Übungsblatt 10

Besprechung der mündlichen Aufgaben am 26.–29. 1. 2021 Bearbeitung des Moodle-MC-Tests bis 25. 1. 2021, 23:59 Uhr Abgabe der schriftlichen Lösungen bis 2. 2. 2021, 23:59 Uhr

Aufgabe 62 mündlich Sei $M = (\{p, q\}, \{a, b\}, \{\#\}, p, \delta, \#)$, wobei δ wie folgt definiert ist:

ma# + m# # (1) ab# + ac

$$pa\# \to p\#\#$$
 (1) $qb\# \to q\varepsilon$ (3)
 $pa\# \to q\varepsilon$ (2) $q\varepsilon\# \to q\varepsilon$ (4)

- (a) Begründen Sie kurz, warum $L(M) = \{a^n b^m \mid n > m \ge 0\}$ gilt.
- (b) Konstruieren Sie nach dem Verfahren aus der Vorlesung aus M einen äquivalenten PDA M' mit nur einem Zustand.
- (c) Konstruieren Sie aus M' eine äquivalente kontextfreie Grammatik. Verwenden Sie das Verfahren aus der Vorlesung.

Aufgabe 63 Gegeben sei der PDA $M = (Z, \Sigma, \Gamma, \delta, q, \#)$ **10+2 Punkte** mit $Z = \{p, q\}, \Sigma = \{a, b, c\}, \Gamma = \{A, B, \#\}$ und der Überführungsfunktion

$$\delta: qa\# \to qAA\# \ (1) \qquad qaA \to qAA \ \ (2) \qquad qbA \to p \qquad (3) \qquad p\varepsilon\# \to p \ \ (4)$$
$$pbA \to p \qquad (5) \qquad pb\# \to pB\# \ \ (6) \qquad pbB \to pBB \ \ \ (7) \qquad pcB \to p \ \ (8)$$

- (a) Konstruieren Sie zu M eine äquivalente kontextfreie Grammatik G nach den Verfahren aus der Vorlesung. Sie müssen nur G selbst angeben, nicht den zu M äquivalenten PDA mit nur einem Zustand. (8 Punkte)
- (b) Geben Sie eine akzeptierende Rechnung von M(abbbcc) und die zugehörige Ableitung in der Grammatik G an. (2 Punkte)
- (c) Geben Sie eine explizite Beschreibung für L(M) an. (2 Zusatzpunkte)

Aufgabe 64 Betrachten Sie folgende Sprache: $m \ddot{u} n d l \dot{c} h$ $L = \{a^n b^m c^m \mid n, m \ge 0\}$

Geben Sie einen PDA M für L an.

Aufgabe 65 mündlich

Eine Sprache $T \subseteq \Sigma^*$ heißt Tallysprache, falls Σ $un\ddot{a}r$ ist, d.h. $\|\Sigma\| = 1$. Die Funktion l_{reg} (l_{kfr}) weise einer Sprache L, die die Konklusion des Pumping-Lemmas für reguläre (kontextfreie) Sprachen erfüllt, ihre Pumpingzahl und allen anderen Sprachen den Wert ∞ zu. Zeigen Sie:

- (a) Für jede Tallysprache T gilt $l_{kfr}(T) = l_{req}(T)$.
- (b) Für jede Tallysprache T mit $l = l_{reg}(T) < \infty$ gilt: Falls ein Wort a^n mit $n \ge l$ zu T gehört, so enthält T alle Wörter a^{n+il} ! für $i \ge 1$.
- (c) Jede Tallysprache T mit $l = l_{reg}(T) < \infty$ ist regulär. Hinweis: Finden Sie endliche Sprachen $A, B \subseteq T$ mit $T = A \cup B\{a^{l!}\}^*$.
- (d) Es gibt keine Tallysprache in CFL\REG.

Aufgabe 66 Für
$$\Sigma = \{\langle, \rangle, [,]\}$$
 sei $G = (\{S\}, \Sigma, P, S)$ 13 Punkte
mit $P : S \to \langle S \rangle, [S], SS, \varepsilon$ $[\langle \to \langle [$

- (a) Sind die Wörter $x_1 = \langle \langle [[] \rangle \rangle]], x_2 = [[\langle \langle]] \rangle \rangle$ und $x_3 = \langle \langle [[]] \rangle \rangle$ in L(G) enthalten? Begründen Sie jeweils. (4 Punkte)
- (b) Zeigen Sie, dass für alle $x \in L(G)$ gilt $\#_{\lceil}(x) = \#_{\rceil}(x)$. (2 Punkte)
- (c) Zeigen Sie, dass L(G) kontextsensitiv ist. (3 Punkte)
- (d) Zeigen Sie, dass L(G) nicht kontextfrei ist. (4 Punkte)

Aufgabe 67 Widerlegen Sie folgende Aussagen: 7 Punkte

- (a) Für jede Sprache A gilt: Wenn A kontextfrei ist, dann ist A^* regulär. (3 Punkte)
- (b) Für jede Sprache A gilt: Wenn A* regulär ist, dann ist A kontextfrei. (4 Punkte)