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Abstract
Image-based texture overlay or retexturing is the process of augmenting a surface in an image or a video sequence
with a new, synthetic texture. Some properties of the original texture such as texture distortion as well as lighting
conditions should be preserved for a realistic appearance of the augmented result. One approach would be to
estimate a 3-dimensional geometry of the surface. However, this is an ill-posed problem for complex deformed
surfaces like cloth, especially if only one image is given. In an image-based approach, these properties are directly
estimated from the image. The key challenge is to separate the shading information from the actual local texture
and to retrieve the texture distortion from an image without any knowledge of the underlying scene.
In this paper, we model an image of a deformed regular texture as a combination of its deformed surface albedo,
a shading map and additional high frequency details. We present a method for determination of these intrinsic
parts of a given texture image by first estimating the appearance of a small texture element and then synthesiz-
ing a reference image of the undeformed regular texture. In a subsequent image-based optimization method this
reference image is iteratively warped spatially and photometrically onto the original image whilst estimating de-
formation and illumination parameters. The decomposition is used to create images of new textures with the same
deformation and illumination properties as in the original image

Categories and Subject Descriptors (according to ACM CCS): I.4.7 [Image Processing and Computer Vision]: Fea-
ture Measurement—Texture I.3.3 [Computer Graphics]: Picture, Image Generation—

1. Introduction

Augmenting a surface in an image with a new synthetic
texture (see figure 1) is a challenging problem which has
been addressed in recent years both by the Computer Vision
and Graphics communities. On the one hand, texture distor-
tion caused by projecting the surface into the image plane
should be preserved. On the other hand, only the texture
albedo should be altered but shading and reflection prop-
erties should remain as in the original image. In many ap-
plications, such as augmented reality applications for vir-
tual clothing, the surface material to be retextured is cloth.
In this case, high frequency details, representing e.g. self-
shadowing of the yarn structure, might also be a property
that should be preserved in the augmented result.

This paper specifically addresses the decomposition of
images of deformed regular textures into its intrinsic parts

Figure 1: Retexturing means the replacement of texture
under preservation of texture deformation and illumination
properties.

which decompose the image into the appearance of the un-
deformed regular texture, a deformation field, a shading map
representing lighting effects and additional high frequency
details (see figure 3). This is closely related to intrinsic im-
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Figure 2: Many cloth patterns are of a regular type and can be constructed by tiling the space with the same texture element.

age decomposition methods which decompose an arbitrary
image into the product of an illumination component that
represents lighting effects and a reflectance component re-
lated to the color of the observed material [BPD09, TFA05].
In our decomposition model, the deformed regular texture
(the estimated deformation field applied to the estimated ap-
pearance of the regular texture) can be seen as the reflectance
part of our decomposition while the shading map and the
high frequency details can be seen as the illumination com-
ponent.

Regular textures can be constructed by regularly tiling the
texture space with the same texture element, called texel in
the following [GS86]. Textures that deviate geometrically
and photometrically from a regular congruent tiling are of-
ten called near-regular textures (NRT) [LLH04, LL03]. In
contrast to regular textures, the texture elements appear ge-
ometrically and photometrically distorted in the image due
to variations in the viewing angle, lighting conditions and
partial occlusions (see figure 2). Nevertheless, they still ex-
hibit certain topological regularities and relations as regular
textures [LLH04, PBCL09]. We exploit this topological reg-
ularity to estimate the intrinsic parts of the given image of
a near-regular texture. We first start by estimating the mean
appearance of a texel and candidate positions of the texel in
the image. From the estimated mean texel we synthetically
generate an image of the regular texture. This image is used
as reference in an image-based optimization method that reg-
isters two images not only geometrically but also photomet-
rically, yielding a deformation field and a shading map. Fi-
nally, as the mean texel does not contain any high-frequency
details, these can be estimated from the difference between
the original image and the warped and shaded synthetic ref-
erence image.

The remainder of this paper is structured as follows. The
next section reviews related work before section 3 explains
our image decomposition method. Section 4 finally presents
how the proposed method can effectively be used for retex-
turing purposes.

2. Related Work

Various texture overlay methods have been proposed for
videos [PLF05,HSE10,SM06]. These methods estimate sur-
face deformation and shading properties in relation to a

given reference frame of the undeformed and uniformly
lit texture. Other methods for single images use markers
or specifically designed cloth as reference [ES05, WF06b].
However, such a reference image is not always available.

In this paper, we address the problem of automatic tex-
ture replacement given a single image of a deformed sur-
face without the knowledge of a reference image of the un-
deformed surface. This problem is related to shape-from-
shading and shape-from-texture problems which use shad-
ing or texture deformation as strong cues for depth to re-
construct the 3D structure of an object from a single image
[WF06a,HSE11]. Consequently, current methods for single-
image retexturing either use shading [FH04, GSPJ08, YS10]
or texture [LLH04] to estimate the deformation field of the
texture and additional lighting conditions. Fang and Hart
[FH04] estimated surface normals from shading (edited by
the user) and proposed a normal-guided texture synthesis
method that produced compelling replacement effects. Simi-
larly, Yan and Shen [YS10] decompose the input image into
intrinsic images and use the reflectance component to es-
timate the surface normals which guide the synthesis ap-
proach. These methods are limited to untextured, diffuse sur-
faces illuminated by a single directional light source.

Liu et al. [LLH04] presented an interactive method for
near-regular texture analysis and manipulation. They catego-
rize near-regular textures based on their geometric and color
irregularities (based on their categorization the type of tex-
ture this paper addresses would be NRT III - irregular ge-
ometry and irregular color). They introduced an underlying
topological lattice structure for NRT. The basic idea is that
for each near-regular texture there is a lattice that describes
a deformation of that texture from a regular lattice. The lat-
tice generation needs interactive and high accurate editing
by the user. Once the geometric deformation is known, the
texture is straightened out and a light map is extracted using
a method from Tsin et al. [TLR01]. This procedure is simi-
lar to intrinsic image estimation methods that model an im-
age as a product of an illumination component representing
shading and illumination and a reflectance component repre-
senting the color of the observed material [BPD09, TFA05].

Recently, automatic lattice detection methods have been
proposed for 2D wallpapers in real-world images to
overcome the user interaction during lattice generation
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Figure 3: Decomposition of the original texture (left) according to equation (1) into a regular texture T (x), deformation field
Wg(x) represented by a deformed mesh, estimated shading mapWp(x), estimated high frequency yarn structureHF(x) (colors
scaled).

[HLEL06,PBCL09]. Park et al. [PBCL09] use unsupervised
clustering of interest points to detect repeating elements in
the image and exploit an assumed topology of wallpaper pat-
terns to initialize a pair of basis vectors for lattice genera-
tion. The mesh is refined and grown in a spatial multitarget
tracking problem solved in a Mean-Shift Belief Propagation
method.

In our approach, we decompose the input image of a de-
formed regular texture into its intrinsic parts, i.e. compo-
nents that represent the surface albedo or reflectance and il-
lumination components that represent shading effects. The
reflectance component is furthermore decomposed into the
image of an undeformed texture and a deformation field.
The shading component consists of a global shading map
and additional high frequency details that represent stochas-
tic color irregularities, e.g. due to self shadowing at the yarns
in cloth. We represent the deformation field similarly to Liu
et al. [LLH04] as a deformed mesh describing the deforma-
tion of the texture from a regular one. In contrast to [LLH04],
we estimate the deformation not only automatically but also
simultaneously with a photometric warp in an image-based
optimization approach. We exploit the assumption that the
original texture is of a regular type, which is the case for
many cloth textures (e.g. figure 2). The key idea is to sep-
arate the surface albedo from photometric or shading infor-
mation by estimating the mean appearance of one texture
element and to estimate the texture deformation and shading
as a spatial and photometrical deviation from a regular tex-
ture synthesized from the estimated texel appearance. Our
method for texel appearance estimation is inspired by the
lattice unit detection approach of [PBCL09] and based on
mean-shift clustering of feature points in the image. Finally,
the decomposed parts are combined with any new texture
to generate realistic retexturing results. The composition of
high frequency shading effects and yarn structure with the
new texture can be manipulated by a user.

3. Texture Analysis and Decomposition

In our approach, we model a given image I of the deformed
regular texture as

I(x) =Wp(x) · T (Wg(x))+α ·HF(x) (1)

where x denotes pixel coordinates, T is the original regu-
lar texture which is deformed by a geometric warp Wg(x),
Wp(x) denotes a photometric warp, i.e. a shading map mul-
tiplied to the image intensities, andHF(x) denotes high fre-
quency details on the texture. Figure 3 illustrates this image
model. The idea behind our approach for texture overlay is
to decompose an image of a deformed regular texture into
the different components to substitute T with a new texture.
For this purpose, we exploit the assumption that the origi-
nal texture T is regular, i.e. it can be constructed by regu-
larly tiling the texture space with the same texel (note that
there are more than one valid texels as each shifted version
of a valid texel or a set of more than one valid texel are also
valid texels). Thus, the deformed texture T (Wg(x)) also ex-
hibits repeated similar elements (up to a geometric and pho-
tometric deformation) with the same topological relations.
The proposed method consists of the following substeps:

• Mean texel appearance and lattice estimation.
In a first step we estimate the mean appearance of
one repeating texture element and a lattice structure
representing the topological relations between texels and
candidate texel positions in the image. From the mean
texel appearance an estimated appearance of the regular
texture T of arbitrary size can be synthesized (section
3.1).

• Texture decomposition through joint geometric and
photometric registration.
In an image-based optimization procedure we jointly
estimate the geometric deformationWg(x) and the shad-
ing map Wp(x) by registering T onto I geometrically
and photometrically. As the synthetic regular texture is
generated from an estimated mean texel, high frequency
parts of the original texture, the remaining residual
between the original image and the registered synthetic
texture represents an estimate of these structures (section
3.2).

• Texture replacement.
Having decomposed the image into its intrinsic parts,
a new synthetic texture (not necessarily a regular one)
can now be substituted into equation (1) to produce an
image of this texture with the same deformation and
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Figure 4: Left: Illustration of lattice generation from feature
points. Starting at a seed point (red) and two proposing vec-
tors, two new lattice vertices are found (blue). These points
inherit the proposing vectors, new lattice positions are pro-
posed (green) and cluster points near the proposed positions
are taken as lattice vertices. The proposing vectors are up-
dated with the correct vectors between the points (white).
The same procedure is done for the negative proposing vec-
tors. Right: The mesh (black) we use for registration is finer
than the lattice (red) and the lattice positions are used to
initialize the mesh.

illumination properties (section 3.3).

3.1. Mean Texel Appearance and Lattice Estimation

We start by first estimating the mean appearance of one or
more texels and candidate positions of these texels in the
image, represented by a quadrilateral lattice. Regular tex-
tures can be described by one texture element and two small-
est linear independent generating vectors [GS86]. In pho-
tometrically and geometrically deformed regular patterns,
the texel appearances in the image are no longer copies of
each other but rather geometrically deformed and of differ-
ent colors due to shading. Nevertheless, the appearances of
the texels are still similar (e.g. up to geometric and pho-
tometric distortion as in our model). To identify the texel
appearances in the image, we follow a similar strategy as
[PBCL09]. We start by generating suitable feature points on
the image and group the descriptors using mean shift clus-
tering [CM02] to identify repeating structures in the image.
Although the texture in the image may be strongly distorted,
the idea is that transformations between local image patches
can be approximated by a projective, an affine or even a
similarity transformation (this assumption is similar to the
planarity assumption used in most shape from texture meth-
ods [WF06a]). Hence, ideally a feature descriptor would be
invariant against small projective transformations. Park et
al. [PBCL09] use normalized image patches of a fixed size as
descriptors which are only invariant against translation such
that strongly rotated or scaled image patches cannot be de-
tected. To this end we use SIFT features [Low04] in our ap-
proach. Although this descriptor is only invariant against ro-
tation and scale and not against affine or perspective distor-
tions which appear at very strong deformations, it produces
good detection results if there are not too many strongly dis-
torted texels.

Each cluster Ci : {p j, j = 1 . . .n} now consists of a set of
n image points p j with similar SIFT descriptors. The im-
age points of one cluster should by related to each other by
the same topological regularities and relations as the unde-
formed regular texture. According to [LLH04], [PBCL09]
any deformed regular texture can be described by a degree-
4-graph representing the tiling pattern of the texels in the un-
deformed texture. Note that as there are more than one valid
texels there are also more than one valid tiling patterns. The
aim of this step is to estimate the appearance of the repeating
texture element and a quadrilateral lattice model Li for each
cluster, consistent with the geometric relationship between
the feature points and the assumed texture topology. In this
lattice, the texture lying in each quad approximates a texel
appearance tk

i ,k = 1 . . .m coarsely deformed by a homogra-
phy defined by the four quad vertices. In the following, we
use the term quad as a topological element of the lattice,
consisting of 4 vertices, and texel as the image part lying be-
tween those four vertices. Although the real deformation of
the texels might be more complex, we use the lattice to esti-
mate a mean appearance of the texels and refine the deforma-
tion in a subsequent image-based registration step (section
3.2).

To estimate the lattice structure, we start with a seed point
pS in the center of all cluster image points. For this seed
point, we search for the nearest 8 neighbors and define an
L-shaped vector pair v1, v2 pointing to two of its neigh-
bors. From all possible vector pairs from the seed to the
eight neighbors, we choose the one with the most perpen-
dicular angle. Now, we search for four nearest cluster points
that are in a predefined distance (dependent on the mean dis-
tance between cluster points) from pS±αv1 and pS±αv2,
0.5≤ α≤ 2. If such points are found, they become vertices
of the lattice and the lattice edges are defined by the vectors
from the seed to these points. For each of these four points
we update the proposing vectors v1,v2 and −v1,−v2 by the
real vectors pointing from the seed to its children and we
proceed for all children as we did for the seed point. From
the found edges between cluster points we generate a quadri-
lateral lattice with candidate quads which are evaluated as
explained in the following. The lattice detection procedure
is schematically illustrated in figure 4.

To reject wrongly detected quads, we rectify each texel
associated to the quad candidates into a normalized texel co-
ordinate system and normalize it by subtracting the mean
and dividing through the standard deviation. From these nor-
malized texel candidates, a rectified and normalized mean
texel appearance is calculated. A similarity measure (e.g.
the sum of squared differences of pixel values) is calculated
between each texel and this mean. This similarity measure
is used to reject wrongly detected texels and quads with a
MAD-based (median of absolute differences) outlier rejec-
tion method [IH93]. Note that the rectification to a normal-
ized texel coordinate system is done regardless of the true
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Figure 5: Each valid rectified and normalized texel should
be self-similar at the upper and lower (red) and at the right
and left border (blue) respectively.

texel shape to compare the appearances of the texel quads
and to estimate a mean rectified appearance.

Additionally, we validate each remaining texel based on a
continuity measure. A valid rectified texel of a regular tex-
ture should have similar upper and lower as well as left and
right borders to produce seamless transitions during tiling
(see figure 5). Hence, the continuity measure for each texel
is based on the sum of squared difference of pixel intensities
of the left and right borders and the upper and lower borders,
respectively. We reject quads with a bad continuity measure
with a MAD-based outlier rejection method as before. From
the remaining quads we construct a topologically consistent
quadrilateral lattice Li and calculate a mean texel appearance
t̄i.

To conclude, for each cluster Ci we have estimated a mean
rectified texel appearance t̄i and a lattice structure Li. For
readability reasons we will skip the index i for the cluster in
the following.

3.2. Texture Decomposition through Joint Geometric
and Photometric Registration

In the previous step we estimated a mean rectified appear-
ance of one valid texel t̄ and coarse positions of texel appear-
ances in the image represented by a lattice L. By exploiting
the assumed topology of the texture regularity, we synthe-
size an image T of the undeformed texture from the esti-
mated mean texel t̄ by regular tiling. Thereby, we syntheti-
cally generate a reference image of the undeformed texture.
The estimation of the texture deformation and the shading
map is now treated as a geometric and photometric image
registration task, solving for a warp that registers the synthe-
sized undeformed texture onto the original image not only
geometrically but also photometrically.

We jointly estimate a deformation and a shading map (see
figure 3) using an image-based optimization scheme (similar
to [HSE10]). This optimization scheme starts from a relaxed
brightness constancy equation and formulates a pixel-wise
error at pixel xi as

ri(θ) =Wp(xi;θp) · T (Wg(xi;θg))−I(xi) (2)

Wp andWg are photometric and geometric warp functions
parameterized by photometric and geometric parameters θ=
[θT

g θ
T
p ]

T .

Both warps are mesh-based. Note that we differentiate be-
tween the mesh M which we use as motion model to register
the two images and the lattice L describing the texture topol-
ogy and coarse texel positions in the image. Let Mr denote a
regular undeformed mesh on T and VMr : {vMr

1 . . .vMr
K } de-

note its set of vertices. The mesh has a finer structure than
the lattice to allow for more complex deformations of the
texel. Its topology is a rectangular grid with additional di-
agonal edges through the quads. If Lr denotes the regular
lattice on T with vertices VLr : {vLr

1 . . .vLr
H } corresponding

to the deformed lattice L we choose Mr such that VLr ⊂VMr

and initialize the vertex positions of M by warping Mr onto
the lattice L using thin-plate spline (TPS) warping with the
lattice vertices as control points (see figure 4). We iteratively
grow the mesh (and with it the reference regular texture) af-
ter each optimization has reached its minimum and start a
new optimization with the grown mesh. In each iteration new
mesh vertices are initialized using TPS warping as before.

The geometric warpWg of T onto I deduced by the mesh
is parameterized by vertex displacements. The photometric
warpWp is parameterized by additional intensity scaling pa-
rameters ρ at each vertex. Hence, the geometric parameter
vector θg contains the concatenated vertex displacements in
x- and y-direction and the photometric parameter vector θp
contains the intensity scaling parameters ρ of all vertices:

θg = [d1x...dKx,d1y...dKy]
T

θp = [ρ1...ρK ]
T

(3)

The warps are then defined as

Wg(xi;θg) = xi +Bi
g ·θg

Wp(xi;θp) = Bi
p ·θp

(4)

where Bi
g and Bi

p depend on the pixel position:

Bi
g =

[
bi 0
0 bi

]
Bi

p = bi
(5)

and bi is a row vector containing only 3 non-zero elements
βa,βb,βc at positions a,b,c if the pixel xi lies in a triangle
built by the vertices va,vb,vc and βa,βb,βc are the Barycen-
tric parameters.

Estimating θ amounts to minimizing a cost function based
on the sum of a pixelwise cost function and an additional
smoothness term:

θ̂ = argmin
θ
ED(θ)+λ

2ES(θ) (6)

with

ED(θ) = ∑
i

ψ(ri(θ))

ES(θ) = Γ ·θ
(7)

where ψ is a robust norm-like function (we use the Huber
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Figure 6: Retexturing results achieved with α = 0 and
α = 1. Note how the addition of the high frequency details
increases the retexturing results.

function) and Γ is a block diagonal matrix composed of three
orientation separated mesh Laplacians, one for each vertex
parameter:

Γ =

L 0 0
0 L 0
0 0 λpL

 (8)

λp weights the smoothing of the photometric parame-
ter against the smoothing of the geometric parameters. The
cost function in equation (6) can be minimized in a Gauss-
Newton approach that differs only in a weighting scheme
from the standard least squares [MN89]. The Gauss-Newton
optimization method requires the Jacobians of both the data
and the smoothness term. The ith rows of the data term Jaco-
bian JD is the gradient of the pixel error ri:

∂ri

∂θ̂
=Wp(xi; θ̂p)·∇T (Wg(xi; θ̂g))·Bi

g+T (Wg(xi; θ̂g))·Bi
p

(9)
where∇T = [TxTy] is the gradient of the texture image. The
smoothness term Jacobian is JS = Γ.

The optimization of θ yields vertex positions of the de-
formed mesh M and an additional photometric parameter
at each vertex position. From the photometric parameters a
smooth shading mapWp(x, θ̂p) is interpolated with bicubic
interpolation.

As the synthetic regular texture T is generated from an
estimated mean texel, high frequency parts of the original
texture, representing e.g. detailed self-shadows of the yarn
structure in cloth, are not present in the synthetic texture.
Thus, the remaining residual between the original image I
and the warped and shaded synthetic texture represents an
estimate of these structures (see figure 3):

HF(x) =Wp(x; θ̂p) · T (Wg(x; θ̂g))−I(x) (10)

3.3. Texture Replacement

Having processed and decomposed the input image, equa-
tion (1) can now be applied to any arbitrary new synthetic
texture to generate an image of this texture with the same
deformation and illumination properties as the input image.
The weight α can be used to modify the influence of the high
detail texture structures.

Figure 7: Left: original image. Right: synthetically gener-
ated image accodring to equation (1) with the estimated in-
trinsic parts as depicted in figure 3.

Figure 9: Missing feature points of two example textures
indicated by black squares.

4. Results

We tested our texture decomposition on several images
showing cloth textures. To detect repeating structures in the
image we use SIFT feature descriptors. The choice of the de-
scriptor is a trade-off between finding enough feature points
to identify repeating structures in the image and creating too
many false positive detection results. Although the SIFT de-
scriptor is not invariant against affine or projective transfor-
mations (and hence misses some strongly distorted struc-
tures, see figure 9) it detected enough feature points to es-
timate the texel appearance and an initial lattice structure in
our experiments. The lattice structure is then refined using
image-based optimization. Results for the texel appearance
estimation for a variety of regular cloth patterns are depicted
in figure 8. Figure10 shows detected feature points, cluster-
ing results and the detected initial lattice structure for two
examples.

The quality of retexturing results is best evaluated visu-
ally. Figure 7 compares a synthetic texture generated from
the estimated intrinsic parts to the original image. Although
a marginal difference between the images is noticeable when
compared directly, the visual appearance of the synthetic re-
sult is still very realistic. Figure 6 directly compares retextur-
ing results of the same image achieved with α = 0 (left) and
α = 1 (right). Note how the addition of the high frequency
details influences the realistic appearance of the retextur-
ing result. Further retexturing results achieved with α = 1
are presented in figure 11 and figure 12 shows details when
changing the value for α.
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Figure 8: Different texel appearance estimation results.

Figure 10: From left to right: detected feature points, feature clusters marked in different colors and estimated lattice structure
for two clusters with the estimated mean texel appearance.

5. Conclusions and Future Work

We presented an approach for decomposing an image of a
deformed regular texture into its intrinsic parts for automatic
texture overlay given a single image. We estimate the appear-
ance of a repeating texture element and synthetically gener-
ate an image of the undeformed texture. This image is used
as a reference image in a subsequent geometric and photo-
metric registration step, yielding a deformation grid and a
shading mesh. To detect repeating structures in the image,
we currently use the SIFT feature descriptor. However, SIFT
fails for strongly foreshortened texels which appear due to
perspective distortion. As for the subsequent image-based
optimization step a good lattice initialization is needed due
to the repetitive texture structure, we will also investigate
other (e.g. affine invariant) feature descriptors. Furthermore,
self-occlusions due to strong creases and folds lead to dis-
continuities in the 2D deformation which have not been han-
dled so far. One approach will be to approximate the 3D sur-
face shape from the texture deformation and detect these dis-
continuities from depth discontinuities.
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