The Complexity of Learning Concept Classes

with Polynomial General Dimension *

Johannes Kobler ®, Wolfgang Lindner "

aInstitut fir Informatik, Humboldt- Universitit zu Berlin, 10099 Berlin, Germany
b Abteilung Theoretische Informatik, Universitit Ulm, 89069 Ulm, Germany

Abstract

The general dimension is a combinatorial measure that characterizes the number
of queries needed to learn a concept class. We use this notion to show that any
p-evaluatable concept class with polynomial query complexity can be learned in
polynomial time with the help of an oracle in the polynomial hierarchy, where the
complexity of the required oracle depends on the query-types used by the learning
algorithm. In particular, we show that for subset and superset queries an oracle in
23{3 suffices. Since the concept class of DNF formulas has polynomial query complex-
ity with respect to subset and superset queries with DNF formulas as hypotheses,
it follows that DNF formulas are properly learnable in polynomial time with subset
and superset queries and the help of an oracle in 25. We also show that the required
oracle in our main theorem cannot be replaced by an oracle in a lower level of the
polynomial-time hierarchy, unless the hierarchy collapses.

Key words: query learning, learning complexity, learning DNF formulas,
polynomial-time hierarchy

1 Introduction

In computational learning theory, one can distinguish between efficient learn-
ability, which is usually modeled as learning in polynomial time, and poly-
nomial query complexity, i.e. the possibility to learn a concept class with
only a polynomial number of queries but unbounded computational resources.
Clearly, polynomial-time learnability implies polynomial query complexity.

* Work supported by the DFG under project KO 1053/1-1

Article published in Theoretical Computer Science 350 (2006) 49—62

On the other hand, in Angluin’s query-learning model (1), it is known that
for all combinations of equivalence and membership queries, polynomial query
complexity implies polynomial-time learnability with additional access to an
oracle in a low level of the polynomial-time hierarchy (2; 3; 4). Thus, under
the unlikely assumption that P = NP, polynomial query complexity in fact co-
incides with polynomial-time learnability for equivalence and/or membership
queries. There are, however, prominent examples such as boolean formulas,
which can be learned with a polynomial number of equivalence queries, but
there is high evidence that these concept classes cannot be learned in polyno-
mial time (e.g., (5)).

Here we address the question whether similar results hold also for more pow-
erful types of queries, such as subset and superset queries (1). For equivalence
and /or membership queries, the polynomial-time oracle algorithms in (2; 3; 4)
are based on combinatorial characterizations of the corresponding polynomial
query complexity.

In (6), Balcazar et al. introduce the notion of a general dimension, a com-
binatorial measure which can be applied to arbitrary query-types and which
characterizes, up to a logarithmic factor, the number of queries needed to
learn a concept class. We use this notion to show, as our main result, that any
p-evaluatable concept class with polynomial query complexity can be learned
in polynomial time with the help of an oracle in the polynomial hierarchy,
where the complexity of the required oracle depends on the query-types used
by the learning algorithm. As in (4) we use a modification of the majority-
based algorithm of (6), where the emerging counting problems are solved by
universal hashing techniques. Furthermore, our learning algorithm is proper
in the sense that its output is a hypothesis from the concept class in question.

As a consequence, we get that all concept classes that are learnable with a
polynomial number of equivalence and/or membership queries can be learned
in polynomial time with an oracle in ¥’ subsuming the results shown in (4).
A similar consequence holds also for subset and superset queries using an
oracle in ¥, Since the concept class of DNF formulas has polynomial query
complexity with respect to subset and superset queries with DNF formulas as
hypotheses (7), it further follows that DNF formulas are properly learnable in
polynomial time with subset and superset queries and the help of a £’ oracle.

We further consider a particular concept class of (8) and show that this concept
class is not learnable in polynomial time with an oracle in NP using equiva-
lence queries with boolean circuits as hypotheses, unless the polynomial-time
hierarchy collapses. A similar result is shown for the case of (proper) projective
equivalence queries. These results show that the required oracle in our main
theorem cannot be replaced by an oracle in a lower level of the polynomial-time
hierarchy, unless the hierarchy collapses.

2 Preliminaries

We let B,, denote the set of all boolean functions f : {0,1}" — {0,1}. We
assume the reader to be familiar with definitions and basic properties of the
complexity classes in the polynomial-time hierarchy, as can be found in stan-
dard text books as, e.g., (9).

Let ¥ be an alphabet. For a string € ¥*, |x| denotes its length. X" denotes
the set of all strings z € ¥* of length |z| < n. We assume the existence of a
pairing function (-,) : ¥* x ¥* — ¥* that is computable in polynomial time
and has inverses also computable in polynomial time. (-,-) can be extended to
encode finite sequences (z1, ..., xy) of strings into a string (xq,...,z5) € X*.
For a set A, ||A|| denotes its cardinality.

Let C be a class of sets A C >*. Then #C denotes the class of functions
f X" — N such that there is a set A € C and a polynomial p such that for
all v € X%,

f(z) =Il{y € "V | (2,y) € A}

Let F' be a class of functions f : ¥* — N. Then max F' denotes the class of
functions g : X* — N such that there is a function f € F' and a polynomial p
such that for all x € ¥*,

g(x) = f((z,y)-

= max
lyI<p(lz|)

The class min F' is defined analogously.
2.1 Learning Complexity and General Dimension

Balcazar et al. (6) introduced the general dimension of a boolean concept
class to characterize the learning complexity with respect to arbitrary query
protocols. The learning model presented in (6) is a generalization of the query
learning model of Angluin (1). Similar, but less general models have already
been considered in (7; 10).

In the model of (6), learning of a concept class C C B,, can be viewed as a
game between a learning algorithm A and a teacher T" with respect to some
target f € C that is only known to 7. In each round, A asks a query ¢ from
a set Q of queries and T responds with a subset A C B, that contains f.
Thereby, T' provides some partial knowledge about the target f in form of a
property A shared by f.

The communication between A and T is guided by some protocol P C Q x 2B».

i.e., the teacher is only allowed to respond with an answer A such that (g, A) €
P. The protocol P is required to be complete w.r.t. B, in the sense that for
all f € B, and for all queries ¢ € Q there exists an answer A € 73({ where
Pg:{A| (g, Ay e PN f €A}

For example, the protocol for equivalence queries with hypotheses from a
concept class C C B, is the set of all pairs (h,{f € B, | f(x) # h(x)}),
for h € C and = € {0, 1}", together with all pairs (h,{h}) with h € C. The
first set of pairs corresponds to the case that a hypothesis h is answered by
giving a counterexample x, and the second set of pairs corresponds to the
answer “Yes”.

The goal of the learning algorithm is to collect enough knowledge about the
target f such that f is the only remaining function in C that shares all prop-
erties exposed by T'. More precisely, the current version space at any stage
in the run of a learning algorithm A is the set of all functions in C that are
contained in all answers received by A so far, and a concept class C C B, is
learnable with at most d queries under a protocol P, if there exists a learning
algorithm A such that for all targets f € C and any teacher T that answers
each query ¢ with some A € 73({ , the only concept left in the current version
space after at most d queries is f.

The learning complexity of C under P, denoted by LC(C,P), is the smallest
integer d > 0 such that C is learnable with at most d queries under P. If no
such integer d exists, then LC(C,P) = oc.

In order to characterize the learning complexity of a concept class C under
an arbitrary protocol P, Balcézar et al. introduce the general dimension of C
under P. The definition is based on the notion of an answering scheme, i.e.,
a subset 7 C P such that for all queries ¢ € Q the set 7, = {A | (¢,A) € T}
is non-empty. Note that, in contrast to a protocol P, an answering scheme 7°
need not be complete since there might exist a query ¢ € Q and a function
[€ B, such that no answer A € 7, contains f.

The general dimension of C under P, denoted by Gdim(C,P), is the smallest
integer d > 0 such that for all answering schemes 7 C P there exists aset S C
Ugeo 7 of cardinality at most d such that [[{f € C | (VA € S)[f € A]}|| < 1.
If no such integer d exists, then Gdim(C, P) = oc.

It is shown in (6) that for each concept class C and protocol P it holds that
Gdim(C,P) < LC(C,P) < Gdim(C,P)[In ||C||]. Thus, the general dimension
is in fact a combinatorial characterization of the learning complexity.

3 Polynomial Learning Complexity and Dimension

To define polynomial learning complexity and, in particular, polynomial-time
learnability under an arbitrary protocol, we need to specify a way to repre-
sent concept classes and protocols. For concept classes, we use the following
notations from (11) adapted to the boolean case.

Definition 1 Let ¥ and T' be finite alphabets. A representation of (boolean)
concepts is a set C' C 0* x I'" x ¥*. With respect to any given n € N, we let
Cn = {{u,z) | (0",u,x) € C}. The concept represented by a concept name
u €™ is ke, (u) ={z | (u,z) € C,}, and the concept class represented by C,,
is K(Cp) ={kc, (u) | u eI}

Here we always assume that ¥ = {0, 1}. For the sake of notational brevity we
simply write x,, instead of k¢, whenever C'is clear from the context. Further-
more, by abusing the notation, we identify the set x,,(u) with its characteristic
function. Thus, we can view IC(C,,) as a subset of 5,,.

The above definition allows us to regard a representation C' of concepts as a
decision problem. This means that we can express the usual assumption that
the concept class represented by C' can be evaluated in polynomial time by
the fact that C' is decidable in polynomial time.

Example 2 The circuit representation of boolean concepts, denoted by Circ,
is the set of all tuples (0™, ¢, x) such that c is an encoding of a boolean circuit
over the basis {N\,V,—} with n input gates, x is a binary string of length n,
and the circuit encoded by ¢ accepts x.

Now we define representations of protocols in a similar style as we defined
representions of concepts. To illustrate the underlying idea let us reconsider
the model of learning with equivalence queries with respect to a represention
of concepts C. Here, a query is a concept name h, and the answer is either a
counterexample in form of a binary string x, or the token “Yes”.

e A counterexample x as an answer to some query h means that the target
concept does not agree with the concept represented by h on z, i.e., the
answer = to the query h means that the target is contained in the set of
all concepts k,(u) such that x is contained in the symmetric difference of
kn(u) and kK, (h).

e Similarly, the answer “Yes” to a query h means that the target is contained
in the singleton set {x,(h)}.

Consequently, with respect to some fixed arity n, we represent a protocol P
as a set P of quadruples (0", ¢, a,u), where ¢ € A* is a query and a € A*
is an answer, for an additional finite alphabet A, and u € I'* is a concept

name. An answer a together with a query ¢ determine a set of concept names
u satisfying (0", ¢, a,u) € P, which, when interpreted with respect to a given
represention of concepts C, describes the property associated with ¢ and a.

Definition 3 Let C' be a representation of concepts, and let A be a finite
alphabet. A representation of a (boolean) protocol with respect to C' is a set
P C0* x A* x A* x I'* which satisfies the following conditions for all n € N.

(1) For all concept names u € T'*, and for all queries ¢ € A*, there exists an
answer a € A* such that (0", q,a,u) € P.

(2) For all concept names u,v € I'*, and for all queries ¢ € A* and an-
swers a € A* it holds that if (0", q,a,u) € P and k,(u) = k,(v), then
(0", q,a,v) € P.

With respect to any given integer n € N, we let P, = {{q,a,u) | (0", q,a,u) €
P}, and for a query q and an answer a we let P,(q,a) = {u | {(g,a,u) €
P,}. The property associated with the pair (q,a) is Ap,(q,a) = {k,(u) | u €
P.(q,a)} which we also denote by A, (q,a), and the protocol represented by
Py is K(Py) = {(¢, Anlg, @) | ¢,a € A"}

By the first condition, we have that K(P,) is complete with respect to K(C,,)
in the sense that for all f € K(C,,) and for all queries ¢ € A*, there exists an
answer a € A* with f € A,(q,a). Clearly, completeness with respect to some
proper subset IC(C,,) of B, is a strictly weaker condition than completeness
with respect to B, as required in (6). It is, however, easy to see that the
combinatorial characterization of (6) also holds if K(P,) is only complete with
respect to KC(Ch,).

The second condition is merely for the sake of notational convenience and
means that P is semantically closed. It implies that a concept k,(u) has the
property A,(q,a) if and only if (g, a,u) € P,. Also we note that a protocol
representation P should not be confused with the complexity class P.

Example 4 Let C' C 0" x I x X* be a representation of concepts.

(1) The representation of the protocol for equivalence queries to C' is the set

Eq(C) ={(0", h,z,u) | h,u € T,z € Kp(h) Ak, (u)}
U{(0", h, “Yes” u) | hu € T k,(h) = kn(u)}

This means that for a query h the answer x gives the information that the
target belongs to the set Ay (h,x) = {k,(u) | u € T*, x € k,(h)Dkn(u)} =
{ce K(C,) | x € kp(h)Ac}.

(2) The representation of the protocol for membership queries is the set

Mem(C) ={(0",z, “Yes”,u) | u € I'",x € k,(u)}
U{{0", z, “No",u) |u e I', x & k,(u)}.

(3) The representation of the protocol for subset queries to C' is the set

Sub(C) ={(0", h,z,u) | hy,u € I'",x € Ky(h) \ kn(u)}
U{(0", h, “Yes”,u) | hyu € I'*, k,(h) C kp(u)}.

(4) The representation of the protocol for subset and superset queries to C' is
the set

Sub(C) & Sup(C) ={(0",0h,a,u) | h,u € I'*, (0", h,a,u) € Sub(C)}
U {(0", 1h,a,u) | h,u € T*, (0", h,a,u) € Sup(C)},

where Sup(C') is the representation for superset queries which is similarly
defined as Sub(C).

We now define polynomial learning complexity by imposing a polynomial
bound both on the number of queries and the length of queries required for
successful learning.

Definition 5 Let C' be a representation of concepts, and let P be a protocol
representation with respect to C'. Then C has polynomial learning complexity
under P if there exist polynomials p and m, and an algorithm A which gets
inputs s and n and may ask queries q of size at most m(s,n), such that for all
concept names u of size at most s, the following implication holds: If A always
receives an answer a for each of its queries q satisfying kn(u) € A, (q,a), then
after at most p(s,n) queries, A eventually halts and outputs a concept name
h with k,(h) = K, (u).

In contrast to the definition of learning complexity, where the success con-
dition is expressed in terms of the current version space, in the definition
of polynomial learning complexity we require that a successful learning algo-
rithm has to produce a concept name h for the target s, (u). It is, however,
easy to see that in the resource unbounded setting, both success conditions
are equivalent.

Next we consider the corresponding notion of polynomial general dimension.
We call a set T C Al x A* an answering scheme for the length bound m, if
for each query ¢ of length at most m there is an answer a with (¢,a) € T. We
further use Cy,, = C,, N (F[S] X ™) to denote the representation of concepts in
C,, of size at most s.

Definition 6 Let C' be a representation of concepts, and let P be a protocol
representation with respect to C. Then C' has polynomial general dimension

under P if there exist polynomials p and m, such that for all size bounds s,
for all n, and for all answering schemes T C AMmE™ s A* for the length
bound m(s,n) there exists a set S C T of cardinality at most p(s,n) such that

I{f € K(Csn) | (Vg a) € S)If € Anlg a)]}]] < 1.

Now we can use the arguments of (6) to show that polynomial learning com-
plexity is equivalent to polynomial general dimension. The implication from
polynomial general dimension to polynomial learning complexity is based on
the fact that there always exists an inverse polynomially good query q for the
current version space of any learning algorithm, where a good query ¢ (with
respect to C' and P) is defined as follows.

Definition 7 A query q is 6-good for a set of concepts V if each answer a to q
eliminates at least a §-fraction from V, i.e. |[{f € V| f & Au(q,a)}|| = o||V].

Lemma 8 (cf. (6)) Suppose that C has polynomial general dimension under
P, and let p and m be the corresponding polynomials. Then, for all s and n,
and for all non-empty sets V C K(Cs,,), there exists a query q of length at
most m(s,n) that is (1 —1/||V||)/p(s,n)-good for V.

PROOF. Fix s and n, some non-empty set ¥V C K(Cs,,), and assume that
no query ¢ of length at most m(s,n) is (1 — 1/||V||)/p(s,n)-good for V, i.e.,
for all queries ¢ of length at most m(s,n) there exists an answer a, such that
{feV|fegA(qgal} < (V] —1)/p(s,n). Consider the answering scheme
T = {{(g,a,) | ¢ € A& Then, for any subset S C T of cardinality at
most p(s,n), it follows that

{f eV (3aa) e Sf ¢ M@ a)l}l < X {f VIS EAlgal}l

(g,a)€S

<[vl-1,

which implies that [{f € V | (Y{q,a) € S)[f € A.(q,a)]}|| > 1. Since
VY C K(Cs,,), this contradicts the assumption that C' has polynomial general
dimension under P via p and m. O

By Lemma 8, for any set S of queries and answers received thus far, we can
find a query ¢ of polynomial length such that any answer to ¢ eliminates at
least an inverse polynomial fraction from the current version space V = {f €
K(Csn) | (Y{g,a) € S)[f € Au(q,a)]}. Hence, after at most a polynomial
number of queries, the only concept left in)V is the target. This shows that
polynomial general dimension implies polynomial learning complexity and we
have the following equivalence.

Theorem 9 Let C be a representation of concepts, and let P be a protocol
representation with respect to C. Then the following are equivalent.

(1) C has polynomial learning complexity under P.
(2) C has polynomial general dimension under P.

4 Polynomial-Time Learning with an Oracle in the Polynomial Hi-
erarchy

In this section we show that any representation of concepts C' € P with poly-
nomial general dimension under some representation P of a protocol can be
learned in polynomial time with the help of an oracle whose complexity de-
pends on the complexity of the decision problem P. We consider the following
time-bounded analogue of polynomial learning complexity.

Definition 10 A representation of concepts C' is polynomial-time learnable
under a protocol representation P if there is an algorithm A which fulfills all
the conditions required in Definition 5, and whose running time is polynomially
bounded in s and n.

Obviously, any polynomial-time learning algorithm should be able to read
the complete answer received at any stage. Thus, it is natural to require a
polynomial length bound on the possible answers in a protocol P.

Definition 11 A representation of a protocol P is polynomially honest (p-
honest for short) if there exists some polynomial | such that |a| < Il(n,|q|) for
all {q,a,u) € P,.

As we will see below, if P can be decided in NP, then we get polynomial-time
learnability with an oracle in ¥£. In fact, we only need that the restriction of
P specifying the properties A,,(q, a) with |[|A,(g,a)|| > 1 can be decided in NP.
This allows us to apply our theorem also to the important case of equivalence
queries, where, in general, the part of P specifying “Yes” answers can only be
decided in coNP. Intuitively, we can drop this part from P since the learning
algorithm has already finished its task as soon as it receives an answer a to a
query ¢ with ||A,(q,a)| = 1.

Definition 12 Let P be a protocol representation with respect to some repre-
sentation of concepts C'. An admissible subset of P is a set P* C P satisfying
the following conditions for all n, q and a.

(1) If [[An(g, a)|| # 1, then Fy(q,a) = Pu(q; a).
(2) If |A(q,a)|| = 1, then P*(q,a) = P,(q,a) or P*(q,a) = 0.

protocol P complexity complexity of an oracle
of P admissible subset P* | complexity

Mem(C) P P »
Eq(C) coNP p »
Mem(C) & Eq(C) coNP P »
Sub(C') coNP coNP 4
Sup(C') coNP coNP 4
Sub(C) & Sup(C') coNP coNP xP

Fig. 1. Upper bounds for the oracle complexity of learning algorithms

Example 13 Provided that C € P, the protocol representation Eq(C) as

giwen in FExample 4 is decidable in coNP and has the admissible subset
P ={{0" h,z,u) | hyu € I'",x € k,(h)Ar,(u)} that is decidable in P.

Now we are ready to present our main theorem.

Theorem 14 Let C € P be a representation of concepts, and let P € X
be a p-honest protocol representation with respect to C' with an admissible
subset P* € NP. If C' has polynomial general dimension under P, then C 1is
polynomial-time learnable under P with an oracle in X% .

Before we proceed to the proof of Theorem 14, let us first discuss some con-
sequences. By the remark above, it follows that for all representations C' € P,
C' has polynomial learning complexity with respect to equivalence queries if
and only if C' is polynomial-time learnable with equivalence queries and an
oracle in 31", This holds also for equivalence and membership queries, and for

membership queries alone. Thus, Theorem 14 subsumes all the results shown
in (4).

The table in Figure 1 summarizes our upper bounds for the oracle complexity
of polynomial-time learning algorithms for various protocols P with respect
to concept representations C' € P.

Since the proof of Theorem 14 given below relativizes to an arbitrary oracle
we get the following corollary.

Corollary 15 Let ¢ > 1, let C € P be a representation of concepts, and
let P € Eﬁrl be a p-honest protocol representation with respect to C' with an
admissible subset P* € XX, If C' has polynomial general dimension under P,

10

then C' is polynomial-time learnable under P with an oracle in XF, ;.

For any C' € P, the protocol representation Sub(C') @ Sup(C') for subset and
superset queries can be decided in coNP C . Hence, for all C € P, C has
polynomial learning complexity with respect to subset and superset queries if
and only if C' is polynomial-time learnable with subset and superset queries
and an oracle in X%, Since the concept class of DNF-formulas can be learned
with polynomial subset and superset queries (with DNF-formulas as hypothe-
ses) (7), we get that this can be done also in polynomial time with an oracle
in ¥.2.

Corollary 16 DNF is polynomial-time learnable under the protocol represen-
tation Sub(DNF) & Sup(DNF) with an oracle in ¥L.

The rest of this section is devoted to the proof of Theorem 14.
4.1 Good Queries for Sets of Concept Names

Let C' be a representation of concepts with polynomial general dimension
under a p-honest protocol representation P € Y with an admissible subset
P* € NP. We have to show that C' can be learned under P in polynomial time
with the help of an oracle in 31"

Our algorithm will proceed similarly as the algorithm for Theorem 9 in the
resource-unbouded setting. That is, for a given set S of queries and answers
received thus far, we will try to find a good query ¢ such that any answer to
q eliminates at least an inverse polynomial fraction from the set of concept
names representing the current version space

Ven(S) = {u € T¥ | (V{g, a) € S5)[{g, a,u) € B]}.

Then after a polynomial number of queries, the only concept left in the current
version space Vs ,(S) = {kn(u) | u € Vi, (S)} is the target.

To compute such a good query ¢ in polynomial time with an oracle in X%,
we will apply well-known approximate counting techniques based on universal
hashing that have also been used in (6; 4) for the specific case of equivalence
queries. For this, however, we will have to consider the fraction of concept
names rather than the fraction of concepts that are eliminated by the answers
of the teacher. That is, the algorithm needs to find queries that are good for
the set V; ,(S) of concept names.

Definition 17 A query q is 0-good for a set of concept names V if each
answer a to q eliminates at least a d-fraction from V, i.e. |[{u €V | (¢, a,u) &
P} = 0|V for all a € A*.

11

Because the fraction of a set of concepts in V;,,(S) might be very different
from the fraction of the corresponding set of concept names in Vj,(5), we
cannot use Lemma 8 directly to guarantee the existence of a sufficiently good
query for V. For the specific case of equivalence queries, it is shown in (4) that
an analogue of Lemma 8 also works for concept names rather than concepts.
In the general case, however, the goodness of the query ¢ depends on the
maximal size of the equivalence classes [u] = {v | £, (v) = kn(u)}, u € V5, (S).
To be more precise, we introduce the following notation.

Definition 18 Let V' be a finite set of concept names. The weight of a concept
name w in V is p(u) = ||[u] N V||/||V||. The bias of V' is pn = maxyey pu(u).

Now we can show the following analogue of Lemma 8 for concept names rather
than concepts.

Lemma 19 Suppose that C has polynomial general dimension under P via
the polynomials p and m. Then, for all s and n, and for all non-empty sets
V C Il with bias p, there is a query q of length at most m(s,n) that is
(1 — p)/p(s,n)-good for V.

PROOF. Fix s and n, some non-empty set V C I'l!! | and assume that no
query ¢ of length at most m(s,n) is (1 — u)/p(s,n)-good for V, i.e., for all
queries ¢ of length at most m(s,n) there exists an answer a, such that

VIl = maxuev [[u] N V]|
p(s,n)

{u € V[(g, aq,u) & P}l <

Consider the answering scheme T = {(g,a,) | ¢ € A&} Then, for any
subset S C T of cardinality at most p(s,n), it follows that

{u eV | (3q,a) € S){a.a,u) € PHI < Y [{ueV{g,a,u) &P}
(g,a)€S
< VIl = max [[u] 0 V],

which implies that

{u € V[(v{g:a) € S)[{g, a,u) € PoJ}|| > max |[[u] N V]|
and hence

{kn(u) | ueV A(¥(qa) € S)(qau) e P} > 1.

Since the set of concepts {x,(u) | v € V'} is contained in K(Cj,,), this constra-

dicts the assumption that C' has polynomial general dimension under P. O

12

4.2 The Algorithm

As usual, the current knowledge of the learning algorithm is represented by
the set S of queries and answers received thus far. If the bias p of V ,,(.S) is not
too large, i.e., 1 — p is at least inverse polynomial, then Lemma 19 guarantees
the existence of an inverse polynomially good query for V; ,,(5), and as we will
see below, we then are able to compute such a query in polynomial time with
an oracle in X' Thus, the remaining obstacle is to treat also the case when
1 is large. In this case, our algorithm significantly differs from the algorithm
used in the proof of Theorem 9 in the resource-unbounded setting.

If 41 is large, then there exists a concept name u of large weight in V,(.5).
Hence, if we replace the whole equivalence class [u] with the single concept
name v within V;,(S), then we eliminate a large fraction of concept names
from V; ,(5), and this does not affect the set of concepts Vs ,,(S) represented by
Vsn(S). To implement this idea, we maintain an additional set W of pairwise
non-equivalent concept names, and we represent the current version space
Vsn(S) by the set V,,(S,W) which contains only those concept names in
Vsn(S) that are not equivalent to some w € W or itself belong to W, i.e.,

Vs,n(Sa W) = (V;,n(s) \ U [w]) U (Vs,n(S) N W)

weWw

= Vin(S) N {u € TE | (Vo € W\ {u})[kn(u) # wn(w)]}.

Thus, for all concept names v € W, V, (S, W) contains at most one con-
cept name from the equivalence class [u]. Note that, by including some u
from V,,(S, W) \ Upew|w] into W, we discard ||[u] NV}, (S, W)|| — 1 elements
from Vj (S, W) without changing the set V;,,(S) of concepts represented by
Ve (S, W).

Now we are ready to describe our algorithm (cf. Figure 2). We initially set
S = W = {). Then we repeat the following steps until |[V;,(S)]] = 1, and
thus the current version space is reduced to the target. In each loop, we first
compute an approximation fi of the bias p of V;,,(S, W) satisfying |u — fi] <
1/12. If 1 < 2/3, then for the actual bias p of V; (S, W) it holds that p <
2/3+1/12 = 3/4, and hence, by Lemma 19, there exists a (1/4p(s,n))-good
query for Vi ,,(S, W). We then compute a (1/6p(s,n))-good query ¢, and thus
any answer to ¢ eliminates at least a (1/6p(s,n))-fraction of concept names
form V; (S, W). If on the other hand, i > 2/3, then p > 2/3 —1/12 = 7/12,
and we proceed by computing a concept name u of weight p(u) > 1/2 in
Vsn(S, W). Note that p > 7/12 implies ||V ,,(S, W)|| > 3, and hence by adding
u to W we eliminate at least ||[u] N Vi (S, W) =1 > ||[Vi.(S,W)|/2 —
| Vsr (S, W)|1/3 = ||Vsn(S,W)||/6 concept names from V;, (S, W). Thus, in
both cases, we eliminate at least a 1/6p(s, n)-fraction of concept names form
Ven(S, W), and it follows that after at most polynomially many loops, the

13

S—0; W10
while ||V;,,(S)|| > 1 do
compute an approximation f of the bias u of Vj (S, W)
satisfying |u — | < 1/12
if 1 <2/3 then
compute a (1/6p(s,n))-good query for V; (S, W)
ask ¢ and receive an answer a
S 5U{(g.a)}
else
compute a concept name u of weight p(u) > 1/2in Vj (S, W)
W — WuU{u}
end if
end while
compute a concept name u in Vj (S, W) and output u

Fig. 2. The algorithm for proving Theorem 14

only concept left in the current version space is the target. We then compute
a concept name v in Vj (S, W) and output u.

4.8 The complexity of the Algorithm

To complete the proof of Theorem 14 it only remains to show that each step
of our learning algorithm can be done in polynomial time with an oracle in
P,

First note that we only ask queries of length m(s, n), and the honesty condition
on P implies that all answers a we receive have length at most [(n). Thus,
the size of S as well as the length of its elements grow at most polynomially.
Also note that since the algorithm performs at most polynomially many loop
iterations, the set W contains at most a polynomial number of concept names
of length bounded by s.

To analyze the uniform complexity of our algorithm, let V, (S, W) denote
the subset of V,, (S, W) that is defined analogously to V; (S, W) where the
admissible subset P* is used in place of P, i.e.,

Vo (S W) = (VoS \ U [w]) U (VE(8) n W),

weW

where V7, (S) = {u € Il | (Vg a) € S)[{g,a,u) € P?]}. Further, consider
the sets V' = {(0°,0™, S, W,u) | u € V,,(S, W)} and V* = {(0%,0", S, W, u) |
u € V1, (S, W)} and note that since C' € P, P € X7, and P* € NP, it follows
that V is in 2 and V* is in NP. Since ||V, ,(S)|| > 1 implies that V;,,(S, W)
coincides with V*, (S, W), it follows that ||V, ,(S)|| > 1if and only if V¥, (S, W)

14

contains two concept names u and v with x,(u) # k,(v). Thus, we can test
whether there is more than one concept left in Vs ,,(S, W) in polynomial time
with an oracle in NP.

The final construction of a concept name u € Vi ,(S, W) when [|[Vs,(S)]] =1
can easily be done by prefix search in polynomial time with an oracle in
I that contains all tuples (0,07, S, W, u’) such that there exists some u
extending v with (0%,0", S, W,u) € V.

For the remaining computations we use the already mentioned approximate
counting techniques, which we summarize in the following lemma (cf. (12)).

Lemma 20 Let f € min NP U max §NP.

(1) There exists an oracle A € X8 such that for all x € X*, and for all
integers d > 0 and e > 1:
(a) (x,d,0° € A= f(z) < (1+1/e)d
(b) (x,d,0° ¢ A= f(x) > d.

(2) There ezists a function f € FP(XY) such that for all x € ¥*, and for all
integers e > 1, f(z) < f(2,0°) < (1+1/e)f(x).

Finally, we show in the following lemma how to compute a good approximation
i1 to u, a concept name u of sufficiently large weight when p > %, and a good
query ¢ for V7, (S, W) when p < 3.

Lemma 21 Let C' and P be as in Theorem 14, and suppose that C' has poly-
nomial general dimension under P via the polynomials p and m. Then, on
input (0°,0™, S, W) it is possible to compute the following in polynomial time
with an oracle in X :

L
127
7

in V3, (S, W), provided that 1 > 5,

(1) an approzimation fi of the bias p of V5, (S, W) satisfying |ji — pu| <

(2) a concept name u of weight pu(u) >
and

(3) a query q of length m(s,n) that is 1/6p(s, n)-good for V', (S, W), provided
that ju < 2.

1
2

PROOF. Let t be the cardinality of the set V" (S, W). Since t can be ex-
pressed as

t=|{veTlt (00", 8 W eVy|,
where the set V* = {(0°,0", S, W,v) | v € V (S, W)} is in NP, it follows that
t considered as a function of (0%,0", S, W) is in {NP. Hence, Lemma 20 gives

us an approximation ¢ computable in polynomial time with an oracle in %2,
such that t <t < (14 1/36p(s,n))t.

15

Now let b = miny, <, b(u), where

b(u) = [V, (S, W)\ [u]]|
= |[{v](0°,0",S,W,v) € V* A (Bx € £")[x € kp(v) AR, (uw)]}.

Clearly, b(u) considered as a function of (0%,0™, S, W, u) is in {NP and hence,
b considered as a function of (0°,0", S, W) is in min§NP. Thus, Lemma 20
gives us an approximation b computable in polynomial time with an oracle in
¥ such that b < b < (14 1/36)b.

Now the bias u of V,(S, W) can be expressed as

VeSS W) Nl VS S WON | b
[= max =1—min =1--.

Letting ji = 1 — b/, it follows that

_ i—b _t+t/36—b 1 b 1
== = < :1 _ e - = _
=== : N AaT
and since b < t it also holds that
N b b+b/36 b b 1
—1—-=>1— — 12— _ _ =
. i= : t 36t =M 36" 10

This shows (1).

Now let us see how to construct a concept name u of large weight in V¥, (S, W)
if > % Since b(u) as a function of (0°,0",S, W, u) is computable in NP,
Lemma 20 gives us an oracle A in X1 such that for all integers d > 0,

(1) (0%,0™, S, W,u,d) € A = b(u) < (1_'_%)%
(2) <OS>0n> 57 I/V,U,d> g A— b(U) > d.

Let A’ € £ be the oracle consisting of all tuples (0%,0", S, W, v, d) for which
there exists some u € T'¥l with prefix «/ and (0°,0", S, W, u,d) € A. Since
there exists some concept name u € I'l*! with b(u) < b < I;, and hence
(0%,0™, S, W, u, l~)) € A, it follows that we can compute a concept name u
with (0°,0", S, W,u,b) € A by prefix search in polynomial time with the help
of oracle A’. Since for the resulting u it holds that (0°,0", S, W, u,b) € A, it
follows that

1.~ 1 1
b(u) < (1+—=)b<(14+ =)< (1+—)b
() < (1 500b < (14 2% < (14 1)
and sincebgtand,uzﬁ,we get
b(u) b+ /12 1 1
—1- =2 >1_ > - > =
() . =T 1=

16

Finally, we have to show how to construct a good query ¢ under the assumption
u< %. For this consider the function
@)= max [[{u€Vi(SW) | (g.0,u) € P}
= max)||{u | (0,0, S, W,u) € V* A (0", q,a,u) € P}

la| <l(n,|q|

Since c¢(q) considered as a function of (0°,0", S, W,q) is computable in
max NP, Lemma 20 gives us an oracle B in X such that for all integers
d>0,

(2) (05,0, 5, W,q,d) ¢ B=> c(q) >

By Lemma 19, the assumption p < 3/4 implies that there exists a query ¢ of
length m(s,n) such that q is 1/4p(s, n)-good for V", (S, W). This means that
for all answers a it holds that

{u € VI, (S W) [{g,a,u) & Bt = [{u € V(5 W) | {g,a,u) & Patl

1
> *
> Va5, W)

and hence

c(q) < [{u € VI, (S, W) [(g, a,u) € B
= [Van (S W)l = [€ VoL (S, W) [(g, a,w) & Pt

=(4p(i,n))£

Fixing d to be d = (1 —1/4p(s,n))t, it follows that (0%,0", S, W, q,d) € B, and
similarly as in the proof of part 2 of the lemma we can construct a query ¢ in
polynomial time with the help of an oracle in ¥£ such that (0°,0", S, W, ¢,d) €
B. Now, for the resulting query ¢, (0%,0™, S, W, q,d) € B implies

1 -
P)

Pl

c(q) < (1+

1
36p(s,n
1

<1+ 7
= Jr36p(s,n)

<(1-

1
ip(s.n) " 12p(s,m)
1
).

= (- 6p(s,n)

17

Since ¢(q) is defined in terms of P* rather than P, this only means that for
all answers a with [|A,(q,a)|| > 1 it holds that

{u € Vi, (S, W) [(g, a,u) & Po}]
= [{u € VE,.(S, W) [(g, a,u) & B}
= [Ven (S W) = {u € VEL(S, W) [(g, a,u) € B
1

1 *
= WH‘/SJL(S? Wl

However, the assumption p < 3/4 does not only provide a good query but
also implies that for all answers a with ||A, (g, a)|| = 1 it holds that

I € VoS, W) | (gsa,) € Pl < mae] N V,(S, W)
< QIVuS W)l
and hence
{u € Va8,) | (g0 m) ¢ P}l > (VS W)

This concludes the proof of the lemma. O

5 Non-learnability with an oracle in NP

In this section we show that the ¥:£ oracle in our main theorem cannot be
replaced by an oracle in NP, unless the polynomial hierarchy collapses to A%
This computational hardness result is based on the representation problem
REP(C) (13; 8) for a representation C,

REP(C) = {(0°,0",¢) | (Ju € I'™)[sic,, (u) = Kcire, ()]},
where Circ is the circuit representation for boolean functions (cf. Example 2).

Aizenstein et al. (8) showed that there is a representation K € P such that
its representation problem REP(K) is complete for ¥¥. The representation
K can be described as follows. Concept names are boolean circuits of the
form ¢ V t, where ¢ is an arbitrary circuit over an even number of variables
x1,...,%,, and t is a conjunction containing exactly one literal for each of the
first n/2 variables x1, ..., %,/2. The concept represented by ¢V t is the set of
all z € {0,1}™ accepted by ¢V t. (In (8) a 3CNF formula is used in place of
a circuit ¢ as above. This, however, does not affect the ¥¥-completeness of
REP(K).)

18

Let us first consider the complexity of learning K with equivalence queries to
K. By answering each query ¢V t with a counterexample x that fulfills the
conjunction t it is easy to see that any learner under Eq(K) needs at least
2n/2 _ 1 queries to identify the target.

Proposition 22 K does not have polynomial learning complexity under
Eq(K).

If we allow arbitrary circuits as hypotheses, then in contrast to the previous
proposition, K is learnable with a polynomial number of queries by using a
simple majority-vote strategy.

Proposition 23 K has polynomial learning complexity under Eq(Circ) and
hence, K is polynomial-time learnable under Eq(Circ) with an oracle in % .

Recall that in our definition of polynomial learning complexity for a represen-
tation of concepts C', we insist that the learning algorithm A outputs a concept
name h such that independently of the protocol, the concept represented by
h with respect to C' is equivalent to the target. This allows us to prove the
following theorem.

Theorem 24 K is not polynomial-time learnable under Eq(Circ) with an
oracle in NP, unless the polynomial-time hierarchy collapses to AY .

PROOF. If there is a learning algorithm A for K under Eq(Circ) whose
running time is bounded by p(n, s) for some polynomial p and which uses an
oracle in NP, then we can solve the representation problem for K in AL as fol-
lows. On input (0°,0", ¢) run A on input (0%, 0™) and answer each equivalence
query h Vt of A by some counterexample z € {0, 1}™ with c¢(x) # h(x) V t(x),
if it exists. Clearly, x can be found in polynomial time with the help of an NP
oracle. Then (0°,0™, ¢) belongs to REP(K) if and only if A succeeds within
p(n, s) steps, implying that the representation problem for K is in Al’. Com-
bining this with the YX'-completeness of REP(K) we get the desired collapse
of the polynomial-time hierarchy. O

Thus we have found representations C' and P satisfying the conditions of
Theorem 14 but C'is not polynomial-time learnable under P with an oracle in
NP, unless the polynomial hierarchy collapses to AZ. In fact, by Theorem 14,
K is polynomial-time learnable under Eq(Clirc) with an oracle in NP if and
only if the polynomial-time hierarchy collapses to AZ.

The non-learnability of K under Eq(Circ) with an oracle in NP relies on
the fact that we allow equivalence queries that are arbitrary circuits but we
insist that the output is of the form ¢V ¢. For a similar non-learnability result

19

for K where both the output and the hypotheses are of the form ¢ V t, we
now consider learning with projective equivalence queries (14; 15; 7; 16). A
projective equivalence query with respect to a representation C' of hypotheses
is a pair of the form (a, h), where o € {0, 1,*}". The partial assignment «
describes the hypercube G, consisting of all strings z € {0, 1}" such that x
coincides with « on all positions where « is not *. In response to a query
(a, by, the answer is “Yes” if k,(h) coincides with the target on all strings
in the hypercube G,. Otherwise, the answer consists of a string = in the
hypercube G, for which «,(h) does not agree with the target. Let Proj-Eq(C')
denote a representation of the corresponding protocol.

It is easy to see that Proj-Eq(K) is decidable in coNP. Hence, Corollary 15
implies that K is polynomial-time learnable under Proj-Eq(K) with an oracle
in ¥, However, by exploiting special properties of the concept class K we
can show the following theorem.

Theorem 25 K is polynomial-time learnable under Proj-Eq(K) with an or-
acle in L.

PROOF. We only roughly sketch the learning algorithm A. On input (0%, 0™),
A computes two circuits ¢y and ¢; such that ¢y agrees with the target ¢V ¢ on
allz = x1 - - - x, with 1 = 0 and ¢; agrees with the target on all z with x; = 1.
By using a X1’ oracle, A can then determine a hypothesis that is equivalent
to the target. It remains to argue that the circuits ¢,, b € {0, 1}, can be found
in polynomial-time under Proj-Eq(K) with an oracle in 1.

Clearly, by using a simple majority-vote strategy it is possible to compute
¢y in polynomial-time with an oracle in ¥ by asking projective equivalence
queries of the form (bx---*, h), where h is an arbitrary circuit. Thus it suffices
to observe that any projective equivalence query (bx--- %, h) can be simulated
by the query (b ---%,hV ty), where tg = 21 Aag A -+ A 2yp and t; =
El/\xg/\-~-/\xn/2. O

Similarly as in Theorem 24, the learnability of K under Proj-Eq(K) with an
oracle in NP implies that the representation problem of K is in AZ. Thus, we
also have the following analogue of Theorem 24.

Theorem 26 K is not polynomial-time learnable under Proj-Eq(K) with an
oracle in NP, unless the polynomial-time hierarchy collapses to AY .

20

6 Acknowledgements

For helpful conversations and suggestions on this work we are very grateful to
José Balcéazar, Jorge Castro, Richard Gavalda, and David Guijarro.

References

1]

[15]

D. Angluin, Queries and concept learning, Machine Learning 2 (1988)
319-342.

N. Bshouty, R. Cleve, R. Gavalda, S. Kannan, C. Tamon, Oracles and
queries that are sufficient for exact learning, J. Comput. Syst. Sci. 52
(1996) 421-433.

L. Hellerstein, K. Pillaipakkamnatt, V. Raghavan, D. Wilkins, How many
queries are needed to learn?, J. ACM 43 (5) (1996) 840-862.

J. Kobler, W. Lindner, Oracles in ¥} are sufficient for exact learning,
International Journal of Foundations of Computer Science 11 (4) (2000)
615-632.

M. J. Kearns, L. G. Valiant, Cryptographic limitations on learning
boolean formulae and finite automata, J. ACM 41 (1994) 67-95.

J. Balcazar, J. Castro, D. Guijarro, A general dimension for exact learn-
ing, in: Proc. 14th ACM Conference on Computational Learning The-
ory, Vol. 2111 of Lecture Notes in Artificial Intelligence, Springer-Verlag,
Berlin Heidelberg New York, 2001, pp. 354-367.

J. L. Balcazar, J. Castro, D. Guijarro, A new abstract combinatorial
dimension for exact learning via queries, Journal of Computer and System
Sciences 64 (2002) 2-21.

H. Aizenstein, T. Hegediis, L. Hellerstein, L. Pitt, Complexity theoretic
hardness results for query learning, Computational Complexity 7 (1998)
19-53.

C. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.
O. Watanabe, A framework for polynomial time query learnability, Math-
ematical Systems Theory 27 (1994) 211-229.

D. Angluin, M. Kharitonov, When won’t membership queries help?,
J. Comput. Syst. Sci. 50 (1995) 336-355.

J. Kobler, Lowness-Eigenschaften und Erlernbarkeit von Booleschen
Schaltkreisklassen, Habilitationsschrift, Universitdt Ulm (1995).

O. Watanabe, R. Gavalda, Structural analysis of polynomial time query
learnability, Mathematical Systems Theory 27 (1994) 231-256.

L. Hellerstein, M. Karpinsky, Learning read-once formulas using member-
ship queries, in: Proc. 2nd ACM Conference on Computational Learning
Theory, Morgan Kaufmann, 1989, pp. 146-161.

W. Maass, G. Turan, On the complexity of learning from counterexam-

21

ples, in: Proc. 30th IEEE Symposium on the Foundations of Computer
Science, IEEE Computer Society Press, 1989, pp. 262-267.

[16] D. Angluin, L. Hellerstein, M. Karpinski, Learning read-once formulas
with queries, Journal of the ACM 40 (1) (1993) 185-210.

22

