Aufgabenblatt 5

Silke Trißl Wissensmanagement in der Bioinformatik

Zuerst!

FRAGEN?

Exercise 1 + 2

- Modify program to
 - compare protein sequence
 - read substitution matrix from a file
- Compare results quantitatively
 - identity matrix (InsDelRep = -1, Match = +1)
 - different BLOSUM Matrix
- BUT: let's repreat first

Substitutionsmatrix

- Matrizen für Proteine
 - PAM = Point accepted mutations
 - BLOSUM = Blocks substitution matrix
- Stellen für jedes Paar von Aminosäuren einen Substitutionswert zur Verfügung
- PAM und BLOSUM beruhen auf beobachteten Übergängen von Aminosäuren

PAM

- PAM: Zwei Bedeutungen
 - 1 PAM Einheit für den Abstand von Proteinsequenzen
 - PAM-X Matrix Berechnete Substitutionsmatrix für zwei Sequenzen, die X PAM entfernt sind
- Definition
 Seien S1 und S2 zwei Proteinsequenzen mit |S1|=|S2|. S1 und S2 heißen x PAM entfernt, wenn S1 in S2 überführt wurde mit x Punktmutationen pro 100 Aminosäuren

Berechnung von PAM

- Gegeben:
 - n Alignments von je 2 Proteinsequenzen
 - sehr ähnliche Proteinsequenzen (> 85 %)

```
ATGCCGTA
ATG_CCTA

CGCCACGT
_GCCTCGT

TCGCAGTA
TCG GG A
```


Berechnung von PAM

Ziel:

- Zahlenwert für ein Paar von Aminosäuren
 - 0, wenn beobachteter = erwarteter Übergang
 - > 0, wenn beobachteter > erwarteter Übergang
 - < 0, wenn beobachteter < erwarteter Übergang</p>

```
A R N D C Q E G H I L K M F P S T W Y V B Z X *

A 5 -2 -2 -3 -1 -1 -2 -1 -3 -3 -3 -3 -2 -2 -4 -1 1 -1 -4 -4 -1 -3 -2 -1 -7

R -2 7 -1 -3 -5 0 -2 -4 -1 -4 -4 2 -2 -4 -3 -2 -2 -4 -3 -4 -2 -1 -2 -7

N -2 -1 7 1 -4 -1 -1 -2 0 -5 -5 -1 -4 -5 -4 0 -1 -6 -3 -4 4 -1 -2 -7

D -3 -3 1 7 -5 -2 1 -3 -2 -6 -6 -2 -5 -5 -3 -1 -2 -7 -5 -5 4 0 -3 -7

C -1 -5 -4 -5 9 -5 -6 -5 -5 -2 -3 -5 -3 -3 -5 -2 -2 -5 -4 -2 -5 -6 -3 -7

Q -1 0 -1 -2 -5 7 1 -3 0 -4 -3 1 -1 -4 -2 -1 -2 -5 -4 -3 0 5 -2 -7

G -1 -4 -2 -3 -5 -3 -4 6 -4 -6 -5 -3 -5 -5 -4 -1 -3 -5 -6 -5 -2 -4 -3 -7

H -3 -1 0 -2 -5 0 -1 -4 9 -5 -4 -2 -3 -2 -3 -3 1 -5 -1 -1 -2 -7

I -3 -4 -5 -6 -2 -4 -5 -6 -5 5 1 -4 1 -1 -4 -4 -2 -1 -2 -5 -4 -3 0 5 -2 -7

K -2 2 -1 -2 -5 1 0 -3 -2 -4 -4 6 -2 -4 -2 -1 -2 -3 -3 1 -5 -1 -1 -2 -7

K -2 2 -1 -2 -5 1 0 -3 -2 -4 -4 6 -2 -4 -2 -1 -2 -3 -3 1 -5 -1 -1 -2 -7

F -4 -4 -5 -5 -3 -1 -4 -5 -5 -2 -1 0 -4 -1 7 -5 -3 -3 0 3 -2 -5 -5 -3 -7

P -1 -3 -4 -5 -6 -3 -3 -5 -5 -2 -1 0 -4 -1 7 -5 -3 -3 0 3 -2 -5 -5 -3 -7

P -1 -3 -4 -3 -5 -3 -4 -5 -5 -2 -1 0 -4 -1 7 -5 -3 -3 0 3 -2 -5 -5 -3 -7

P -1 -3 -4 -3 -5 -3 -4 -5 -5 -2 -1 0 -4 -1 7 -5 -3 -3 0 3 -2 -5 -5 -3 -7

P -1 -3 -4 -3 -5 -2 -3 -4 -3 -4 -3 -4 -2 -4 -5 8 -2 -3 -6 -5 -4 -3 -3 -7

P -1 -3 -4 -3 -5 -5 -3 -4 -5 -5 -2 -1 0 -4 -1 7 -5 -3 -3 0 3 -2 -5 -5 -3 -7

P -1 -3 -4 -3 -5 -5 -3 -4 -5 -5 -2 -1 0 -4 -1 7 -5 -3 -3 0 3 -2 -5 -5 -3 -7

P -1 -3 -4 -3 -5 -5 -3 -4 -5 -5 -2 -1 0 -4 -1 7 -5 -3 -3 0 3 -2 -5 -5 -3 -7

P -1 -3 -4 -3 -5 -5 -3 -4 -3 -4 -4 -2 -4 -5 8 -2 -3 -6 -5 -4 -3 -3 -3 -7

P -1 -3 -4 -3 -5 -5 -3 -5 -5 -2 1 0 -4 -1 7 -5 -3 -3 0 3 -2 -5 -5 -3 -1 -1 -1 -7

T -1 -2 -1 -2 -2 -2 -2 -3 -3 -3 -5 -5 -5 -1 0 -4 -1 7 -5 -3 -3 0 3 -2 -5 -5 -3 -7

P -1 -3 -4 -5 -5 -3 -4 -5 -5 -5 -2 -1 0 -4 -1 7 -5 -3 -3 1 8 -3 -1 -1 -1 -7

T -1 -2 -1 -2 -1 -2 -2 -2 -2 -3 -3 -3 -5 -5 -3 -1 -2 -4 -4 -5 -3 -1 -2 -6 -4 -5 4 0 -2 -7

W -4 -4 -5 -5 -3 -5 -5 -5 -5 -5 -1 -4 -5 -3 -3 -1 -2 -6 -4 -5 4 0 -2 -7

Z -2 -1 -1 0 -6 3 5 -4 -1 -4 -4 0 -3 -5 -3 -1 -2 -4 -4 -3 0 4 -2 -7
```


PAM Matrizen

- Definition
 - Seien $(S_{1,1}, S_{2,1}), ..., (S_{1,n}, S_{2,n})$ Paare von Sequenzen, die jeweils x PAM entfernt sind. Dann ist die PAM-x Matrix M_x wie folgt definiert:
 - Sei f(i) die relative Häufigkeit der Aminosäure A_i
 - Seien alle Paare optimal aligniert
 - Sei f(i,j) die relative Übergangshäufigkeit von A_i zu A_j in allen alignierten Paaren
 - Übergang ist "richtungslos": f(i,j) = f(j,i)
 - Paare (A_x, _) werden ignoriert
 - f(i,j) wird auf die Gesamtzahl aller Paare ohne INSDEL normiert
 - Damit:

$$M_{x}(i,j) = \log \left(\frac{f(i,j)}{f(i) * f(j)} \right)$$

٧

Erläuterung

- Log-Odds Ratio
- Bruch
 - Verhältnis der beobachteten Ersetzung zu den erwarteten Übersetzungen bei statistischer Unabhängigkeit

$$M_x(i,j) = \log \left(\frac{f(i,j)}{f(i) * f(j)} \right)$$

- M(i,j) = 0 (Bruch = 1)
 - Keine Selektion Anzahl Übergänge entspricht statistischer Erwartung
- M(i,j) < 0 (Bruch < 1)
 - Negative Selektion Übergang wird unterdrückt
- M(i,j) > 0 (Bruch > 1)
 - Positive Selektion Übergang wird bevorzugt

Beispiel - PAM

$$M_x(i,j) = \log\left(\frac{f(i,j)}{f(i)*f(j)}\right)$$

Gesucht:

ATGCCGTA ATG_CCTA M(G,G) M(G,A) M(G,C) $M(G,G) = \log\left(\frac{\frac{5}{20}}{\frac{12}{44} * \frac{12}{44}}\right) = 0,53$

CGCCACGT GCCTCGT

#N = 44 #G = 12#A = 8

#C = 14

 $M(G,A) = \log \left(\frac{\frac{1}{20}}{\frac{12}{44} * \frac{8}{44}}\right) = 0.00$

TCGCAGTA TCG GG A

> #Paare = 20 #GG = 5 #GA = 1 #GC = 1

$$M(G,C) = \log\left(\frac{\frac{1}{20}}{\frac{12}{44} * \frac{14}{44}}\right) = -0.24$$

Substitutionsmatrix fürs Alignment

- Gleiches Prinzip wie zur Berechnung des Editabstands
- Nur kleine Veränderungen

$$d(i,0) = \sum_{k=1}^{i} s(A[k], _) \qquad d(0,j) = \sum_{k=1}^{j} s(_, B[k])$$

$$d(i, j - 1) + s(_, B[j])$$

$$d(i, j) = \max \begin{cases} d(i, j - 1) + s(_, B[j]) \\ d(i - 1, j) + s(A[i], _) \\ d(i - 1, j - 1) + s(A[i], B[j]) \end{cases}$$

Und jetzt in Java

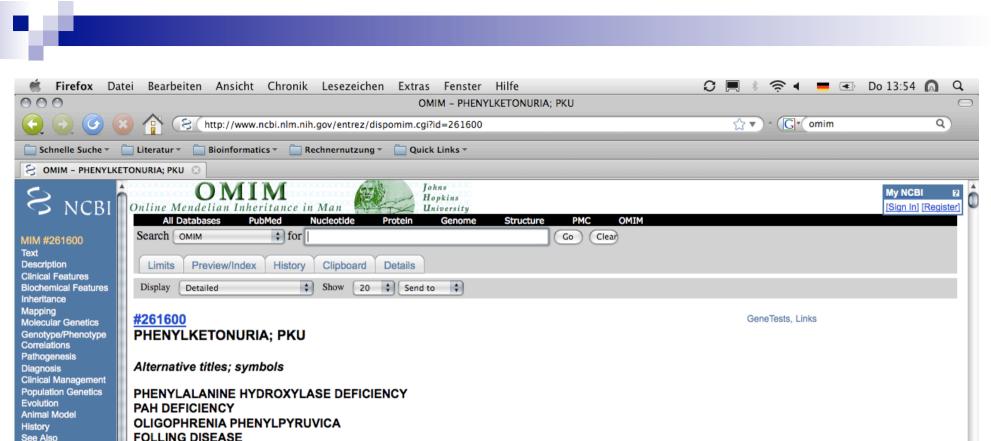
- Einlesen der Matrix
 - Positionen der einzelnen Zeichen merken
 - Eindimensionales Array letters
 - Zahlenwerte für Zeichenpaar
 - Zweidimensionales Array substValues
- Schreiben der Funktion s(char1, char2)

Exercise 2

Ergebnis:

MAGQAFRKFLPLFDRVLVERSAAETVTKGGIMLPEKSQGKVLQATVVAVGS M GQAFRKFL + DRVLVER+AAE V KGGIMLPEKSQGKVLQ TVVAVGS MTGQAFRKFLLIADRVLVERNAAEIVAKGGIMLPEKSQGKVLQGTVVAVGS

GSKGKGGEIQPVSVKVGDKVLLPEYGGTKVVLDDKDYFLFRDGDILGKYVD
G KGK GEI+PVSVKVGDKVLLPEYGG +VVLDDK D
GRKGKSGEIEPVSVKVGDKVLLPEYGGNEVVLDDK D


Matrix	Alignmentscore	# Alignments
Einheitsmatrix	47	30
Blosum50	394	30
Blosum62	306	15
Blosum80	297	15
Blosum100	323	15

Silke Trißl: Bioinformatik für Biophysiker

Exercise 3

- Phenylketonuria
 - Erbkrankheit
- OMIM Online Mendelian Inheritance in Man
 - Datenbank über Erbkrankheiten beim Menschen
 - Kuriertes Wissen zusammengetragen
 - Gen, Erscheinungsformen, Therapien, ...

FOLLING DISEASE HYPERPHENYLALANINEMIA, NON-PKU MILD, INCLUDED HPA, NON-PKU MILD, INCLUDED PHENYLKETONURIA, MATERNAL, INCLUDED Gene map locus 12q24.1 TEXT A number sign (#) is used with this entry because phenylketonuria (PKU) and non-PKU mild hyperphenylalaninemia (HPA) result from mutations in the PAH gene (612349)DESCRIPTION Dhanulkatonuria (DKII) is an autocamal recessive inharm error of matchalism resulting from a deficiency of phanulalaning hydroxylase (DAU: 619240), an anzuma that Abwärts Aufwärts (Hervorheben) Groß-/Kleinschreibung

References

Contributors

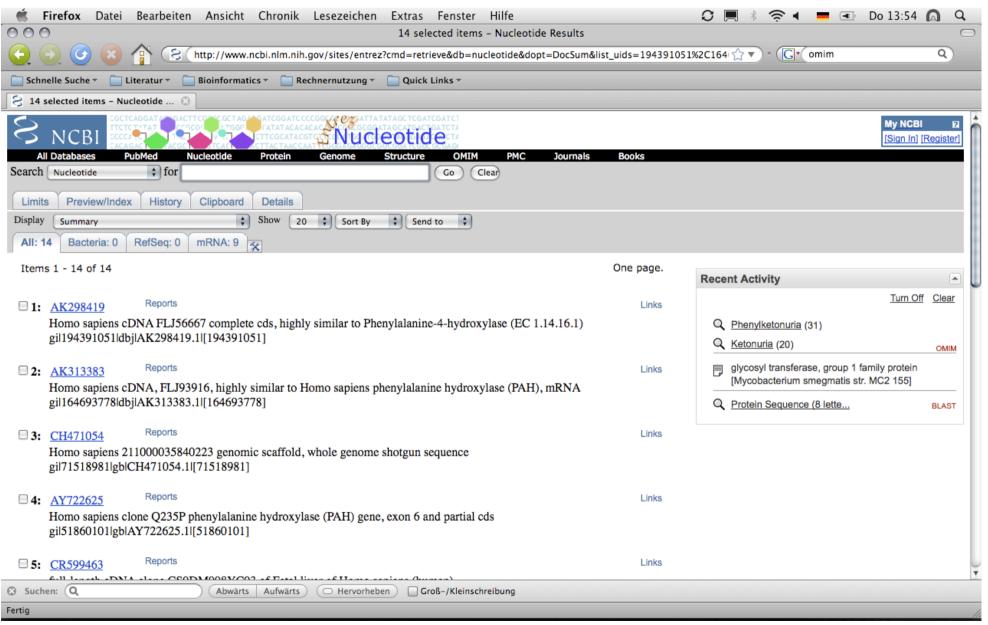
Edit History

PathwayEntrez Gene

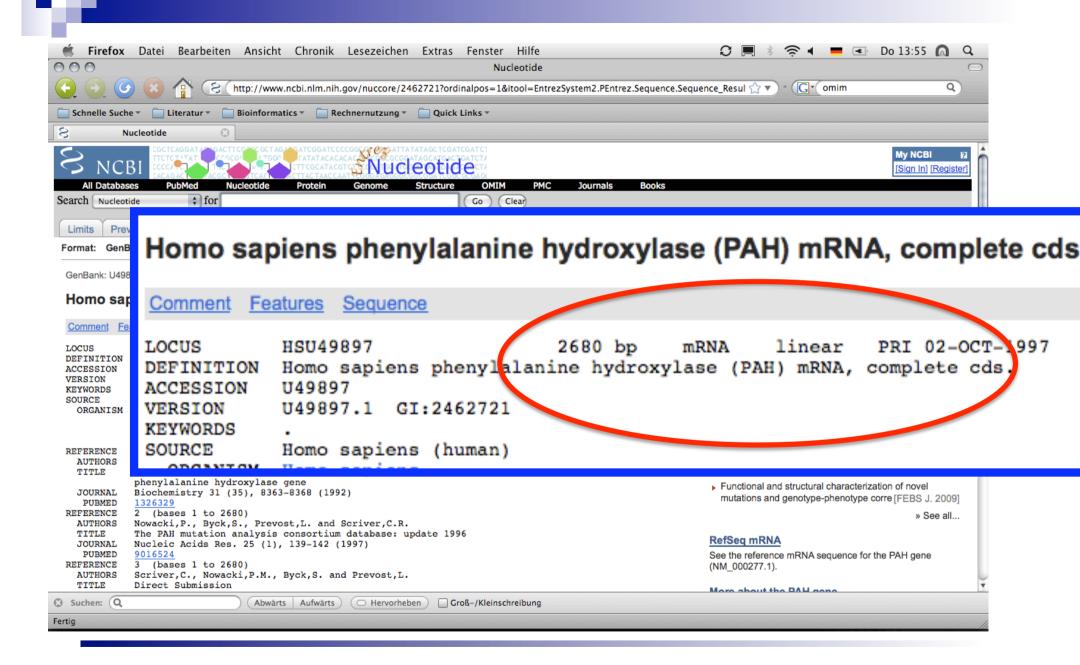
RefSeq GenBank

Protein UniGene

Fertig


3 Suchen: Q


Creation Date


Clinical SynopsisGene map

Nomenclature

BLAST Parameter

- Zunächst
 - Suche nach guten lokalen Alignments in DNA Sequenzen
- Gegeben
 - Suchsequenz P, Datenbank DB={S₁,...,S_n}
 - Substitutionsmatrix M
 - Parameter w: Länge der "Seeds"
 - Parameter t: Initialer Schwellwert
 - Parameter c: Gesamtschwellwert
 - Wird berechnet in Abhängigkeit von t, M, |DB|, |P|
 - Parameter v: Erwünschte Anzahl Treffer
 - Blast berechnet die v ähnlichsten Subsequenzen

BLAST Schritt 1 und 2

Schritt 1

- Bestimme alle Teilwörter P₁,...,P_m der Länge w in P
 - Mit Überlappung keine Partitionierung
 - Wie viele gibt es?

Schritt 2

- Suche nach Hits von P₁,...,P_m in DB mit Score über t
 - Hits müssen nicht exakt sein
 - Vergleiche alle P_i mit allen Teilwörtern in DB der Länge w in T
 - Keine INSDELs, Verwendung von M
- Durch den "unscharfen" Hit mit Schwellwert t
 - werden auch Hits gefunden, die keine perfekten Matches sind
 - werden wenig aussichtsreiche Positionen in DB ausgeschlossen
 - Annahme: Ein gutes lokales Alignment A in Sequenz S muss mindestens einen Hit enthalten
 - Es ist nicht notwendig, dass jedes Teilwort in A mit seinem Teilwortpartner in P einen Hit hat.

BLAST Schritt 3

Schritt 3

- Für jeden Hit H zwischen DB-Sequenz S und P_i
- Verlängere Bereich um H sowohl in P als auch in S
 - Gapfree Alignment nach links und rechts wachsen
 - Solange, bis
 - Sequenz P oder S zu Ende ist, oder
 - Alignmentscore fällt unter geschätzten Schwellwert c, oder
 - Alignmentscore fällt "signifikant" unter bisherige v beste Treffer
 - "Signifikant" heuristisch bestimmt
 - Ergibt "Maximal Segment Pairs (MSP)"
 - Die besten v MSP sind das Ergebnis

Beispiel

W=5, t=5, Kosten: M=+1, R=-3

P=ACGTGATA

S=GATTGACGTGACTGCAAGTGATACTATAT

Schritt 1 Teilwörter

P₁=ACGTG

 P_2 =CGTGA

P₃=GTGAT

 P_4 =TGATA

GATTGACGTGACTGCAAGTGATACTATAT
GATTGACGTGACTGCAAGTGATACTATAT
GATTGACGTGACTGCAAGTGATACTATAT

Schritt 2 Hitsuche

Schritt 3 Verlängerung

GATTGACGTGACTGCAAGTGATACTATAT

ACGTGATA

5

ACGTGATA

5+1=6

ACGTGATA

6 - 3 = 3

• •

Sensitivität und Spezifität

Prediction

		Reality		
		+	•	
ı	+	TruePositive	FalsePositive	
ı		(TP)	(FP)	
	-	FalseNegative	TrueNegative	
		(FN)	(TN)	

Spezifität = TP/(TP+FP)

- (Precision)
- Wie viele der Treffen des Verfahrens sind wirklich welche?
- Sensitivität = TP/(TP+FN)

(Recall)

- Wie viele der echten Treffer findet das Verfahren?
- Oftmals eine Balance
 - Algorithmen berechnen einen Score pro Sequenz
 - Hoher Score Positiv; Niedriger Score Negativ
 - Wenn Score mit Wahrscheinlichkeit für korrekte Klassifikation korreliert, folgt daraus

Ergebnismenge klein:

SP=hoch,

SE=klein

Ergebnismenge groß: SP=niedrig,

SE=hoch

Exercise 3

Alle Sequenzen mit allen vergleichen

– ähnlichste: Mus – RattusScore: 2830

unähnlichsten: Homo – Drosophila Score: 1529

- Ähnlichkeitsmatrix notwendig für ClustalW
 - ähnlichsten zuerst zum multiplen Sequenzalignment zusammenfassen

Silke Trißl: Bioinformatik für Biophysiker

Klausur

- **30.07.2009**
- 14 16 Uhr
- Hörsaal 12

Zuletzt!

Weitere Fragen?