
 

 

Proposal for diploma thesis 

Accurate Long-Read Alignment using Similarity Based  

Multiple Pattern Alignment and Prefix Tree Indexing 

 

 

Astrid Rheinländer 

01-09-2010 

Supervisor: Prof. Dr. Ulf Leser 

 

Motivation 

Sequence analysis is one of the main challenges in current bioinformatics. Sequence analyses are used for 

finding structural, functional or evolutionary relationships between two sequences, to identify highly con-

served regions in a genome or to align new sequencing data against an existing reference genome [PS08]. 

The ongoing research in sequencing technology has yielded in machines that are able to produce sequence 

data in the order of one billion base-pairs (bp) per machine day with an average read length of less than 

100 bp per read (“short-reads”). In the past two years, many efficient algorithms have been developed for 

short-read alignment against a reference genome and for genome assembly, for an overview of and com-

parison of these tools see [LH10]. 

However, as the sequencing technology is evolving, the produced read lengths become much longer 

(“long-reads”). Li and Durbin [LD10] report that the Roche/454 sequencing technology already produces 

reads of lengths greater than 400 bp and that Pacific Bioscience experiments with read lengths longer 

than 1000 bp. Therefore, long-read alignment will become a crucial task in the near future.  

The existing short-read alignment tools will not be applicable to the alignment of long-reads for several 

reasons. First of all, long-reads have a bigger chance of containing more errors due to their lengths. Fur-

thermore, Li and Durbin state that tools for long-read alignment should be permissive about alignment 



gaps because insertions / deletions (indels) will occur more frequently in long-reads and might be the 

main source of sequencing errors. Therefore, it is essential to have an alignment software that is able to 

deal with variations and alignment gaps. Most of the short-read alignment tools are only efficient for un-

gapped alignment or an alignment with a very small number of gaps. When these tools are used with more 

allowed errors and gaps, their performance quickly degrades. Accordingly, new strategies for an efficient 

alignment of long-reads need to be developed. 

 

Goal 

In this diploma thesis, a tool for long-read alignment to a reference genome will be developed and eva-

luated. We aim at designing a tool that produces accurate alignment results and that is fast. On the basis of 

an existing implementation of a compressed prefix tree index [RKH+10] we will explore two strategies for 

long-read alignment. The first strategy is based on an Aho-Corasick automaton [AC75] that is also capable 

to deal with similarity based searches. This automaton can be used for indexing a set of long-reads and 

align it to a reference genome with semi-global alignment, which is essentially a global alignment [NW70] 

that ignores gaps at the start and the end. The second strategy is based on indexing both, the reference 

sequence and the long-reads in PETER-indices and it computes conceptually the similarity-based intersec-

tion of both indices. As we do not follow the seed-and-extend paradigm but rather compute the best 

alignment for all long-reads directly, we need efficient pruning strategies as well as a parallelized imple-

mentation to speed up our algorithms.  

 

Methods 

In a first step, we will use the current implementation of a prefix-tree index for approximate searches 

(PETER, [RKH+10]) as a baseline for our work. We will improve PETER with selected suggestions, includ-

ing the following points:  

(a)  We will remove the internal / external suffixes distinction. All suffixes will be stored directly in 

the index tree and not, as in PETER, in an external suffix file. This allows us to keep the full infor-

mation on each long-read in the index in main memory and thus it reduces the necessary number 

of disk accessions. 

(b)  As it was shown in [RKH+10], the comparison of q-gram sets of two strings is very helpful in 

terms of reducing query response time for edit distance [L66] queries, even if the q-grams are 

computed and evaluated on the fly. We believe that the persistent integration of q-grams will fur-

ther reduce the query response time. Therefore, we will introduce an additional bitset attribute to 

each node that stores q-gram information for the prefix represented by this node.  

(c)  PETER can only deal with strings over an alphabet of 4 characters, internally represented by 2 

bits. The character representation will be extended to 8 bits, which allows us to index all strings 

from the ISO 8859 family of character encodings, e.g. German/English text or proteins.  



 

In the next step, we will explore which one of the following strategies is better suited for fast and accurate 

long-read alignment. 

The first strategy uses an Aho-Corasick algorithm [AC75] as the basic strategy for similarity-based se-

quence alignment. Long-reads will be stored in a prefix tree index, which is enriched with failure and out-

put links. As [AC75] was natively designed for exact searches, we need to develop functionality for edit 

distance based similarity searches. This requires on the one hand the costly computation of a distance ma-

trix and on the other hand failure links that are capable to deal with replacements or indels. For exact fail-

ure links (these are failure links where one substring from a node x is an exact prefix of some other 

string), a node x in the compressed prefix tree has at most k outgoing failure links when k is the length of 

the substring represented by x. For similarity-based searches, the similarity-based construction of failure 

links will be a critical. Even if we only allow replacements and no indels in the failure links, each node can 

contain up to  Σik
i=1  links. This is obviously too much overhead and therefore we will explore whether 

we can apply some heuristics that reduce the number of similarity based failure links.  

The second strategy is based on indexing both, the long-reads and the reference genome in separate PE-

TER indices. For the reference genome, we will index the reverse of the reference in our prefix tree, which 

essentially gives us the suffix tree of the reference. As this index will require lots of memory, we need to 

develop strategies for decreasing the index size. This includes a proper partitioning of the reference se-

quence, e. g., by chromosomes, and we will investigate whether the following strategies reduce the index 

size: 

(a) Two constants, a maximum alignment error rate e and a maximum long-read length l will be used 

for downsizing the genome index only. Given the fact that any two strings can only be within edit 

distance k, if their lengths differ in at most k characters, we can now trim down many indexed suf-

fixes. If one suffix starts at position i in the sequence s of length n, we do not need to store s[i … n] 

in the index, it is sufficient to store only the substring s[i … (i+l+l*e)] in the index.  

 

(b) As there are often unknown bases, indicated by the character ‘N’, contained in the reference se-

quence, we will interpret all occurrences of ‘N’ as a mismatch. Thus, we will index only those sub-

string of s that contain at most l*e times the character ‘N’. 

When we have indexed both, the reference genome and the long-reads, we will traverse both trees simul-

taneously and conceptionally compute the intersection of both trees. Given that we have reached a string 

node in the long-read tree and the current edit distance does not exceed the defined threshold, we can 

instantly report a match at any position in the reference index.  

After having evaluated the pros and cons of each strategy, we will decide for one and implement the ne-

cessary algorithms. Plus, we will add the following additional features: 



(a) In order to increase the usability of our tool and to compare it to other tools, we will add a func-

tionality to index strings from the FASTA [NCBI] / FASTQ [CFG+10] file formats. The computed 

alignment will be given in the SAM / BAM output format [HWT+09] that allows us to easily view 

and check the computed alignment with the help of existing alignment visualization tools, such as 

[CBO+10]. 

 

(b) Prefix pruning: When traversing down the index tree, we will keep track of the current edit dis-

tance. Whenever the current distance exceeds our threshold for a given prefix, we will immediate-

ly stop the edit distance computation as we will not find a suitable alignment. Thus, a backtrack-

ing routine starts and goes on to examine the next parts of the index tree. 

 

(c) Dynamic threshold adjusting: As described in [LD10], long-reads have a great potential of large 

error rates (Li and Durbin ran experiments with an error rate of up to 10 %). If such a rate is ex-

pressed in absolute values, we have to consider the overall length of each long-read . When tra-

versing the index tree, we know at each node x the length of the longest read that occurs some-

where below x. We will use this information to adjust the bandwidth in the k-banded edit-

distance alignment algorithm [F84] and to define an edit distance threshold. When traversing to a 

child y of x, we possibly find that the longest read contained in the sub-tree starting at y is shorter 

than the longest read of x. This happens, whenever another child z of x holds this longest string of 

x. In this case, when we investigate the sub-tree y, we can narrow down the bandwidth of the k-

banded alignment algorithm and also decrease the allowed edit distance threshold. 

 

(d) An additional lookup table stores the current best alignment and its score. Whenever a better 

alignment for a pattern is found, we perform an update on this lookup table. Finally, we will re-

port the best alignment for each long-read in the SAM/BAM output format. 

 

In a third phase, we will parallelize our alignment algorithm with map/reduce [DG08]. Therefore, we will 

partition the long-read set into smaller portions and then index these subsets in several prefix tree indic-

es. Figure 1 shows the main idea for parallelization. In the map phase, each map thread aligns the strings 

from one long-read index to one chromosome index with our alignment algorithm. Intermediate results, 

the alignment of each long-read with the best score, are stored in o intermediate files, where o is the num-

ber of CPU kernels on our evaluation platform. Each intermediate file will store the alignments for a cer-

tain range of long-read IDs (equally spread over the o files). When all map threads have finished, i.e. all 

long-read indices have been aligned to each chromosome index, the reduce phase starts. In this phase, 

each reduce thread sorts one intermediate result by long-read ID and by alignment score. If we have more 

than one alignment for a long-read, we will only keep the the one with the best score. Finally, the align-

ments will be sorted by chromosome and then SAM/BAM files will be produced as output.  



 

Figure 1: Parallelization of the alignment algorithm with map/reduce. 

Finally, we will evaluate the accuracy of our software mainly on the basis of simulated long-read data sets 

which are aligned back to the given reference genome (similar to the evaluation process of [LD10, LD09]). 

With this procedure, we know the exact coordinates of each read and thus are able to evaluate the number 

of alignment errors of our tool. Errors might occur when some long-read has more than one best align-

ment (e.g. the same alignment score at more than one position in the reference genome). We also aim at 

evaluating our software on real data sets, given that such data will be available. In terms of alignment 

speed, we will compare our tool to already existing alignment tools such as BLAT [K02] and BWT-SW 

[LD10]. 
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