EINFÜHRUNG IN DIE KRYPTOLOGIE PROF. DR. JOHANNES KÖBLER Sommersemester 2022 03. Mai 2022

Übungsblatt 3

Abgabe der schriftlichen Lösungen bis 19.05.2022, 24 Uhr

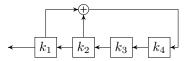
Aufgabe 14 Sei $p \ge 2$ prim.

 $m\ddot{u}ndlich$

Zeigen Sie, dass für jede selbstinverse Matrix A über \mathbb{Z}_p gilt: $\det(A) \equiv_p \pm 1$.

Hinweis: Benutzen Sie den Determinantenproduktsatz: Für zwei quadratische Matrizen A, B über einem kommutativen Ring mit Eins gilt $\det(AB) = \det(A) \det(B)$.

Aufgabe 15 mündlich


- (a) Bestimmen Sie alle Schlüssel der binären (d.h. m=2) digrafischen (d.h. $\ell=2$) Hill-Chiffre. Welche davon sind involutorisch?
- (b) Bestimmen Sie die Anzahl der involutorischen Schlüssel einer digrafischen Hill-Chiffre über einem Alphabet der Größe $m=p,\ p\geq 3$ prim.

Hinweis: Benutzen Sie Aufgabe 13 (a).

Aufgabe 16 mündlich

Bestimmen Sie die Anzahl aller involutorischen Schlüssel der Blocktranspositionschiffre mit Blocklänge ℓ und maximaler Schlüsselzahl ℓ !. Wieviele davon sind echt involutorisch?

Aufgabe 17

miindlich

Ein lineares Schieberegister (LSR) der Länge ℓ ist eine Anordnung von ℓ Speicherzellen k_1,\ldots,k_ℓ , in denen jeweils ein Bit gespeichert ist. Seien $c_0,\ldots,c_{\ell-1}\in\{0,1\}$ Konstanten mit $c_0=1$. Ein Rechenschritt eines LSR besteht darin, zunächst das Bit $b=\bigoplus_{j=0}^{\ell-1}c_jk_{j+1}$ zu berechnen. Dann wird k_1 ausgegeben und der Inhalt der Speicherzellen um eine Position nach links verschoben, wobei k_ℓ den Wert b erhält. Die auf diese Art entstehende Bitfolge z_i mit $z_i=k_i,\,1\leq i\leq \ell$, und

$$z_{i+\ell} = \sum_{j=0}^{\ell-1} c_j z_{i+j} \mod 2, \ i \ge 1$$

besteht (abgesehen von einem Anfangsstück) aus einem sich ständig wiederholenden Muster, dessen (minimale) Länge als Periode des LSR mit dem Schlüssel $k = (k_1, \ldots, k_\ell, c_0, \ldots, c_{\ell-1})$ bezeichnet wird. Zwei Schlüssel k und k' heißen äquivalent, wenn Sie den gleichen Schlüsselstrom erzeugen.

- (a) Konstruieren Sie ein LSR der Länge $\ell=5$ mit Periode 31 und zeigen Sie, dass die Periode niemals größer als $2^\ell-1$ sein kann.
- (b) Wie kann der Schlüssel einer auf einem LSR basierenden Stromchiffre bei Kenntnis von 2ℓ aufeinanderfolgenden Klartext/Kryptotext-Bitpaaren (bis auf Äquivalenz eindeutig) bestimmt werden?

Aufgabe 18 10 Punkte

Bestimmen Sie für jede Blocklänge $\ell \ge 2$ die Schlüsselzahl der Hill-Chiffre über einem Alphabet der Größe $m = p \ge 2$ prim.

Hinweis: Benutzen Sie, dass eine quadratische Matrix über einem Körper genau dann invertierbar ist, wenn die Zeilenvektoren der Matrix linear unabhängig sind.