, . . . , xn) = C(xi1 , . . . , xik) that either corresponds to a single literal
f(x1, . . . , xn) = xbi or to the parity f(x1, . . . , xn) = xi ⊕ xj ⊕ b of two literals. If the application is a single
negative literal, then it is easy to encode the rank 1 decision trees T1 and T2 from the proof of Lemma 3.8 as
C-DLs

L1 = 〈x1, 1〉, . . . , 〈xu−1, 1〉, 〈xu, 0〉, 〈xu+1, 1〉, . . . , 〈xn, 1〉, 〈1, 0〉 and

L2 = 〈xn, 1〉, . . . , 〈xu+1, 1〉, 〈xu, 0〉, 〈xu−1, 1〉, . . . , 〈x1, 1〉, 〈1, 0〉,

resulting in a reduction from the L-hard problem DiPathCenter to C-DL-Iso. If the application is a single
variable, replacing the negative literals with the corresponding positive ones encodes the dual functions
fi(x1, . . . , xn) as C-DLs, implying L-hardness also for this case.

If the application is the parity of two variables, we can add an additional variable xn+1 and include it in
each condition:

L′1 = 〈x1 ⊕ xn+1, 1〉, . . . , 〈xu−1 ⊕ xn+1, 1〉, 〈xu ⊕ xn+1, 0〉, 〈xu+1 ⊕ xn+1, 1〉, . . . , 〈xn ⊕ xn+1, 1〉, 〈1, 0〉 and

L′2 = 〈xn ⊕ xn+1, 1〉, . . . , 〈xu+1 ⊕ xn+1, 1〉, 〈xu ⊕ xn+1, 0〉, 〈xu−1 ⊕ xn+1, 1〉, . . . , 〈x1 ⊕ xn+1, 1〉, 〈1, 0〉,

If the application is the negation of the parity of two variables, we include xn+1 ⊕ 1 instead of xn+1 in each
condition. Either way, xn+1 is the only variable such that the two restrictions f ′i [xn+1 ← 0] and f ′i [xn+1 ← 1]
are dual to each other, so any isomorphism from L′1 to L′2 must map xn+1 to itself. Thus we again obtain a
reduction from DiPathCenter to C-DL-Iso.
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We remark that isomorphism of {x1}-CSP instances can be decided in TC0 by comparing the number of
variables that occur in constraint applications, so Theorem 5.15 does not hold for C-CSP isomorphism.

5.2. Reducing isomorphism of Schaefer decision lists to graph isomorphism

In this section, we show that C-DL isomorphism is reducible to graph isomorphism if C is Schaefer,
adapting the methods of [BHRV02] for CSP instances to the layered structure of decision lists. We give a
reduction from C-DL-Iso to the label-respecting isomorphism problem of labeled trees, which is equivalent
to graph isomorphism [RZ00]. In this problem, we are given two rooted trees where each vertex has a label.
We ask if there is an isomorphism between the trees which is label-respecting, i.e., two vertices in the first
tree have the same label if and only if their images in the second tree have the same label. A generalized
version of this problem that is also GI-complete is isomorphism of colored labeled trees, where each vertex
additionally has a color and we ask for a color-preserving and label-respecting isomorphism.

Let L be a given C-DL, where C is Schaefer. The first step is to find a normal form. Since we will use
the same normal form representation again in the next subsection, we will describe it for arbitrary C-DLs.
Let C(n) denote the set of all n-ary applications of the constraints in C. Its cardinality is bounded by |C| · nr,
where r is the maximum arity of a constraint in C. We partition C(n) into the sets C1(L), . . . , Cm(L), Cm+1(L)
such that each Ck(L) contains all f ∈ C(n) \

⋃
i<k Ci(L) that satisfy

∀a ∈ {0, 1}n :

f(a) ∧
∧

g∈
⋃
i<k Ci(L)

¬g(a)

 = 1⇒ L(a) = k mod 2, (1)

where C1(L) might be empty. Given a constraint application f ∈ C(n), its level lvL(f) is the index k for
which f ∈ Ck(L). The normal form of L is defined as the decision list

NL =
〈
C1(L), 1

〉
,
〈
C2(L), 0

〉
,
〈
C3(L), 1

〉
, . . . ,

〈
Cm(L),m mod 2

〉
,
〈
1,m+ 1 mod 2

〉
,

where for each k, the set Ck(L) represents the function
∨
f∈Ck(L) f .

Theorem 5.16. Let C be a class of functions, each depending on at most r variables, such that C is Schaefer.
Then the C-DL isomorphism problem is polynomial-time reducible to graph isomorphism.

Proof. Let L = 〈f1, c1〉, . . . , 〈f`, c`〉 be a given C-DL, where C is Schaefer. We can assume that in each
pair 〈fi, ci〉 in L, fi is a conjunction (or parity) of literals, i.e., the outer disjunctions are resolved by splitting
them into several pairs. Similarly, in the normal form NL =

〈
C1(L), 1

〉
, . . . ,

〈
Cm(L),m mod 2

〉
,
〈
1,m +

1 mod 2
〉

of L we can assume that each set Ck(L) consists only of such functions. In other words, it suffices
to restrict C(n) to conjunctions (or parities) of literals of arity at most r over {x1, . . . , xn}.

We first compute the normal form NL of L. By Theorem 5.2 we can check property (1) above in
polynomial time, since a condition f ∈ C(n) does not fulfill this property if and only if for some j ∈ {1, . . . , `}
with cj 6= k mod 2, the function

f ∧
∧

g∈
⋃
i<k Ci(L)

¬g ∧
∧
i<j

¬fi ∧ fj

is satisfiable. This function can be encoded as C′-CSP instance for some Schaefer class C′ ⊇ C, as f and fj
are parities if C-CSP is affine, and conjunctions of literals otherwise.

The next step is to encode NL as a labeled tree TL (in the sense of [RZ00]) such that two normal forms
NL1

and NL2
are syntactically isomorphic if and only if there is a label-respecting tree isomorphism from TL1

to TL2
. As the type of the constraints in C is fixed (i.e., either Horn, anti-Horn, bijunctive or affine), each

constraint application f ∈ C(n) is already uniquely determined by a set Lf of literals and a bit bf . For
example, when C is Horn, the set Lf = {xi1 , . . . , xik−1

, xik} uniquely identifies the corresponding function

f = xi1 ∧ · · · ∧ xik−1
∧ xik , and if C is affine, the variable set Lf = {xi1 , . . . , xik} and the bit bf uniquely

identify the function f = xi1 ⊕ · · · ⊕ xik ⊕ bf . As bf is only needed in the affine case, we fix it to 0 in the
other cases.
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We now outline the encoding algorithm which computes a labeled colored tree TL on input NL. We create
a root node with m children corresponding to C1(L), . . . , Cm(L), where the node for Ck(L) is colored k.
In the subtree rooted at the node corresponding to Ck(L) we create a child cf with color bf for each
function f ∈ Ck(L). The node cf will have |Lf | children which are leaves vk,f,i,b corresponding to the
literals xbi in Lf , where vk,f,i,b is labeled by the variable index i and colored by the bit b. This completes the
construction of the tree TL.

It is easy to verify that if NL1 and NL2 are syntactically isomorphic via a permutation π, then π maps
the collection {Lf | f ∈ Ck(L)} of literal sets to the collection {Lf | f ∈ Ck(L′)}, and thus induces a
label-respecting and color-preserving isomorphism from TL1

to TL2
. Conversely, if there is a label-respecting

and color-preserving isomorphism ψ from TL1
to TL2

, then ψ induces a permutation π on the leaf labels,
which provides a syntactic isomorphism from NL1

to NL2
.

5.3. An upper bound for isomorphism of general decision lists

Let C be any finite class of constraints. Böhler et al. have shown that the isomorphism problem for C-CSP
instances is in PNP

‖ [BHRV02, Corollary 23], where the oracle queries are parallel and do not depend on the
answers to previous oracle queries. In this section, we extend this result to the more general isomorphism
problem for C-DLs.

The following lemma is similar to Lemma 5.8 and allows us to compute the normal form defined in
the preceding subsection in polynomial time by asking parallel queries to an NP oracle. Recall that for a
C-DL L = 〈f1, c1〉, . . . , 〈f`, c`〉 and a function g, we have defined L[g] = 〈f1, c1〉, . . . , 〈fi−1, ci−1〉〈1, ci〉, where
i is the smallest index for which g ∧

∧
j<i ¬fj implies fi.

Lemma 5.17. Let C be any finite class of constraints that is closed under negation, let L be a C-DL
on n variables and let f, g ∈ C(n). Then lvL(f) ≤ min{lvL(g), lvL(¬g)} if and only if the two lists
L[f, g] and L[f,¬g] are equivalent.

Proof. Let NL be the normal form of L as defined above. The decision list L[f ] is equivalent to NL[f ] =
〈C1(L), 1〉, . . . , 〈Ci−1(L), i− 1 mod 2〉, 〈1, i mod 2〉, where i = lvL(f). If lvL(f) ≤ min{lvL(g), lvL(¬g)}, the
constraint applications g and ¬g do not occur in NL[f ]. By construction of NL, this implies NL[f, g] =
NL[f,¬g] = NL[f ]. Thus L[f, g] and L[f,¬g] are equivalent.

In case lvL(f) > min{lvL(g), lvL(¬g)} = j, let a be an assignment with Cj+1(L)(a) = 1 and Ck(L)(a) = 0
for all k ≤ j. As max{lvL(g), lvL(¬g)} = `+ 1, we have NL[f, g](a) 6= NL[f,¬g](a), so L[f, g] and L[f,¬g]
are not equivalent.

Theorem 5.18. C-DL-Iso is in PNP
‖ for any finite class C of constraints.

Proof. To decide C-DL-Iso we can use a constant number of rounds of parallel NP queries as Buss and Hay
have shown that is equivalent to using one round of parallel NP queries [BH91].

Let L and L′ be the given C-DLs for n-ary boolean functions f and f ′, respectively. Our algorithm
first computes the normal forms NL =

〈
C1(L), 1

〉
, . . . ,

〈
Cm(L),m mod 2

〉
,
〈
1,m + 1 mod 2

〉
and NL′ =〈

C1(L′), 1
〉
, . . . ,

〈
Cm(L′),m mod 2

〉
,
〈
1,m+ 1 mod 2

〉
using two rounds of parallel queries; the algorithm is

described below. To decide whether the functions represented by them are isomorphic, it suffices to check
whether NL and NL′ are syntactically isomorphic, i.e., whether there is a permutation π ∈ Sn such that
Ck(L)π = Ck(L′) for all levels k ∈ {1, . . . ,m}. This can be done using one more NP query.

To compute the normal form NL of L = 〈f1, c1〉, . . . , 〈fm, c`〉, we use the first round of parallel NP queries
to compute the decision lists L[f, g] for all f, g ∈ C(n). This is possible as f ∧ g ∧

∧
j<i ¬fj implies fi if and

only if f ∧ g ∧
∧
j≤i ¬fj is not satisfiable.

We may assume w.l.o.g. that C is closed under negation. In the second round of parallel queries, we ask
for all f, g ∈ C(n), whether L[f, g] and L[f,¬g] are equivalent. By Lemma 5.17, this allows to partition C(n)
by level. It remains to check whether C1(L) is empty, which is true if for some f ∈ C(n) of minimum level,
the decision list L[f ] is a tautology (this can be asked for all f ∈ C during the second round of parallel
queries).
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An interesting question is whether it is also possible to compute a canonical representation for C-DLs in
the class FPNP

‖ . However, this seems unlikely as it would imply that graphs can be canonized in FPNP
‖ .
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