
Layer Decomposition: An Effective Structure-based
Approach for Scientific Workflow Similarity

Johannes Starlinger∗, Sarah Cohen-Boulakia†, Sanjeev Khanna‡, Susan B. Davidson‡, and Ulf Leser∗

∗Humboldt Universität zu Berlin †Université Paris-Sud ‡University of Pennsylvania
Institut für Informatik Laboratoire de Dep. of Computer and Information Science
Unter den Linden 6, Recherche en Informatique 3330 Walnut Street

10099 Berlin, Germany CNRS UMR 8623, France Philadelphia, PA 19104-6389, USA
{starling, leser}@informatik.hu-berlin.de INRIA, LIRMM, IBC {sanjeev, susan}@cis.penn.edu

cohen@lri.fr

Abstract—Scientific workflows have become a valuable tool
for large-scale data processing and analysis. This has led to the
creation of specialized online repositories to facilitate workflow
sharing and reuse. Over time, these repositories have grown
to sizes that call for advanced methods to support workflow
discovery, in particular for effective similarity search. Here, we
present a novel and intuitive workflow similarity measure that is
based on layer decomposition. Layer decomposition accounts for
the directed dataflow underlying scientific workflows, a property
which has not been adequately considered in previous methods.
We comparatively evaluate our algorithm using a gold standard
for 24 query workflows from a repository of almost 1500 scientific
workflows, and show that it a) delivers the best results for
similarity search, b) has a much lower runtime than other,
often highly complex competitors in structure-aware workflow
comparison, and c) can be stacked easily with even faster,
structure-agnostic approaches to further reduce runtime while
retaining result quality.

I. INTRODUCTION

Scientific workflow systems have become an established
tool for creating and running reproducible in-silico experi-
ments. With their increasing popularity, online repositories of
scientific workflows have emerged as a means of facilitating
sharing, reuse, and repurposing. Examples of such repositories
include CrowdLabs [1], SHIWA [2], and the Galaxy repository
[3]. Probably the largest workflow collection is myExperiment
[4], which currently contains more than 2500 workflows from
various disciplines, including bioinformatics, astrophysics, and
earth sciences. To make the best use of these repositories, users
need support to find workflows that match their specific needs
[5]. However, currently these repositories only support key-
word queries which are matched against textual descriptions,
tags, and titles given to the workflows upon upload [2], [3], [1],
[4]. Obviously, the quality of such a search critically depends
on the quality of the annotations associated with workflows.

Scientific workflows typically resemble directed acyclic
graphs (DAGs) consisting of global input and output ports,
data processing modules, and datalinks which define the flow
of data from one module to the next. Two sample workflows
from myExperiment are shown in Figure 1. Therefore, another
source of information that can be exploited for search is
the structure or topology of the workflow [6]. An obvious
advantage of structure-based approaches to workflow similarity
search is that they do not require any additional information

to be provided by the workflow designer apart from the
workflow itself. Structure-based approaches are typically used
in a second search phase: First, users identify workflows
which roughly match their needs using keyword search. In the
second phase, users select one candidate workflow and let the
system retrieve functionally similar workflows, i.e., the system
performs a workflow similarity search.

Several studies have investigated different techniques for
assessing workflow similarity using this structure [7], [8], [6],
[9], [10], [11], [12], but initial results indicate that they perform
no better, and sometimes even worse, than annotation-based
methods in terms of retrieval quality [13], [8], [11]. However,
these comparisons were performed on very small and well-
documented workflow sets, and thus the results should not be
extrapolated to the large, but shallowly annotated repositories
that exist today. To verify this hypothesis, in prior work we
performed a large-scale comparative evaluation of workflow
similarity search algorithms [14]. Our results indicated that
a) structure-based methods are indispensable for some current
repositories which lack rich annotations, b) structure-based
methods, once properly configured, outperform annotation-
based methods even when such rich annotations are available,
and c) any such standalone approach is further beaten by
ensembles of annotation-based and structure-based methods.
We also discovered that both the amount of configuration
required and runtime considerations were drawbacks to such
methods: Fast workflow comparison using annotations on the
workflows’ modules provides best results only when ubiqui-
tous, functionally unspecific modules are removed from the
workflows in a preprocessing step. The configuration of which
modules are to be removed is specific to a given dataset, and
is non-trivial. Methods based on workflow substructures, on
the other hand, provide rather stable results across different
configurations, but have prohibitive runtimes.

In this paper, we present a novel technique for measuring
workflow similarity that accounts for the directed dataflow
underlying scientific workflows. The central idea is the deriva-
tion of a Layer Decomposition for each workflow, which is
a compact, ordered representation of its modules, suitable
for effective and efficient workflow comparison. We show
that the algorithm a) delivers the best results in terms of
retrieval quality when used stand-alone, b) is faster than other
algorithms that account for the workflows’ structure, and c)
can be combined with other measures to yield better retrieval

Fig. 1: Sample scientific workflows from the myExperiment
repository: (a) ID: 1189, Title: KEGG pathway analysis, (b)
ID: 2805, Title: Get Pathway-Genes by Entrez gene id.

at even higher speed. Furthermore, the method is essentially
configuration free, which makes it applicable off-the-shelf to
any workflow repository.

In the remainder of this paper, we first review related work
on similarity measures for scientific workflows in Section II. In
Section III, we briefly summarize results from [14]. Section IV
introduces our Layer Decomposition algorithm for scientific
workflow comparison, which we comparatively evaluate in
Section V. We conclude in Section VI.

II. RELATED WORK

Existing approaches to the assessment of scientific work-
flow similarity are either based on the associated annotations
or on the structure of the workflows themselves. We here
name a number of prominent approaches in increasing order of
using topological information; for a more detailed comparison
see [14]. Using only workflow annotations, Costa et al. [13]
derived bags of words from the descriptions of workflows
to determine workflow similarity. Keyword tags assigned to
workflows are explored by Stoyanovich et al. [11]. The sets of
modules contained in workflows have been used by Silva et al.
[10], Santos et al. [9], and Friesen et al. [8]. Bergman et al. [7]
extended this idea by additionally comparing the workflows’
datalinks based on semantic annotations; however, such seman-
tic annotations are not generally available in publicly available
workflow repositories. Considering workflow substructure, the
use of Maximum Common Isomorphic Subgraphs (MCS) has
been investigated by Goderis et al. [6], Santos et al. [9], and
Friesen et al. [8]: the latter also proposed using Graph Kernels
derived from frequent subgraphs in a repository. Subgraph
comparison has also been applied in similar domains, e.g., by
Corrales et al. [15] to compare BPEL workflows or by Krinke
[16] to compare program dependence graphs. Finally, using
the full graph structure, Xiang et al. [12] compute scientific
workflow similarity from their Graph Edit Distance.

Note that workflow provenance or semantic annotations
could also be taken into account; however, we are not aware
of any such data being available within current public repos-

Fig. 2: Workflow comparison process, see also [14]

itories, and therefore do not consider these methods in this
paper.

III. PRELIMINARIES

In [14], we report on a comprehensive evaluation of pre-
vious approaches to workflow similarity search. In addition to
comparing retrieval quality quantitatively, we also introduce
a framework (shown in Figure 2) for qualitatively comparing
different systems. This is an important tool, as the process
of workflow comparison entails many steps, of which a con-
crete topology-comparison algorithm is just one. First, the
similarity of each pair of modules from two workflows is
determined using pairwise module comparison. Second, using
these pairwise module similarities, a mapping of modules onto
each other is established. This mapping may be influenced
by the topological decomposition of the workflows imposed
by the third step of topological comparison, which in turn
uses the established mapping to assess the similarity of the
two workflows. Finally, normalization of the derived similar-
ity value wrt the sizes of the compared workflows may be
desirable. This process of scientific workflow comparison is
preceded by an (optional) additional preprocessing step. Such
preprocessing may, for instance, alter the workflows’ structure
based on externally supplied knowledge about the elements it
contains (see Section III-D).

As each of these steps has a notable impact on the
concrete values computed and thus the assessment of different
algorithms, we describe them in more detail in the following.
Note that our novel Layer Decomposition method (described
in the next section) is a contribution dedicated to the step of
topological decomposition and comparison; in Section V, we
will compare different approaches to this step while keeping
all other steps constant.

A. Module Comparison

Structure-based approaches to workflow similarity perform
some type of comparison of the two workflow graphs. To
this end, they must be able to measure the similarity of two
nodes in the graphs, which represent two modules in the
to-be-compared workflows. Module comparison is typically
approached by comparing the values of their attributes. These
range from identifiers for the type of operation to be carried
out, to the descriptive label of the module given to it by the
workflow’s author, to rather specific attributes such as the
url of a web-service to be invoked. In [14] we compared
several combinations of attributes with different weightings

and showed that choosing a suitable configuration is most
crucial for result quality of structural workflow comparison.
Here, we will use the following three schemes to test the
impact of module comparison on the topological comparison
provided by our new algorithm:

• pw0 assigns uniform weights to all attributes and com-
pares module type, and the web-service related properties au-
thority name, service name, and service uri using exact string
matching. Module labels, descriptions, and scripts in scripted
modules are compared using Levenshtein edit distance.
• pw3 compares single attributes in the same way as pw0

but uses higher weights for labels, script and service uri,
followed by service name and service authority in the order
listed. This weighting resembles the proposal of [10].
• pll disregards all attributes but the labels and compares

them using the Levenshtein edit distance, which is the ap-
proach taken in [7].

B. Module Mapping

Structural comparison of two graphs may be carried out
by comparing all nodes of one graph to all nodes of the other
graph, or by first computing a node mapping which defines the
set of allowed node associations (often one-to-one). Only then
do graph operations such as node deletion or node insertion
make sense. In [14] we compared different strategies to obtain
such a mapping; in this work, we use two strategies, depending
on the amount of topological information available:

• maximum weight matching (mw) chooses the set of one-
to-one mappings that maximizes the sum of similarity values
for unorderes sets of nodes.
• maximum weight non-crossing matching (mwnc) [17]

requires an order on each of the two sets to be mapped to
be given by the graphs’ topological decompositions. Given two
ordered lists of modules (m1, ..mi, ..mk) and (m′1, ..m

′
j , ..m

′
l),

a mapping of maximum weight between the sets is computed
with the additional constraints no pair of mappings (mi,m

′
j)

and (mi+x,m
′
j−y) may exist with x, y ≥ 1.

C. Normalization

A difficult problem in topological comparison of workflows
is how to deal with differences in workflow size. In particular,
given a pair V , W of workflows where V ⊂W and |W | >>
|V |, what is their similarity? This decision typically is encoded
in a normalization of similarity values wrt the sizes of the two
workflows [14]. In this work, we use a variation of the Jaccard
similarity coefficient, which measures the similarity of two sets
A and B by their relative overlap: |A∩B|

|A|+|B|−|A∩B| . We modify
this formula because the methods for comparing modules do
not create binary decisions but instead return a similarity score;
details can be found in [14].

D. External Knowledge

When comparing two workflows, knowledge derived from
the entire workflow repository or even from external sources
may be taken into account. While this idea in theory could be
implemented by complex inferencing processes over process
ontologies and formal semantic annotations, our results in

[14] showed that the following two simple and efficiently
computable options are already quite effective:

• Importance Projection Preprocessing. Many modules
in real-world workflows actually convey little information
about workflow function, but only provide parameter settings,
perform simple format conversions, or unnest structured data
objects [18]. Importance projection is the process of remov-
ing such modules from a workflow prior to its comparison,
where the connectivity of the graph structure is retained by
transitive reduction of removed paths between the remaining
modules. Note that this method requires external knowledge
given in the form of a method to assess the contribution of
a given module to the workflow’s function, which is a rather
strong requirement. The implementation provided here relies
on manual assignments of importance based on the type of
operation carried out by a given module.
• Module Pair Preselection. Instead of computing all

pairwise module similarities for two workflows prior to further
topological comparisons, this method first classifies modules
by their type and then compares modules within the same
class. This reduces the number of (costly) module comparisons
and may even improve mapping quality due to the removal of
false mappings across types. Here, external knowledge must
be given in the form of a method assigning a predefined class
to each module.

IV. LAYER DECOMPOSITION WORKFLOW SIMILARITY

In this section, we present a novel approach, called Layer
Decomposition (LD), for structurally comparing two work-
flows. The fundamental idea behind LD is to focus on the
order in which modules are executed in both workflows by
only permitting mappings of modules to be used for similarity
assessment which respect this order (in a sense to be explained
below). Two observations led us to consider execution order
as a fundamental ingredient to workflow similarity. First, it
is intuitive: The function of a workflow obviously critically
depends on the execution order of its tasks as determined by
the direction of data links; even two workflows consisting of
exactly the same modules might compute very different things
if these modules are executed in a different order. Nevertheless,
most structural comparison methods downplay execution order.
For instance, it is completely lost when only module sets are
compared, and a few graph edits can lead to workflows with
very different execution orders (like swapping the first and
last of a long sequence of modules). Second, we observed in
our previous evaluation [14] that approaches to topological
workflow comparison which put some focus on execution
order are much more stable across different configurations
of the remaining steps of the workflow comparison process.
In particular, comparing two graphs using their path sets,
i.e., the set of all paths from a source to a sink, produced
remarkably stable results both with and without the use of
external knowledge. Inclusion of such knowledge in workflow
comparison had among the largest impact on the overall
performance of methods, but requires corpus-specific expert
intervention. Based on these findings, developing methods
that achieve retrieval results of high quality without requiring
external knowledge seemed like a promising next step.

In the following, we first explain how LD extracts an or-
dering of workflow modules from the workflow DAG. We then

Fig. 3: Sample layer decomposition and layer mapping of
scientific workflows (a) 1189, (b) 2805; see also Fig. 1).

show in Section IV-B how two workflows can be effectively
compared using this partial ordering. Finally, we explain in
Section IV-C how normalization is performed.

A. Topological Decomposition

The linearization (or topological sort) of a DAG is an
ordering of its nodes V such that node u precedes node v
in the ordering, if an edge (u, v) exists. Obviously, a DAGs
linearization can be computed in linear time using topological
sorting; however, it is generally not unique. As the quality of
the subsequent mapping (see below) depends on the concrete
linearizations chosen for the two workflows under consider-
ation, it is important to find a good pair of linearizations,
i.e., linearizations such that highly similar modules will later
get mapped onto each other. Since the number of possible
linearizations is Ω(n!) (where n is the number of modules in a
workflow), assessing all possible pairs is generally infeasible;
it is also infeasible in practice, as many real life workflows
have many different linearizations (for instance, 23.5% of the
1485 Taverna workflows in our evaluation set have more than
100 different linearizations).

We tackle this problem by representing all possible lin-
earizations of a given workflow in a concise data structure.
Observe that a DAG has more than one linearization iff
between two consecutive nodes in one of its linearizations no
direct datalink exists, because in this case swapping the two
nodes creates another linearization. In all such cases, we tie the
two nodes in question into a single position in the ordering.
We call such a tie at position i a layer Li. Compacting all
sequences of two or more swappable nodes of a linearization
in this way yields a layered ordering of the DAG which we
call its layer decomposition LD = (L1, .., Li, .., Lk). Note
that the layer decomposition of a DAG is unique, as a) layers
themselves are orderless sets of modules, and b) following
from the definition of the underlying linearization, for any
Li and Lj such that i < j, for every v ∈ Lj , there is
some u ∈ Li which precedes v in every linearization, which
c) uniquely defines the positions of Li and Lj within the
decomposition. To compute a workflow’s layer decomposition,
we use a simple iterative algorithm. First, all modules with in-
degree 0 (the DAGs source nodes) form the top layer L1. These
modules and all their outbound data links are removed from
the workflow; this process is repeated until no more modules
remain. Figure 3 shows the layer decompositions of the sample
workflows introduced in Figure 1. In the figure, the different

Fig. 4: Overview of workflow comparison applied by LD

layers are visually aligned to reflect their mapping, as it is
derived in the following step.

B. Topological Comparison

The layer decomposition of a workflow partitions its mod-
ule set by execution order creating an ordered list of module
subsets. To compare the layer decompositions LD and LD′ of
two workflows wf and wf ′, respectively, we take a two-phase
approach, sketched in Figure 4. First, pairwise similarity scores
for each pair of layers (L,L′) ∈ LD × LD′ are computed
from the modules they contain using the maximum weight
matching (mw), based on the similarity values p(m,m′)
derived by a given module comparison scheme as introduced
in Section III-B:

layersim(L,L′) =
∑

p(m,m′) | (m,m′) ∈ mw(L,L′)

In the second phase, the ordering of the layers - and thus
of the modules they are comprised of - is exploited to compute
the decompositions’ maximum weight non-crossing matching
(mwnc) with the pairwise similarities of layers from phase
one. The resulting layer-mapping serves as the basis for the
overall (yet non-normalized) similarity score of the compared
workflows using LD:

nnsimLD(wf,wf ′) =∑
layersim(L,L′) | (L,L′) ∈ mwnc(LD,LD′)

C. Normalization

As done for all other methods we shall compare to, we
normalize the similarity values computed by LD using the
Jaccard variation described in Section III-C. Thus, the final,
normalized LD-similarity is computed as:

simLD(wf,wf ′) =
nnsimLD

|LD|+ |LD′| − nnsimLD
.

We analogously normalize layersim(L,L′) by |L| and |L′|.
This way, if two workflows are identical, each layer has a
mapping with a similarity value of 1. Then nnsimLD =
|mwnc(LD,LD′)| = |LD| = |LD′|, and simLD = 1.

TABLE I: Algorithm shorthand notation overview

Notation Description
A

lg
or

ith
m

s

LD Layer Decomposition topological comparison
MS Module Sets topological comparison
PS Path Sets topological comparison
GE Graph Edit Distance topological comparison
BW Bag of Words annotation based comparison
BT Bag of Tags annotation based comparison

C
on

fig
ur

at
io

ns

np No structural preprocessing of workflows
ip Importance projection workflow preprocessing
ta No module pair preselection for comparison
te Type equivalence based module pair preselection

pw0 Module comparison with uniform attribute weights
pw3 Module comparison on tuned attribute weights
pll Module comparison by edit distance of labels only

V. EVALUATION

We evaluate our novel Layer Decomposition algorithm on
a gold standard corpus of workflow similarity ratings given
by workflow experts. We therein use the data and setup from
[14]1. The corpus contains 2424 similarity ratings from 15
experts from four countries for 485 workflow pairs from a set
of 1485 Taverna workflows, given along a four step Likert
scale [19] with the options very similar, similar, related, and
dissimilar plus an additional option unsure. The ratings are
grouped by 24 query workflows. Each query workflow has a
list of 10 workflows compared to it, which are ranked by a
consensus computed from the experts rankings using BioCon-
sert Median Ranking [20]. These rankings are used to evaluate
the algorithms performance in workflow ranking. For 8 of
the query workflows, additional expert ratings are available
covering all workflows which were ranked among the top-
10 most similar workflows by a selection of algorithms to be
further evaluated, when run against the entire workflow corpus.
These are used to assess workflow retrieval performance.

Using this corpus, we compare the LD algorithm against
approaches based on Module Sets, Path Sets, Graph Edit
Distance, Bags of Words, and Bags of Tags (as presented in
Section II). First, we investigate the algorithms’ performance
in the tasks of workflow ranking (Section V-A) and workflow
retrieval (V-B). Second, we compare the runtimes of the differ-
ent topological comparison methods (V-C). Third, we evaluate
whether the successive application of multiple algorithms in
retrieval can improve result quality and its implications on
runtime (V-D). Finally, in Section V-E we shall confirm the
previous results on ranking performance using a second data
set, from the Galaxy repository.

A. Workflow Ranking

To evaluate ranking performance, we use the measures of
ranking correctness and completeness [7], [21]. For ranking
correctness, the order of each pair of elements in the experts’
consensus ranking and the algorithmic ranking is compared,
counting pairs sharing the same order and pairs that don’t,
to determine the correlation of the compared rankings. Values
range from -1 to 1, where 1 indicates full correlation of the
rankings, 0 indicates that there is no correlation, and negative
values are given to negatively correlated rankings. Ranking

1All ratings and workflows are available at https://www.informatik.hu-
berlin.de/forschung/gebiete/wbi/resources/flowalike.

al
go

rit
hm

s

ranking correctness

User: BioConsert5, Workflow: mean

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
GE_np_ta_pw0: 0.631
GE_np_ta_pll: 0.67

GE_np_ta_pw3: 0.693

MS_np_ta_pw0: 0.705

GE_ip_te_pw0: 0.705

GE_ip_te_pll: 0.722

GE_ip_te_pw3: 0.732

PS_np_ta_pw0: 0.744
LD_np_ta_pw0: 0.759

BT: 0.765

MS_ip_te_pw0: 0.766

LD_ip_te_pw0: 0.81

BW: 0.819

PS_np_ta_pll: 0.821
PS_ip_te_pw0: 0.822

PS_ip_te_pll: 0.827

MS_np_ta_pw3: 0.829

PS_np_ta_pw3: 0.835

MS_np_ta_pll: 0.84

PS_ip_te_pw3: 0.844

LD_ip_te_pll: 0.856
MS_ip_te_pll: 0.869

LD_ip_te_pw3: 0.869

MS_ip_te_pw3: 0.871

LD_np_ta_pll: 0.88

LD_np_ta_pw3: 0.889

Fig. 5: Mean ranking correctness (bars) with upper and lower
stddev (errorbars), and mean ranking completeness (black
squares) over 24 lists of 10 workflows for different algorithms
and configurations (see Table I for notation).

al
go

rit
hm

s

ranking correctness

User: BioConsert5, Workflow: mean

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
ensmbl(BW,GE): 0.703

ensmbl(BW,PS): 0.885

ensmbl(BW,MS): 0.629

ensmbl(BW,LD): 0.914

(a)

al
go

rit
hm

s

ranking correctness

User: BioConsert5, Workflow: mean

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
ensmbl(BW,GE): 0.742

ensmbl(BW,PS): 0.923

ensmbl(BW,MS): 0.906

ensmbl(BW,LD): 0.934

(b)

Fig. 6: Mean ranking results for ensembles of BW and struc-
tural algorithms (a) without and (b) with ip and te, each using
pll module comparison.

completeness, on the other hand, measures the number of pairs
of ranked elements that are not tied in the expert ranking, but
tied in the evaluated algorithmic ranking. The objective here
is to penalize the tying of elements by the algorithm when the
user distinguishes their ranking position.

Figure 5 shows ranking performance for simLD in direct
comparison to simMS , simPS , simGE , and the annotation
based measures simBW and simBT . Results are sorted by
mean ranking correctness. Each algorithm is applied in a
variety of different configurations (see Sections III-A and D for
options; see Table I for notation overview). Regarding ranking

k

pr
ec
is
io
n

User: median, Workflow: mean, Relevance: >=related

MS_ip_te_pll LD_ip_te_pll
PS_ip_te_pll MS_np_ta_pll
LD_np_ta_pll PS_np_ta_pll

1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

0.8

1

(a) k

pr
ec
is
io
n

User: median, Workflow: mean, Relevance: >=similar

MS_ip_te_pll LD_ip_te_pll
PS_ip_te_pll MS_np_ta_pll
LD_np_ta_pll PS_np_ta_pll

1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

0.8

1

(b)

Fig. 7: Mean retrieval precision at k against the median expert rating for structural similarity algorithms for relevance threshold
(a) related, and (b) similar. Algorithms used with module similarity by edit distance of labels (pll), with and without ip and te.

k

pr
ec
is
io
n

User: median, Workflow: mean, Relevance: >=related

LDpml25_np_ta_pll
LD_np_ta_pll
MS_np_ta_pll

1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

0.8

1

(a) k

pr
ec
is
io
n

User: median, Workflow: mean, Relevance: >=similar

LDpml25_np_ta_pll
LD_np_ta_pll
MS_np_ta_pll

1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

0.8

1

(b)

Fig. 8: Mean retrieval precision at k for similarity algorithms MS and LD and refined LD penalizing mismatched layers exceeding
25% of the larger workflows layers (LDpml25) for relevance thresholds by median expert rating of (a) related, and (b) similar.

correctness, several observations can be made: Firstly, simLD

provides best results. Secondly, both simLD and simPS

provide most stable results across different configurations.
Performance of simMS , on the other hand, varies with the
quality of the module comparison scheme used, and especially
with the use of external knowledge in terms of ip. Thirdly,
while simMS , when configured properly, can achieve ranking
correctness values comparable to the best results of simLD,
simPS is generally slighly behind simLD. In contrast, simGE ,
putting a high emphasis on overall workflow structure, does not
provide competitive results; we therefore omit it in all further
evaluations. As for ranking completeness, we see that both
simLD and simPS fully distinguish all workflows in terms
of their similarity to the query workflows where users make a
distinction as well. The ranking provided by simMS , on the
other hand, is often only near-complete.

Figure 6 shows the results of selected ensembles of dif-
ferent base methods using mean similarity values. Generally,
result quality improves considerably. For instance, the top
performing standalone configuration of simLD achieves a
ranking correctness of 0.889, and is not only outperformed by
its combination with simBW by 2.5 %-points, but especially in
terms of stability of results across different query workflows,
as apparent from the standard deviations from the mean. The
ensembles including simLD deliver better results than other
ensembles especially when no external knowledge is used.

B. Workflow Retrieval

Figure 7 shows mean precision at k [22] for each position
in the top-10 results returned by each of the algorithms. We
focus our presentation on configurations using the pll module
comparison scheme. Comparing simMS , simLD, and simPS ,
Figure 7a shows that when treating results as relevant with a
median expert rating of at least related, all algorithms deliver
results of similar (very high) quality. The usage of ip and
te improves results for all algorithms. While this may seem a
contradiction to the more distinguished results of the workflow
ranking experiment at first, it has to be kept in mind that
differences in ratings between the results retrieved are not
considered for evaluation of retrieval precision. This becomes
more clear when inspecting algorithmic retrieval performance
for a relevance threshold of similar (Fig. 7b). Here, the
improved ranking of simLD is reflected both by a slight
advantage in the very top results returned, especially when
ip is used, and by a more pronounced improvement of mean
retrieval performance for the second half of the top-10 results.

Detailed inspection of the workflows retrieved by each of
the algorithms revealed that the nature of simLD’s topological
comparision favours retrieval of perfectly matching substruc-
tures over global workflow matches with slightly reduced pair-
wise layer similarities, due to the way the structural complexity
of the workflows is reduced to a more ’fuzzy’ representation
in the layers. This behaviour results in some false positive

Fig. 9: Algorithm runtimes by workflow size.

retrievals for a small fraction of the query workflows used. To
account for this, we extended the original algorithm by adding
a penalty for layers not matched in the maximum weight non
crossing matching, when the number of such mismatched lay-
ers exceeds a configurable percentage of the layers in the larger
of the compared workflows (i.e., the maximum number of
layers that could possibly be matched). Setting this allowance
to 25% notably improves retrieval performance of simLD,
as shown in Figure 8. Yet, selection of the right mismatch
allowance to be used depends on the concrete dataset, and, as
such, requires prior, in depth knowledge about the repository
to be queried. We thus refrain from applying this extension in
the remainder of this evaluation.

C. Runtime

It can be expected that the topological comparison per-
formed by the Layer Decomposition algorithm entails a penalty
in runtime when compared to the topology-agnostic Module
Set approach. Here, we investigate how big this penalty is, how
it compares to other algorithms, and how much it depends on
the sizes of the compared workflows by measuring runtimes for
simLD, simMS , and simPS . For runtime measurement, each
of the 1485 workflows in our dataset was compared against
itself by each of the algorithms to obtain an unbiased sample
wrt typical workflow sizes. Each comparison was done 5 times
and results were averaged.

Figure 9 shows average runtimes, grouped by workflow
sizes ranging from 1 to 437 modules. The average number of
modules per workflow in our dataset is 11.4 (see also [18],
[23]). Note that the figure only shows the time taken for the
actual topological comparison. Steps that can be performed
offline or only have to be performed once per query execution,
such as decomposition of the workflows into the sets of paths
or layers, are not considered; module similarities have been
precomputed and cached. While runtimes of all algorithms are
comparably low for workflow sizes up to around 15 modules,
clearly, the only algorithm with acceptable runtimes for larger
workflows is simMS . simPS runtimes vary greatly, as these
are dominated by the number of paths the compared workflows
contain. This variance is reduced for simLD, which only needs
to compare one pair of decompositions per workflow, resulting
in a substantial speedup. Yet, with increasing workflow size
and increasing numbers of multi-module layers, runtimes are
much higher than with simple Module Set comparison.

D. Reranked Retrieval Results

Given the findings regarding the deterred runtime of
simLD and the fact that external knowledge to be used in
workflow comparison such as ip and te incurs a severe data
acquisition bottleneck, we speculated whether the results of
the (fast) Module Set comparison algorithm can be improved
- without external knowledge - by merging them with the
high-quality ranking performance of simLD. We therefore
performed an experiment where we reranked the top retrieval
results of simMS by the ensemble of simBW and simLD.
Figure 10 shows retrieval precision for simMS , simLD, and
simBW on their own, and for the reranked top 24 search
results of simMS . Especially for the relevance threshold of
related, reranking the results clearly improves performance
and makes it comparable to that of algorithm configurations
including external knowledge. For a threshold of similar, the
benefit is less pronounced, yet still observable. We believe that
studying in more detail such reranking methods, especially
focussing on the trade-off between runtime and result quality,
are a prospective venue for further research.

E. Applicability to Other Datasets

Our gold standard corpus also includes a second set
of workflows from another workflow repository, namely the
public Galaxy workflow repository. For 8 query workflows,
rated lists of compared workflows are available to evaluate
ranking performance. This dataset differs from the previous
one in various respects: Galaxy workflows are exclusive to
the Bioinformatics area, the repository is smaller and curated
by a smaller group of people, the annotation is generally
more sparse (no tags etc.), and the modules used are only
local executables (no web services as frequently used in
Taverna). Looking at such diverse data sets is important to
show robustness of any evaluation results.

Figure 11 shows ranking correctness for simMS , simLD,
and simPS on this second dataset. The module comparison
schemes used are gw1, comparing a selection of attributes
with uniform weights, and gll, comparing only module labels
by their edit distance. While results are generally less good
than on the myExperiment data set, simLD here even more
clearly outperforms the other algorithms. We are currently
looking to extend this dataset to be able to perform a more
complete evaluation and to trace back the observed differences
in ranking performance to properties of the data set.

VI. CONCLUSION

We introduced Layer Decompositon (LD), a novel approach
for workflow comparison specifically tailored to measuring the
similarity of scientific workflows. We comparatively evaluated
this algorithm against a set of state-of-the art contenders in
terms of workflow ranking and retrieval. We showed that LD
provides the best results in both tasks, and that it does so across
a variety of different configurations - even those not requiring
extensive external knowledge. Results in ranking could be
confirmed using a second data set. Considering runtime, we
not only showed our algorithm to be faster than other structure-
aware approaches, but demonstrated how different algorithms
can be combined to reduce the overall runtime while achieving
comparable, or even improved result quality.

k

pr
ec

is
io

n
User: median, Workflow: mean, Relevance: >=related

rerank(24 from MS_np_ta_pll by meansim(BW,LD_np_ta_pll)
LD_np_ta_pll
MS_np_ta_pll
BW

1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

0.8

1

(a) k

pr
ec

is
io

n

User: median, Workflow: mean, Relevance: >=similar

rerank(24 from MS_np_ta_pll by meansim(BW,LD_np_ta_pll)
LD_np_ta_pll
MS_np_ta_pll
BW

1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

0.8

1

(b)

Fig. 10: Mean retrieval precision at k against the median expert rating for similarity algorithms MS, LD and BW, and the top
24 results of MS reranked by the ensemble of BW and LD, for relevance threshold (a) related, and (b) similar.

al
go

rit
hm

s

ranking correctness

User: BioConsert5, Workflow: mean

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
PS_gll: 0.39

PS_gw1: 0.385

LD_gll: 0.465

LD_gw1: 0.465

MS_gll: 0.357

MS_gw1: 0.42

Fig. 11: Mean ranking results on Galaxy workflows (see text).

Though we did consider runtimes, our evaluation clearly
focusses on the quality of ranking and retrieval. Real-time
similarity search at repository-scale will require further efforts
in terms of properly indexing workflows. Such indexing of
workflows is straightforward when considering only their
modules (like in simMS), but requires more sophisticated
methods when also topology should be indexed. Therefore, our
approach of stacking Layer Decomposition-based ranking onto
workflow retrieval by modules provides a good starting place
for applying structure-based workflow similarity to scientific
workflow discovery to scale.

ACKNOWLEDGMENT

This work was partly funded by DFG grant GRK1651,
DAAD grants D1240894 and 55988515, and PHC Procope
grant. Work of SCB partly done in the context of the Institut
de Biologie Computationnelle, Montpellier, France.

REFERENCES

[1] P. Mates, E. Santos, J. Freire, and C. Silva, “Crowdlabs: Social analysis
and visualization for the sciences,” SSDBM, pp. 555–564, 2011.

[2] “SHIWA workflow repository,” http://shiwa-repo.cpc.wmin.ac.uk.
[3] J. Goecks, A. Nekrutenko, and J. Taylor, “Galaxy: a comprehensive

approach for supporting accessible, reproducible, and transparent com-
putational research in the life sciences.” Genome Biology, vol. 11, no. 8,
p. R86, 2010.

[4] D. Roure, C. Goble, and R. Stevens, “The design and realisation of
the myexperiment virtual research environment for social sharing of
workflows,” Future Generation Computer Systems, vol. 25, no. 5, pp.
561–567, 2009.

[5] S. Cohen-Boulakia and U. Leser, “Search, Adapt, and Reuse: The
Future of Scientific Workflow Management Systems,” SIGMOD Record,
vol. 40, no. 2, pp. 6–16, 2011.

[6] A. Goderis, P. Li, and C. Goble, “Workflow discovery: the problem,
a case study from e-Science and a graph-based solution,” ICWS, pp.
312–319, 2006.

[7] R. Bergmann and Y. Gil, “Similarity assessment and efficient retrieval
of semantic workflows,” Information Systems, vol. 40, pp. 115–127,
2012.

[8] N. Friesen and S. Rüping, “Workflow Analysis Using Graph Kernels,”
SoKD, 2010.

[9] E. Santos, L. Lins, J. Ahrens, J. Freire, and C. Silva, “A First Study on
Clustering Collections of Workflow Graphs,” IPAW, pp. 160–173, 2008.

[10] V. Silva, F. Chirigati, K. Maia, E. Ogasawara, D. Oliveira, V. Bragan-
holo, L. Murta, and M. Mattoso, “Similarity-based Workflow Cluster-
ing,” CCIS, vol. 2, no. 1, pp. 23–35, 2010.

[11] J. Stoyanovich, B. Taskar, and S. Davidson, “Exploring repositories of
scientific workflows,” WANDS, pp. 7:1–7:10, 2010.

[12] X. Xiang and G. Madey, “Improving the Reuse of Scientific Workflows
and Their By-products,” ICWS, pp. 792–799, 2007.

[13] F. Costa, D. d. Oliveira, E. Ogasawara, A. Lima, and M. Mattoso,
“Athena: Text Mining Based Discovery of Scientific Workflows in
Disperse Repositories,” RED, pp. 104–121, 2010.

[14] J. Starlinger, B. Brancotte, S. Cohen-Boulakia, and U. Leser, “Similarity
Search for Scientific Workflows,” PVLDB, vol. 7, no. 12, 2014.

[15] J. Corrales, D. Grigori, and M. Bouzeghoub, “BPEL Processes Match-
making for Service Discovery,” CoopIS, 2006.

[16] J. Krinke, “Identifying similar code with program dependence graphs,”
WCRE, pp. 301–309, 2001.

[17] F. Malucelli, T. Ottmann, and D. Pretolani, “Efficient labelling al-
gorithms for the maximum noncrossing matching problem,” Discrete
Applied Mathematics, vol. 47, no. 2, pp. 175–179, 1993.

[18] J. Starlinger, S. Cohen-Boulakia, and U. Leser, “(Re)Use in Public
Scientific Workflow Repositories,” SSDBM, pp. 361–378, 2012.

[19] R. Likert, “A technique for the measurement of attitudes,” Archives of
Psychology, 1932.

[20] S. Cohen-Boulakia, A. Denise, and S. Hamel, “Using medians to
generate consensus rankings for biological data,” SSDBM, pp. 73–90,
2011.

[21] W. Cheng, M. Rademaker, B. Baets, and E. Hüllermeier, “Predicting
partial orders: ranking with abstention,” ECML/PKDD, pp. 215–230,
2010.

[22] F. McSherry and M. Najork, “Computing information retrieval perfor-
mance measures efficiently in the presence of tied scores,” Advances in
Information Retrieval, 2008.

[23] I. Wassink, P. Vet, K. Wolstencroft, P. Neerincx, M. Roos, H. Rauwerda,
and B. T.M., “Analysing Scientific Workflows: Why Workflows Not
Only Connect Web Services,” Services, pp. 314–321, 2009.

