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Abstract: Information about proteins and their relationships to each other are a com-
mon source of input for many areas of Systems Biology, such as protein function
prediction, relevance-ranking of disease genes and simulation of biological networks.
While there are numerous databases that focus on collecting such data from, for in-
stance, literature curation, expert knowledge, or experimental studies, their individual
coverage is often low, making the building of an integrated protein-protein interac-
tion database a pressing need. Accordingly, a number of such systems have emerged.
But in most cases their content is only accessible over the web on a per-protein ba-
sis, which renders them useless for automatic analysis of sets of proteins. Even if
the databases are available for download, often certain data sources are missing (e.g.
because redistribution is forbidden by license), and update intervals are sporadic.

We present PiPa, a system for the integration of protein-protein interactions (PPI)
and pathway data. PiPa is a stand-alone tool for loading and updating a large num-
ber of common PPI and pathway databases into a homogeneously structured relational
database. PiPa features a graphical administration tool for monitoring its state, trig-
gering updates, and for computing statistics on the content. Due to its modular archi-
tecture, addition of new data sources is easy. The software is freely available from the
authors.
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1 Introduction

Systems Biology is about studying the interplay of entities in complex organisms. Ac-
cordingly, the physical relationships that may hold between biological objects are a cen-
tral element. Such relationships may, for instance, be the formation of protein com-
plexes, the regulation of genes, the binding of small molecules to proteins, cleavage or
(de-)phosphorylation of proteins, etc. Biomolecular relationships, especially, are studied
with respect to the way they form complex systems, usually called networks. Important
classes of biological networks are, among others, metabolic pathways, signaling cascades
protein interaction networks and gene regulatory networks.

For each of these types of data, a large number of specialized databases exist. This paper



is about integrating information from various such databases for two particular important
types of information: Protein-protein interactions (PPI) and biological pathways.

Data about PPI is available from dozens of databases [LS09]. Examples are IntAct, DIP,
MINT, HPRD or BioGrid. Data enters those systems in various ways. Important sources
are results from high-throughput experiments such as Microarray, Deep Sequencing or
Yeast-2-Hybrid screens. Another important source of information is the scientific litera-
ture, which, to this aim, is screened by database curators [PNA+03]. However, policies
for selecting data differ, for instance, in the species, the estimated quality, the type of the
experimental evidence, or just by chance as curators select papers for being read using
non-disclosed strategies. Databases vary greatly in terms of amount of contained interac-
tion, level of available details on each single PPI, access methods etc. A particular issue
is the usage of different licenses, which determine the type of work for which the content
may be used and whether or not data from a database may be redistributed.

The situation is similar for biological networks [Sch04]. Again, there exist many different
databases with different scope and different coverage. The situation might be even slightly
worse than for PPI as a biological pathway is a fairly complex object which can be modeled
in various ways; accordingly, there is also considerable heterogeneity in terms of schema
(or model). Frequently used resources are KEGG, Reactome, and TransPath.

This distribution and heterogeneity is a problem for many types of analysis in Systems
Biology. Very often, analysis methods perform the better, the more comprehensive their
available input data set is . Pathways and PPI are also very often studied together; for in-
stance, PPIs are used to augment the notoriously incomplete pathway datasets with further
proteins to allow for a more comprehensive study of the functional implications of expres-
sion experiments [EMXY00]. In our own research, we use pathways and PPI, for instance,
to assess the quality of gene clusters [GWPL08] or to enhance the quality of function pre-
diction methods [JGLRS08]. Also, integrated data sets are not only more comprehensive,
but the redundancy in their content may be used as a quality indicator for scoring data
items [CMR+09]. Accordingly, several projects have emerged that target the integration
of PPI and pathway databases. For instance, HPD is an integrated pathway database fo-
cusing on human and using a data warehouse approach [CWZ+09]. HAPPI [CMH09],
UniHi [CMR+09], PIANA [AJO06] and PID [SAK+09] are integrated PPI databases, all
but PIANA focusing on human only. ConsensusPathDB is an integrated database unit-
ing data from PPI databases and from pathway databases [KWLH09]. However, these
resources are of limited use to researchers that want to build their own analysis algorithms
using a comprehensive dataset. First, many integrated systems only support browsing and
do not offer downloads of the database content. Second, many systems employ complex
and task-specific data selection procedures, leading to an incomplete coverage of the in-
tegrated sources. Third, even if the database content is available for download, it often
excludes certain sources due to licensing issues. As an example, the downloadable files
from ConsensusPathDB do not contain data from Transfac and KEGG, as redistribution
of this data is prohibited by license. Finally, update intervals of these systems often are
irregular and, naturally, not adjustable by users.

In this paper, we present PiPa, a system for building an integrated PPI and pathway
database. PiPa is meant to be used as a data infrastructure providing up-to-date and crucial



information on two important types of biological entities. It is not a complete information
system in itself, as it, for instance, does neither offer any analytical functions nor a graph-
ical query or visualization interface. PiPa comes with a stand-alone administration tool
to control data import and to show the status of the database. Furthermore, in contrast to
many other integrated databases in this field, PiPa does not perform any semantic integra-
tion itself; instead, data from the sources is integrated as such into the system (for instance,
no duplicate detection is performed), leaving the decision onto which form of aggregation
or quality filtering to perform to the user.

The probably most similar project to PiPa is ATLAS [SHX+05], a system for building
a local data warehouse that integrates various types of biological information. However,
ATLAS has a much broader scope than PiPa, which in turn leads to much less depth of
information. Furthermore, ATLAS is not available any more. Note that PiPa, in contrast
to pure synchronization tools such as BioMAJ [FBA+08], not only keeps local copies of
remote flat-file representations of biological databases, but also parses these files and loads
them into a uniform relational schema.

2 PiPa Data Model
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Figure 1: Conceptual data model of PiPa.

The PiPa data model (see Fig. 1) tries to find a balance between simplicity and expressivity.
We refrained from adopting complex models (such as, e.g., [BQG+06]), especially in the
area of pathways, and only take over the most essential information from the different data
providers. With essential, we mean important for performing functional studies on the



data. Accordingly, projects working, for instance, in pathway reconstruction might find
the level of detail it offers insufficient.

The essential information we model are proteins, their interactions, and their participa-
tion in pathways. Proteins (stored in the molecule table) are annotated with important
attributes such as their sequence or chromosomal location and are linked to further infor-
mation describing their function, domains in their primary sequence, and associations to
diseases. Interactions are stored as links between proteins and are annotated with the type
of experiment that was used to confirm the interaction and with references to PubMed.
Finally, pathways are modeled as a set of interactions, each connecting two chemical en-
tities, which can either be proteins, compounds, or smaller molecules. Furthermore, all
interactions and pathways are annotated with the database they were imported from. We
also keep external IDs allowing to link back to the original information.

3 Filling and monitoring PiPa

PiPa is a tool providing a graphical user interface for building and updating a local database.
Its main function is the import of external data sources into a unified schema. Each im-
port is performed by a source-specific software module implementing a common interface.
New modules can easily be plugged into the system to extend PiPa to further sources (see
Section 4). Once the relational schema of PiPa is installed in a local database (we currently
support MySQL), all sources for which a plug-in is provided can be imported.

PiPa comes with a simple administration tool (see Fig. 2), that provides functions for
monitoring the status of the database, for triggering integration / update of data, and for
computing basic statistics of database contents.

Source updates always are performed in the same manner. First, source files are down-
loaded, uncompressed (if necessary), and parsed. The essential information is extracted
and inserted into the database. If those data refer to entities that are not presented yet
(in particular, new PPIs or pathways may refer to proteins not yet stored in the system),
a cascading update is triggered in which the new entity is created and its annotations are
downloaded dynamically (also see Section 4). Updates may be interrupted at any time, in
which case the entire process is rolled back to ensure data consistency. Furthermore, the
date and version of the last update are kept and are displayed in the tool, thus providing
a quick overview over the timeliness of the data. Table 1 gives an overview of the data
sources currently available in PiPa.

The statistics tab provides aggregated information about the current extent of the database
(see Fig. 3). This includes the total number of loaded entities (e.g. molecules, molecules
of a certain type, PPIs, pathways etc.) and information on a per-source basis. For PPIs
there are per-species-subsections providing information grouped by species. PiPa cur-
rently loads data for yeast, nematode, fruit fly, human, mouse and rat. Altogether, PiPa
(after a full import of all sources) provides information on app. 25.000 pathways and
12.000.000 molecular relationships, of which app. 2.800.000 are PPIs (the others stem
from other compounds involved in a pathway).



Figure 2: Screenshot of PiPa’s administration tool, showing the page for triggering updates of data
sources.

4 Implementation

PiPa is written in Java. It uses a plugin-based application design, i.e., each data source
is represented by a wrapper module which can easily be plugged in to PiPa’s core archi-
tecture. Java’s object orientation greatly simplifies plug-in development by facilitating the
creation of abstract base classes. These base classes implement a rich set of core func-
tions for common tasks, such as downloading and extracting files, keeping track of update
times, allocating a database connection, or persisting configuration information in a des-
ignated table inside the database. Plug-ins subclass one of these base classes and provide
configuration parameters by instantiating variables. These parameters include the location



Pathways PPI Protein meta-data

BioCyc BioGrid Gad
Inho DIP GO

KEGG HPRD Interpro
Pathway Commons IntAct KEGG

PID MINT OMIM
Reactome MIPS Reactome

Spike UniProt

Table 1: List of data sources currently integrated in PiPa.

Figure 3: Screenshot of aggregated statistics on the database content. Data can be drilled-down to
species-specific information using the respective tabs.



of files to be downloaded and informational messages delivered to the user of the tool.
Furthermore, they implement the specific treatment of the particular source.

Additional source-specific code and implementation effort varies greatly between sources.
Especially the complexity of parsing is different depending on the type of data stored in a
source. For instance, all pathway sources PiPa currently imports offer a BioPax [BBC+05]
export; that enables the usage of one and the same parser for all pathway sources. The same
applies to PPIs, which are available as PSI-MI XML [HMPB+04] files from all currently
integrated PPI sources. In contrast, sources of protein meta-data tend to use proprietary
data formats which require their plug-ins to implement parsing capabilities of their own.

A special configuration file determines whether plugins are enabled or disabled (see Fig.
3). Only listed plug-ins listed are visible through the administration interface. The config-
uration file also manages the concrete assembly of the statistics tab, that can be changed
quickly by defining or altering sections, subsections, descriptions, and tooltips for so-
called “statistical values”. A statistical value can be the result of any singular SELECT-
query returning a single value, typically using aggregate functions. Queries are also part
of the configuration information and may have parameters. As the computation of the
statistical values must be triggered manually from the administration tool, queries can be
arbitrarily complex without compromising start up times of the user interface.

As mentioned before, PiPa does not perform extensive semantic integration but keeps
information attached to their origin. However, to allow for integrated analysis, we perform
ID resolution by normalizing all proteins to their UniProt ID (see Fig. 4). To this end, each
protein is handed to the ProteinLoader. If the source does not provide a UniProt ID, the
ProteinResolver is asked to map the protein to a UniProt ID, using other IDs given by the
source. Currently supported IDs are those from DIP, Ensembl, EntrezGene, EntrezProtein,
FlyBase, GeneBank, HGNC, IPI, MGI, OMIM, PDB, Protein gi, RefSeq, SGD, UniParc
and WormBase. Once a UniProt ID has been attached to the protein, UniProt is queried
for additional data using UniProtJAPI [PWK+08]. If this request is unsuccessful, the
UniProt ID itself is subjected to further inspection. First, local lookup tables are used to
determine whether the given UniProt ID has been demerged. Demerging of IDs is done
by UniProt when a single protein entry is found to refer to more than one real protein. If
such a demerger is detected by the ProteinLoader, the original source protein is replaced
by the proteins referenced by the new UniProt IDs. If this local lookup is unsuccessful,
the UniProt website is queried directly via HTTP to check whether the given UniProt ID
is a secondary ID referencing another, primary ID for the same protein (UniProtJAPI does
not allow searching with secondary IDs). If a new ID can be assigned in this way, the
protein’s data is retrieved, again using the UniProtJAPI. Otherwise, if no UniProt ID can
be assigned to the protein it is left out and disregarded in the integration process.

In contrast to semantic integration, PiPa’s data model (Fig. 1), does provide schematic
integration of PPI and pathway sources. In terms of extensibility, plug-ins for such sources
thus do not need to provide any details on the target schema. On the other hand, sources
for meta-data are typically required to supply their partial schema in the form of SQL
statements which extend the data model to include their specific information.



InteractionLoader

ProteinLoader

ProteinResolverUniProtJAPI
UniProt via
HTTPClient

Local DB 
Storage

Local Lookup
‘demerged’

Local Lookup
‘mapping’

Source interaction

Source protein
Database-ready list of 
UniProt-Proteins found for 
source protein

Fetch
protein

data

Check
secondary

id

Map to 
UniProt id

Protein
data

Primary 
UniProt id

UniProt id

store

demerged?

UniProt ids

db-xref to UniProt
mapping avail.?

UniProt ids

Figure 4: ID normalization for proteins in PiPa.

5 Application of PiPa

PPI represent one of the most important types of biomolecular relationships as virtually all
cellular mechanisms rely on the physical binding of two or more proteins for accomplish-
ing a particular task. Protein interactions are essential for controlling cellular processes,
such as signal transduction, gene regulation, cell cycle control and metabolism. Numerous
experimental methods have been developed for identifying PPIs [PF95]. Large-scale ex-
periments in different model organisms as well as human contributed to an increasing num-
ber of comprehensive interaction data sets. Such data sets may be used to identify func-
tional modules within protein networks [DKR+08], to find protein complexes [SM03], or
to determine evolutionary conserved processes [SSK+05, JL07]. However, high quality
PPI data sets serve different purpose, their are used as input resource for various methods
as well as support evaluation strategies for text mining approaches.

5.1 Impact on function prediction

Protein interaction data provide also an important source for functional information. Phys-
ical interaction depict, in contrast to sequence, a complementary type of function describ-
ing the role of a protein within cells rather than its specific biochemical activity. Further-
more, physically interacting proteins tend to be involved in the same cellular processes,
thus interactions represent direct and robust manifestations of functional relationships.



Therefore, protein interaction data are ideally suited to form the basis for function predic-
tion methods.

A wide range of methods has been developed for studying protein interactions in or-
der to predict protein function [SUS07]. Most of them rely on the concept of guilt-by-
association, where a protein is annotated based on the function of its interaction partners
as illustrated in Figure 5.

Figure 5: Concept of guilt-by-association for protein function prediction (adapted from [SUS07]).
Proteins with known functions are indicated by different colors while proteins without function
remain uncolored. Protein function is inferred by transferring functional annotation from directly
interacting proteins (indicated by arrows).

The applicability and benefit of protein interaction data for protein function prediction has
been established by many approaches [VFMV03, CSW07, JSL10]. Yet, most methods
suffer from poor data quality and coverage resulting from systematic and methodologi-
cal limitations of the respective interaction detection methods. Performance of prediction
methods relies largely on the completeness and accuracy of the underlying data. Miss-
ing protein interactions, for instance, hinder the prediction process as large fractions of
annotated proteins without available interaction data are neglected. High levels of false
positive interactions, on the other hand, induce functional associations without biological
relevance which reduces the level of accuracy.

Using consistently integrated protein interaction data as provided by PiPa greatly helps
to diminish such limitations and thus improves the prediction performance considerably.
For instance, more complete interaction data increase the coverage of prediction methods
while higher quality increases prediction precision. A rather high coverage of interaction
data is achieved by combining various data sets from different data sources. High data
quality is obtained by normalizing interacting proteins accurately to avoid redundant in-
formation in the data. Further, protein interaction networks can be assembled according to
additional evidence associated with an interaction by filtering, for instance, for particular
detection methods associated with high levels of false positives or for the experimental role
of a protein in an experiment. In an actual application scenario the number of protein func-
tions predicted within a sparse human interaction network with about 13,494 proteins and
43,637 interactions increases from 12,317 to 27,099 when considering a much denser net-
work with 14,218 proteins and 81,868 interactions from PiPa. At the same time, precision
increases from 76% in the former network [JSL10] to 83% in the latter one (unpublished).



5.2 Impact on disease gene identification

Protein interactions do not only indicate similar function but often imply common disease
phenotypes as gene products associated with a particular disease interact preferentially
with proteins known to be involved in the same disease [IS08]. For identifying novel
disease gene associations several approaches exploit protein interaction data by growing a
network around disease-related proteins [KBHR08, VMR+10]. However, methods largely
based on this type of data are often limited by the same aspects that also compromise
function prediction approaches, i.e. data quality. Thus, reliable data are also essential for
successful disease gene identification.

To demonstrate the impact of data coverage and quality on disease gene identification we
apply a network-based algorithm on two different human protein interaction networks:
a sparse network (13,494 proteins and 43,637 interactions) and a more dense network
(14,218 proteins and 81,868 interactions) generated with PiPa. Our approach first extracts
for a given disease all proteins known to be associated with this disease. Based on these
proteins we build a disease-specific network by integrating directly and indirectly interact-
ing gene products. Proteins in this network are ranked based on network centrality and the
most central proteins are considered to be highly relevant for the disease.

Figure 6 shows the cross-validation recovery rate obtained for each network. The com-
parison shows that using a network with a higher coverage increases the recovery rate
of blinded disease proteins considerably. In contrast to the sparse network, the denser
network allows to recover 52% of the disease proteins instead of 38%. The increase em-
phasizes the importance of coherent and complete interaction data for inferring disease
gene associations.
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5.3 Evaluation of text mining applications

Supporting evaluation strategies for text mining methods is another field of application
for PiPa. Comprehensive data sets integrated by PiPa are very suitable to (1) estimate
the quality of computational extraction of protein-protein interactions from text and to (2)
unveil the state of the art in reconstructing biological pathways using Natural Language
Processing (NLP).

Relation extraction is commonly performed by a relation-specific classifier based on ma-
chine learning techniques like support vector machines, pattern matching, etc. [ZH08].
Such techniques require a set of manually classified examples (training corpus) in order
to train the classifier initially. Since the training corpus is only a small set of samples it is
inherent biased compared to the application corpus [WKS+10]. Furthermore, supervised
learning tends to overfit on the training data [TTP+10]. Both characteristics result in an
overrated performance on the training corpus determined by e.g. cross-validation. Without
an appropriate gold standard it is hardly possible to measure the real performance of such
methods. Therefore, the diverse and rich PPI and pathway datasets provided by PiPa are
able to fill that gap.

Since the integrated data originate from miscellaneous manually curated databases they
can be considered as a realistic and qualitative gold standard suitable for a proper eval-
uation of text mining methods. In case of protein-protein interactions PiPa additionally
integrates background information that, among others, contains references to PubMed ar-
ticles providing evidence for each interaction. Such links enable the compilation of an
appropriate evaluation corpus and its corresponding interactions.

Another application of PiPa comes up with the use of NLP for automatic reconstruction
of biological pathways from text. For example Rodrı́guez-Penagos et al. [RPSMFCV07]
present a rule-based system capable to directly generate regulatory networks of Escherichia
coli from abstracts and full-text papers. By providing diverse pathway data PiPa enables
the evaluation of such approaches. Comparing the integrated pathway data with computa-
tionally generated networks allows the detection of coverage and even may lead to novel
extensions of known pathways.

6 Conclusion

PiPa is a highly modularized system for building local databases integrating a large number
of original databases from the area of biological pathways, protein-protein-interactions,
and protein-related information. The need for PiPa arose from a number of in-house
projects that all depend on simple access to comprehensive PPI and pathway data. How-
ever, as the precise ways of analyzing this data vary greatly between projects, we deliber-
ately kept PiPa’s functionality strictly at what is necessary to provide a comprehensive and
current data base for System Biology research. In addition, PiPa provides functionalities
to control and monitor the update procedures of the different resources.

Its modular design makes PiPa flexible enough to be quickly customized to different in-



tegration needs. Available plug-ins (and thus import modules) can be removed from the
system simply by changing configuration information, as virtually all modules are inde-
pendent from each other; the only exception is the plug-in for UniProt that is necessary for
all other plug-ins to perform ID normalization. Furthermore, new plug-ins for integrating
new data sources can be added, building on the rich functionality provided by the PiPa
framework.

However, there are also some aspects that need further improvements. For instance, al-
though Java generally allows cross platform deployment, PiPa currently uses code specific
to UNIX-style environments. This restriction will be removed in the future. Another issue
are load times. The time it takes to import a source depends on its size and, in particular,
on the number of proteins it references that are not yet contained in the database, because
especially the step of UniProt ID resolution and data load is time-consuming (this implies
that average loading times per item actually go down with increasing database content).
However, we deliberately chose the dynamic data completion approach (see Section 4) to
ensure that, whenever a source is loaded, the referenced information from UniProt has the
same level of timeliness. From our experience, data loads are not performed too frequently,
as many types of analysis require a stable data set during development.
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