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Die Energiewende 

 
• Electricity is created in 

many more places than 
before 

• Electricity is consumed in 
many places 

• Places of production are 
not evenly distributed 
across the country 

• We need to build new 
electricity highways 

Source: http://www.deutsche-mittelgebirge.de/ 
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Die Energiewende 

 
• How can we do this as 

cheap as possible? 
• Not all connections are 

possible  
– Mountains, rivers, … 

• Different connections have 
different costs 

City 
E-Plant 
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Die Energiewende 

 
 

• Requirement for a solution: 
Every city and every plant 
must be connected to the 
network 
• We treat them uniformly 
• We don’t care about the 

length of a connection 

• One solution 
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Die Energiewende 

 
 
 

• Another solution 
• Of course, in real life we 

may build crossroads 
outside cities 
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Die Energiewende 

 
 

• This is the Steinerbaum-
Problem 
– Some nodes must be 

connected, other nodes 
maybe connected 

• Optimal solution is much 
harder to find 

• Not considered here 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      7 

Abstraction 

 
• Given an undirected, 

positively weighted, 
connected graph G=(V,E) 

• Find a subset E’⊆E such that 
cost(E’) is minimal and  
G’=(V, E’) is connected 
– cost(E’): Sum of the edge 

weights 

• Every such E’ (or G’) is 
called a minimum spanning 
tree (MST) for G 
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Example 1 
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Example 2 

 
 
 
 

• Cost = 61 
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First Algorithm 

 
 

• Let’s try greedy 
– Sort edges by weight 
– Add the next cheapest edge to 

E’ whenever it connects a new 
node to something already 
known 

• Hmm  
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Second Algorithm 

• Let‘s try greedy – another way 
– Sort edges by weight 
– Add cheapest edge to E’ 
– Add all edges to E’ in ascending 

order such that every new edge 
adds a new node to the graph 
induced by E’ 

– Repeat until E’ is complete 

• Cost = 42  
– Is this optimal? 
– Does this always work? 
– How can we implement this 

algorithm efficiently? 
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Overview  

 
• First algorithms for computing MST date back to the 1920s 
• Algorithms are not difficult; much research went into 

efficient implementations 
• Actually, MSTs can be computed in a greedy manner 
• Algorithms need not grow only one component; in general, 

we may have “connected islands” that all get connected to 
one component in the end 

• In each step, one needs to decide which edge to add next 
to which island (or which edges not to add) 

• What are criteria for adding / not adding edges? 
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Content of this Lecture 

 
 

• Minimal Spanning Trees 
• Basic Properties 

– Tree 
– Cuts 
– Cycles 

• Algorithms 
• Implementation 
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Minimal Spanning Trees 

• Lemma 
Let G=(V, E) and E’⊆E be the subset of E’ with minimal 
cost such that G’, the graph induced by E’, is connected. 
Then G’ is a tree. 

• Proof 
– Recall: A (undirected) tree is a undirected, connected acyclic graph 
– By definition, G’ is connected and undirected 
– Imagine G’ had a cycle. Then G’ cannot have minimal cost, because 

removing any of the edges on the cycle from E’ would create a 
subset E’’ that has less cost, and the induced subgraph would still 
be connected  

• We assumed all edge weights to be positive 

• Note: If all edge weights are distinct, the MST is unique 
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Cuts 

• Definition 
Let G=(V, E). A cut is a binary partitioning of V into two 
sets V1, V2 such that V1∩V2=∅ and V1∪V2=V. 

• Lemma 
Let G=(V, E) and V1, V2 be a cut of V. Let F be the set of 
all edges going from any node in V1 to any node in V2. Let 
F’ be those edges of F with minimal weight. Then any MST 
G’ of G must contains one edge of F’, and every edge of F’ 
is contained in at least one MST of G 

• Remarks 
– This holds for arbitrary cuts – a very powerful statement 
– Edges in F are called crossing edges 
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Example 
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Example 
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• F: 
All crossing edges 
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Example 

2 

2 

 
 
 
 
 

• F’: 
The cheapest  
crossing edges 
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Proof 

• Every MST G’ contains one f∈F’ 
– Imagine a G’ that has no such f. Still, G’ must be connected, so it 

must contain at least one of the crossing edges from F. Assume it 
contains only one such edge, h. h must have a higher weight than f 
because h∉F’. Further, V1 and V2 must be connected in themselves. 
Then G’ cannot be minimal, because removing h and adding some 
f∈F would create a cheaper MST – contradiction.  

– Same argument holds if G’ contains more than one crossing edge, 
all of which are not minimal 

• Every f∈F’ is contained in at least one MST 
– Imagine f is not contained in any MST. Let G’ be a MST and h be 

the edge in G’ connecting V1 and V2. h must be in F’, or G’ is not 
minimal. Thus, the MST formed by removing h and adding f also is 
a MST – contradiction. 
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Beware 

 
• For a given cut V1, V2, a MST G‘ may contain more than 

one crossing edge (and at least one must have minimal 
weight) 
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Consequences 

• The cut property is a powerful tool for computing MSTs 
• Lemma (cut property) 

Let G=(V, E) and G‘=(V, E‘) be a MST of G. Then every 
e∈E‘ has minimal cost among all crossing edges of the cut 
V1, V2 formed by removing e from G‘. 

• Proof 
– Since G’ is a tree, every edge from  

E‘ “cuts” G 
– Rest follows from previous lemma 

• Can be used to check whether  
a given E’ is a MST 
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Consequences 

• The cut property is a strong help for computing MSTs 
• Lemma (cut property) 

Let G=(V, E) and G‘=(V, E‘) be a MST of G. Then every 
e∈E‘ has minimal cost among all crossing edges of the cut 
V1, V2 formed by removing e from G‘. 

• Proof 
– Since G’ is a tree, every edge from  

E‘ “cuts” G 
– Rest follows from previous lemma 

• Can be used to check whether  
a given E’ is a MST 
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Content of this Lecture 

 
 
 

• Minimal Spanning Trees 
• Basic Properties 

– Tree 
– Cuts 
– Cycles 

• Algorithms 
• Implementation 
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Cycles 

• Lemma (cycle property) 
Let G=(V, E) and G’=(V, E’) with E’=E\e for some edge e 
such that G’ still is connected. Let T’ be a MST for G’. 
When we add e to T’ and remove the edge with the 
highest weight on the then introduced cycle in T’, forming 
T, then T is a MST for G. 

• Proof idea 
– Adding e to T’ must build a cycle because T’ is a MST over V 
– Removing any of the edges on the cycle still leaves a connected 

tree 
– Removing the most expensive one leaves the minimal tree 
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Implications 

 
 

• T’ is a MST for G without e 
• Imagine we would enumerate edges in some order 
• Taking into account a new edge e may allow us to replace 

an edge in T’ with a cheaper one, creating a “better” MST 
for G 
– If e is not the edge with the highest weight on the cycle 

• This means that an edge with maximal weight on a cycle in 
G cannot be part of any MST of G 
 



Ulf Leser: Algorithms and Data Structures, Summer Semester 2017      27 

Content of this Lecture 

• Minimal Spanning Trees 
• Basic Properties 
• Algorithms 

– R.C. Prim: Shortest connection networks and some generalizations. 
Bell System Technical Journal, 1957 

• Also Jarnik, Prim, Dijkstra: Jarník, 1930 – Prim, 1957 – Dijkstra , 1959  

– J. Kruskal: On the shortest spanning subtree and the traveling 
salesman problem. Proc. of the American Mathematical Soc., 1956 

– Otakar Borůvka: O jistém problému minimálním (Über ein gewisses 
Minimierungsproblem), 1926 

– [Wikipedia, OW93] 

• Implementation 
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Prim‘s Algorithm 

• Recall cut property: Every edge e in a MST is a minimal 
edge among the two partitions created by removing e 

• Prim’s Algorithm 
Start with an empty tree T. Continue adding the edge e 
with the lowest cost to T such that e connects T with a 
new node until all nodes of G are in T. Then T is a MST. 

• Proof 
– Consider, at each stage, nodes in T as one partition V1 and all other 

nodes as the other partition V2 

– By cut property, the cheapest crossing-edge between V1 and V2 
must be in the MST 

– Since we only add those edges, T finally must be a MST 

Greedy; we never 
make mistakes 
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Kruskal’s Algorithm 

• Kruskal‘s Algorithm 
Start with an empty forest F. Continue “adding” edges e to 
F in order of increasing cost until F becomes a tree. Adding 
an edge e=(v, w) to F proceeds as follows: 
– If F already contains a tree containing both v and w, then e is 

dropped  
– If no tree in F contains either v or w, then a new tree formed by e 

is added to F 
– If F contains a tree T containing either v or w and neither T nor 

any other tree in F contains the other node, then e is added to T 
– If F contains a tree T containing either v or w and a tree T’ 

containing the other node, then T, T’ and e are merged into one 
tree 
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Example 
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Proof 

• By induction (only central idea) 
– We show that all trees in F are a MST of a subgraph of G 
– Claim is true at the beginning (F empty) 
– Assume claim holds when we consider the next edge e=(v, w) 
– Case 1: Claim holds, because e would introduce a cycle, and e has 

the highest cost on this cycle (all cheaper edges were considered 
before). Thus, e cannot be in an MST for G 

– Case 2: Claim holds because e is the cheapest edge connecting v 
and w, and thus the new tree is a MST (for v and w) 

– Case 3: Claim holds because e is the cheapest edge connecting v 
(or w) and T, and thus the new tree is a MST 

– Case 4: Claim holds because e is the cheapest edge connecting T 
and T’, and thus the new tree is a MST 
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Boruvka‘s Algorithm 

 
 

• Boruvka‘s Algorithm 
Start with an empty forest F. Add all edges (at once) that 
connect a node with its “cheapest” neighbor (edge with 
least cost) – taking care of not introducing cycles. Then 
consider each pair of trees in F in order of the cost of 
connection and add cheapest crossing-edge until F 
becomes a unique tree. 

• Proof (and details) omitted; see [Sed04] 
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Example 
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Communalities 

• All three algorithms iteratively choose an edge by the cut 
property or reject an edge by the cycle property 
– Prim: Growing T is one partition, all other nodes the other (isolated 

nodes) 
– Kruskal: Each T that grows is one partition, all other nodes the 

other (islands of mini-MSTs) 
– Boruvka: Each T that grows is one partition, all other nodes the 

other (islands of mini-MSTs) 

• Differences 
– The order in which edges are chosen – there are always many 

candidates 
– The data structures that these algorithms need to maintain 
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Content of this Lecture 

 
 
 

• Minimal Spanning Trees 
• Basic Properties 
• Algorithms 
• Implementation 

– Prim’s, Kruskal’s 
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Implementing Prim‘s Algorithm 

• ChooseCheapest: Choose 
cheapest edge from R connecting 
a node in T to a node not yet in T 

• Brute force: Search all such  
edges in every step 

• Better 
– Maintain a PQ of nodes reachable by 

one edge from T sorted by cost  
– When adding a new node to T, look 

at its neighbors and add them to the 
PQ (if not reachable before) or 
update costs (if now there is a 
cheaper edge reaching them) 

G := (V, E); 
T := ∅;    # Growing T 
R := E;    # Remaining edges 
for i = 1 to |V|-1 do 
  e := chooseCheapest( T, R); 
  T := T ∪ e; 
  R := R \ e; 
end for; 
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Example 
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• T = {A, F, E, B, G} 
• PQ = {(D,6), (I, 6), (C, 7)} 

 
• Choose (A-D, 6) 

 
 

A 
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G 
H 
 
 
I,J 
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Example 
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• T = {A, F, E, B, G} 
• PQ = {(D,6), (I, 6), (C, 7)} 

 
• Choose (A-D, 6) 
• New T: {A, F, E, B, G, D} 
• PQ = {(C,4), (I, 6), (H, 18)} 

 

A 
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G 
H 
 
 
I,J 
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Complexity 

 
• n=|V|, m=|E| 

 
• Prim’ algorithm runs in O((n+m)*log(n)) 

– n times through the loop, performing altogether at most m PQ-
operations in log(n) 

• In dense graphs (m~n^2), this means O(m*log(n)) 
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Implementing Kruskal‘s Algorithm 

• ChooseCheapest: Simply choose 
cheapest edge in E 
– I.e., sort E at the beginning 

• This is called a UNION-FIND  
data structure 
– Maintains a set of sets (all trees T) 
– Needs a method for quickly  

finding the set containing a given  
element (find) 

– Needs a method for quickly  
merging two sets (union) 

• Can be implemented in O(m*log(n)) 
 

G := (V, E); 
F := ∅; 
repeat 
  (v,w) := chooseCheapest( E); 
  E := E \ (v,w); 
  T := find( v); 
  T’ := find (w); 
  if T=T’=∅ then 
    F.add( {(v,w)}); 
  else if T’=∅ then 
    T.add ( {v,w}); 
  else if T=∅ then 
    T’.add ( {v,w}); 
  else if T≠T’ then 
    T := T ∪ T’; 
  end if; 
until |T|=|V|; 
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Exemplary Examination Questions 

• Correctly formulate and prove the Cut-property, a tool for 
computing MSTs 

• Compute a MST for the following graph … using Prim’s 
algorithm. After each step, show the sets T, R, and the 
sate of the priority queue Q 

• Prove or falsify: If all edge weights of a graph G are 
pairwise distinct, then G has only one MST 

• Prove or falsify the correctness of the following algorithm 
for computing an MST for a graph G:  
– (1) Set G’=G;  
– (2) If G’ contains no cycle, return G’ as MST;  
– (3) Otherwise, chose an arbitrary cycle in G’ and remove the edge 

with the highest weight on this cycle; then goto 2 

 


	Foliennummer 1
	Die Energiewende
	Die Energiewende
	Die Energiewende
	Die Energiewende
	Die Energiewende
	Abstraction
	Example 1
	Example 2
	First Algorithm
	Second Algorithm
	Overview 
	Content of this Lecture
	Minimal Spanning Trees
	Cuts
	Example
	Example
	Example
	Proof
	Beware
	Consequences
	Consequences
	Content of this Lecture
	Cycles
	Example
	Implications
	Content of this Lecture
	Prim‘s Algorithm
	Example
	Kruskal’s Algorithm
	Example
	Proof
	Boruvka‘s Algorithm
	Example
	Communalities
	Content of this Lecture
	Implementing Prim‘s Algorithm
	Example
	Example
	Complexity
	Implementing Kruskal‘s Algorithm
	Exemplary Examination Questions

