The description of the kernel method pipeline and training

Domonkos Tikk, Philippe Thomas
September 25, 2009

Abstract

This text gives a detailed technical “how-to” description on the kernel based PPI classification
experiments. The main aim is to provide a reconstructible description for possible further work. Most
of the work presented here has been first done by Peter Palaga as a part of his master thesis. Here
we document each step of Palaga’s work and introduce some modifications and extensions. These
experiments are the basis of our to-be-written kernel method comparison paper.

1 Download & installation

1.1 Corpora

Five corpora are used in the experiments. These are LLL, Almed, IEPA, HPRD50, and Biolnfer. For
more details see Palaga’s work [5, p. 10]. We used the derived version of coprora created by Pyysalo’s
group, which contains parses created with the Charniak-Lease parser [2] and transformed to collapsed
Stanford format [3]. The derived versions of corpora were downloaded from http://mars.cs.utu.fi/
PPICorpora/GraphKernel.html.

Additionally, the train—test splits of the corpora were specified by and received from Antti Airola
[1]. These splits currently resides on racer under /local/for_palaga/learning/corpora/splits and
under /vol/home-vol3/wbi/tikk/Kernels/corpora/splits.

1.2 Preprocessing

The preprocessing pipeline created by Peter Palaga is available with wbi account from the SVN reposi-
tory: svn+ssh://<user>Q@gruenau.informatik.hu-berlin.de/vol/drakan-vol4/wbi/wbi/shared/x
consensus_patterns/learning-format-api/trunk

The suggested developing environment is Eclipse, with Subclipse sub-versioning plug-in. For Win-
dows machines the latter works only if in Eclipse menu: window — preferences — team — svn,
the default SVN interface is changed from JAVAHL(JNI) to JavaSVN(Pure JAVA) (source: http:
//www.svnforum.org/2017/viewtopic.php?p=3220&sid=1ad744ec80dab84d2dc3a9930471724f1).

1.3 Parsers

We experienced with 2 versions of the Charniak—Lease—Johnson—McColsky parser and with 3 model
files.
Parsers:

e As a courtesy of Charniak’s group, we could perform experiments with the pre-release:
http://cs.brown.edu/~dmcc/post/reranking-parser-feb09-pre.tar.gz

e The standard version:
ftp://ftp.cs.brown.edu/pub/nlparser/reranking-parserAug06.tar.gz. We used this as de-
fault.

Model files:

e News model file can be downloaded from
http://cs.brown.edu/~dmcc/selftraining/selftrained.tar.gz (retrieved on 18 May 2009).
This version was trained on WSJ and NANC data.

e Bio model file can be downloaded from
http://bllip.cs.brown.edu/download/orig-selftrained-bio-model.tar.gz (retrieved on 25
September 2009). This version was trained on PubMed abstracts.

e Enhanced bio model file can be downloaded from
http://bllip.cs.brown.edu/download/orig-selftrained-bio-model.tar.gz (retrieved on 25
September 2009). This version was trained on PubMed abstracts and with GENIA reranker and
improves the performance of the above bio model significantly. We used this as default.

Theoretically, the parsers can be easily installed by decompressing the above files in a directory and
running the simply the make. However, with the current gcc compiler versions (we tried with 4.3.1 and
4.4.0), the official release (2006 Aug version) cannot be compiled, some minor errors occur that were rec-
tified by Peter Palaga, that version is available on racer under /local/for_palaga/bin/reranking-parser
and on /vol/home-vol3/wbi/tikk/Kernels/parsers/Aug2006reranking-parser (for gcc 4.3.1).

Additionally, we tried to run the parsers under Windows with cygwin. Here we had also compilation
errors for both releases, which were also rectified (see Appendix A.2 for details). However, the parsers
behaved abnormally with even medium size inputs, and stop to work abruptly after having parsed a
few sentences. Probably a memory leakage is present, which we could not identify. Therefore the entire
pipeline is currently not executable on Windows machines.

For optimized parsing speed the environment variable GCCFLAGS has to be set appropriately. The
following site helps in specifying the proper value of the variable: http://en.gentoo-wiki.com/wiki/
Safe_Cflags/Intel.

1.4 Classifiers

Peter Palaga’s work [5] contains experiments executed with 5 kernel based classifiers. All available
with WBI account from the SVN repositories listed below.

e k-band shortest path spectrum (kBSPS) kernels, developed by Palaga. svn+ssh://<user>@gruenau.
informatik.hu-berlin.de/vol/drakan-vol4/wbi/wbi/shared/x_consensus_patterns/svm_light/
trunk

e Spectrum tree (SpT) kernel, developed by Tetsui Kuboyama [4], reimplemented by Palaga. svn+
ssh://<user>@gruenau.informatik.hu-berlin.de/vol/drakan-vol4/wbi/wbi/shared/x_consensus_
patterns/svm_light/branches/svm_light_spectrum_tree_kernel

e Subtree (ST), subset tree (SST), and partial tree (PT) kernels, developed by Moschitti (Moschitti-
1.5-prerelease, not available yet online). svn+ssh://<user>@gruenau.informatik.hu-berlin.
de/vol/drakan-vol4/wbi/wbi/shared/x_consensus_patterns/SVM-Light-1.5-to-be-released/
trunk

The classifiers can be installed simply by calling make, and they work both on Linux and with
cygwin on Windows.

2 Preprocessing

Preprocessing consists of several steps.

Step 1 Creates the appropriate input format from the original xml files for the parse tree parser.
Step 2 Performs parsing.
Step 3 Injects the parsing results into the original xml files.

Step 4 Aligns the original sentence with the parsing results (specifies the character offsets in the raw
text and the parse trees).

Step 5 Injects the results of the above alignment into the working xml files.
Step 6a Creates 10 fold-training datasets in the learning format of the two SVM variants.

Step 6b Prepares cross-corpus validation datasets in the learning format of the two SVM variants.

We wrote a script that execute the above steps, see in Appendix A.1. Please note, that some
variables should be set according your own settings for correct operation. For that see also the following
detailed description.

2.1 Step 1: preparing parsing input

The software is a part of Palaga’s Learning format APl Java library (see Section 1.2). The program
extracts each sentence from the xml file and embeds them within <s>...</s> tags.

e Program: PtbRawSentenceTransformer.java

Table 1: Experiments with different parser versions and models

Parser ver-
sion/
model file

2006 Aug

2009 Feb (pre-release)

bio-optimized

Parsing error on 4 sen-
tences, parsing process
hangs up after error and is
not finished

Parsing error on 4 sen-
tences, but parsing pro-
cess is continued

normal (news)

Parsing error on 1 sen-
tence, parser hang up af-
ter error, parsing is not

Parsing errors on 1 sen-
tence, but parsing process
is continued

finished

e Input: derived XML files from Pyysalo’s group (see Section 1.1).
e Parameter: original xml file.
e Run from command line:

java -classpath $ECLIPSEWORKSPACE/learning-format-api/bin
org.learningformat.transform.PtbRawSentenceTransformer example.xml

where $ECLIPSEWORKSPACE is the the workspace directory of Eclipse. For Windows, this is envi-
ronmental variable is called by %ECLIPSEWORKSPACE), and can be set by

set ECLIPSEWORKSPACE=C:\myworkingspace

e Output: example.xml-ptb-s.txt

2.2 Step 2: parsing

The second step is the parsing the corpora with Charniak-Lease-Johnson-McClosky parser (see Sec-
tion 1.3). The input format is done in Step 1 (example.xml-ptb-s.txt file) the output is the parsed
trees of the each sentence, e.g., the result of “ykuD was transcribed by SigK RNA polymerase from
T4 of sporulation.” is

(81 (S8 (NP (NNP ykuD)) (VP (AUX was) (VP (VBN transcribed)
(PP (IN by) (NP (NP (NNP SigK) (NNP RNA) (NN polymerase))

(PP (IN from) (NP (NNP T4))) (PP (IN of) (NP (NN sporulation))))))) (. .)))

e Software: Charniak—Lease—Johnson—McClosky parser executables:
both called from the script file parse.sh.

parselt and bestparses,

e Input: example.xml-ptb-s.txt files in format <s>sentence</s>.
e Parameter: to-be-parsed file (ptb-s.txt), output and error file should be redirected

e Run from command line:
./parse.sh example.xml-ptb-s.txt > example.xml-ptb-s.txt-parsed.txt 2>example.err

where parse.sh is the starting script of the parser. The command is then started in the root
directory of the parser.

e Qutput: example.xml-ptb-s.txt-parsed.txt
We experimented with all the four combinations of the 2 parser versions and the 2 model files.
Results are summarized in Table 1. Based on these experiments, we decided to use the version of

2009 February. TODO: model files: should be decided based on classification results. Most probably
bio-optimized version is better.

2.3 Step 3: Injection of parsing results into xml files

The software is a part of Palaga’s Learning format API Java library (see Section 1.2). This program

injects into the original xml files the parsing results in <bracketings> ... </bracketings> tags.

e Program: PtbTreelInjector. java

e Input: example.xml and the corresponding example.xml-ptb-s.txt-parsed.txt, the latter should
be placed in a subdirectory charniak-johnson of the directory of example.xml.

o Parameters:
-f|--file input file name
-i|--inject this is a switch which should be given for this step
-o|--out output file name
e Running from command line:
java -classpath $ECLIPSEWORKSPACE/learning-format-api/bin;
$ECLIPSEWORKSPACE/learning-format-api/src/main/resources/jargs. jar

org.learningformat.transform.PtbTreeInjector
-f example.xml -i -o trees/example.xml

By convention, the output xml file is placed into the directory trees under the root directory of
example.xml.

e Output: specified by the -o option, an xml file that contains now the parsing results in <bracketings>. . .</bracketings>
tags.

2.4 Step 4: alignments of the original sentence with the parsing re-
sults

The software is a part of Palaga’s Learning format API Java library (see Section 1.2). This program
aligns the original sentence with the parsing results, that is it specifies the character offsets of the

(from-to) of the tokens of the original text in the parsed texts. For the example sentence “ykuD was
transcribed by SigK RNA polymerase from T4 of sporulation.” it is:

LLL.d2.s1,0-3:16-19,5-7:32-34,9-19:46-56,21-22:67-68,24-27:84-87,29-31:95-97,
33-42:104-113,44-47:125-128,49-50:140-141,52-53:154-155,55-65:166-176,66-66:188-188
e Program: BracketingTokenMapper. java
e Input: output file of step 4, that is the xml files located in the folder trees (by convention).
e Parameter: trees/example.xml
e Running from command line:

java -classpath $ECLIPSEWORKSPACE/learning-format-api/bin
org.learningformat.transform.BracketingTokenMapper trees/example.xml

e Output: a text file containing the alignments. The output text files gets the -bracketing-tokens.txt
suffix, i.e. for example.xml it is example.xml-bracketing-tokens.txt and placed in the direc-
tory trees.

2.5 Step 5: Injection of sentence—parsing alignments into xml files

The software is a part of Palaga’s Learning format API Java library (see Section 1.2). This program
injects into the original xml files the alignments created in step 4, the alignments are injected into the
xml file within <char0ffsetMapEntry> tags.
e Program: PtbTreeInjector.java
e Input: example.xml and the corresponding example.xml-bracketing-tokens.txt
e Parameters:
-f|--file input file name
-i|--inject this is a switch must not given for this step
-o|--out output file name
e Running from command line:
java -classpath $ECLIPSEWORKSPACE/learning-format-api/bin;
$ECLIPSEWORKSPACE/learning-format-api/src/main/resources/jargs.jar

org.learningformat.transform.PtbTreeInjector
-f trees/example.xml -o mapped-trees/example.xml

By convention, the output xml file is placed into the directory mapped-trees under the root
directory of example.xml.

e Output: specified by the -o option, an xml file that contains now the parsing results in <charOffsetMapEntry>
tags.

2.6 Step 6a: Creating folds for the training data set

This step is performed by two programs. They are part of Palaga’s Learning format API Java library
(see Section 1.2). These programs create the training format for SVM based classifier, therefore are
the last step in the preprocessing pipeline. The programs assume the availability of test-train splits
(see Section 1.1).

The first program creates the training data for the most of the SVM learners. The second program
creates the training data for the k-band shortest path spectrum kernel based SVM learner.

e Program: SvmLightTreeKernelTransformer.java

e Input: the xml augmented with bracketing and alignment information, by convention located in
the mapped-trees directory.

e Parameters:

-f|--file input file name

-o|--out output directory name

-s|--split location of the split files (folder)

-m|--moschitti flag for Moschitti style learning format (for subtree (ST), subset tree (SST),
and partial tree (PT) kernels)

-c|--custom flag for custom learning format (for spectrum tree (SpT) kernel)

Exactly one of the -m and -c flags has to be given.

e Running from command line:

java -classpath $ECLIPSEWORKSPACE/learning-format-api/bin;
$ECLIPSEWORKSPACE/learning-format-api/src/main/resources/jargs. jar
org.learningformat.transform.SvmLightTreeKernelTransformer

-f example.xml -m -s splits -o trainingdir;

where under the subdirectory splits resides the example directory, which includes the corre-
sponding splits for the example.xml

e Output: under the directory specified by -o another directory named MOSCHITTI (for -m flag) and
CUSTOM_KERNEL (for -c flag), under which a third directory example.xml-folds created, which
contains 10 text files (named: 0.txt ... 9.txt). There is only a slight difference between the
two format (Moschitti and custom), namely that the Moschitti based SVM learners require an
embedding |BT|..|ET| tags around the training parsed tree instances, while the custom format
follows the requirement of T. Joachims’ svn-light.

e Program: SvmLightDependencyTreeKernel Transformer.java

e Input: the xml augmented with bracketing and alignment information, by convention located in
the mapped-trees directory.

e Parameters:

-f|--file input file name
-o|--out output directory name
-s|--split location of the split files (folder)

e Running from command line:

java -classpath $ECLIPSEWORKSPACE/learning-format-api/bin;
$ECLIPSEWORKSPACE/learning-format-api/src/main/resources/jargs.jar
org.learningformat.transform.SvmLightDependencyTreeKernelTransformer
-f example.xml -s splits -o trainingdir;

where under the subdirectory splits resides the example directory, which includes the corre-
sponding splits for the example.xml

e Qutput: under the directory specified by -o several other directories are created, under each of
which another directory example.xml-folds created, which contains 10 text files (named: 0.txt
... 9.txt). The name of second level directories follow the following pattern:
CUSTOM_KERNEL-b-ztoy-kz-UP_TO-0UTSIDE-NO_SELF_REF-STEM-none where x < y and = € {1, 2},
y € {1,2,3} and z € {0,1} and all possible combination is created. These numbers corresponds
to the various parameters of the kBSPS kernels.

Remark: unlike in the case of the above program, here strings are converted into numbers in order to
speed up the learning process of the SVM learner.

2.7 Step 6b: Creating folds for the training data set with cross-corpus
validation

This step is performed by also two programs and they are very similar to the above Step 6a. They
are part of Palaga’s Learning format APl Java library (see Section 1.2). These programs create the
training format for SVM based classifier, therefore are the last step in the preprocessing pipeline in
case cross-corpus cross validation is to be performed. The programs again assume the availability of
test-train splits, which is in this case different from the above one (see Section 1.1).

The first program creates the training data for the most of the SVM learners. The second program
creates the training data for the k-band shortest path spectrum kernel based SVM learner.

e Program: SvmLightTreeKernel TransformerCXval.java

e Input: the xml augmented with bracketing and alignment information, by convention located
in the tree/cross-corpus directory. This xml file is the concatenation of all corpus files. We
provide it in our package for the ease of use.

e Parameters:

-f|--file input file name

-o|--out output directory name

-s|--split location of the split files (folder)

-t|--test name of the corpus that is used for test, the other corpora are used for training.

-m|--moschitti flag for Moschitti style learning format (for subtree (ST), subset tree (SST),
and partial tree (PT) kernels)

-c|--custom flag for custom learning format (for spectrum tree (SpT) kernel)
Exactly one of the -m and -c flags has to be given.

e Running from command line:

java -classpath $ECLIPSEWORKSPACE/learning-format-api/bin;
$ECLIPSEWORKSPACE/learning-format-api/src/main/resources/jargs.jar
org.learningformat.transform.SvmLightTreeKernelTransformerCXval

-f All.xml -t example -m -s splits -o trainingdir;

where under the subdirectory splits resides the Test_on_example directory, which includes the
corresponding splits: example.xml and All_but_example.xml

e Output: under the directory specified by -o another directory named MOSCHITTI (for -m flag)
and CUSTOM_KERNEL (for -c flag), under which a third directory example-folds created, which
contains 2 text files: 0.txt is test set and 1.txt is the training set. There is only a slight
difference between the two format (Moschitti and custom), namely that the Moschitti based
SVM learners require an embedding |BT|..|ET| tags around the training parsed tree instances,
while the custom format follows the requirement of T. Joachims’ svn-light.

e Program: SvmLightDependencyTreeKernelTransformerCXval.java

e Input: the xml augmented with bracketing and alignment information, by convention located
in the tree/cross-corpus directory. This xml file is the concatenation of all corpus files. We
provide it in our package for the ease of use.

e Parameters:

-f|--file input file name

-o|--out output directory name

-s|--split location of the split files (folder)

-t|--test name of the corpus that is used for test, the other corpora are used for training.
e Running from command line:

java -classpath $ECLIPSEWORKSPACE/learning-format-api/bin;

$ECLIPSEWORKSPACE/learning-format-api/src/main/resources/jargs. jar

org.learningformat.transform.SvmLightDependencyTreeKernelTransformerCXval
-f All.xml -t example -s splits -o trainingdir;

where under the subdirectory splits resides the Test_on_example directory, which includes the
corresponding splits: example.xml and All_but_example.xml

e Qutput: under the directory specified by -o several other directories are created, under each of
which another directory example-folds created, 2 text files: 0.txt is test set and 1.txt is the
training set. The name of second level directories follow the following pattern:
CUSTOM_KERNEL-b-ztoy-kz-UP_TO-0UTSIDE-NO_SELF _REF-STEM-none where x < y and z € {1, 2},
y € {1,2,3} and z € {0,1} and all possible combination is created. These numbers corresponds
to the various parameters of the kBSPS kernels.

Remark: unlike in the case of the above program, here strings are converted into numbers in order to
speed up the learning process of the SVM learner.

3 Running the SVM classifiers

The SVM learners are trained via scripts files:

kBSPS kernel the running script can be found on gruenau?2 at
/home/wbi/palaga/learning/experiments/090318-signed-LED-led/run. When running in your
on directory (at least) the followings should be set:

e runHome is the directory where the executable files of the learner reside.
e corpusHome is the the directory where the final output of the pipeline is located.

Caution: the script starts a lengthy learning session with an exhaustive parameter optimization,
therefore it can take several hours or days to complete, depending on the machine you are running
the experiments on.

SpT kernel the running script can be found on gruenau2 at
/home/wbi/palaga/learning/spectrum/090328-spectrum-111/run. When running in your on
directory (at least) the followings should be set:

e runHome is the directory where the executable files of the learner reside.

e foldsDir is the directory where the output of SvmLightTreeKernelTransformer resides
(CUSTOM_KERNEL subdirectory).

ST, SST, PT the running script can be found on gruenau2 at
/home/wbi/palaga/learning/moschitti/090327-ecm106-111/run. When running in your on
directory (at least) the followings should be set:

e runHome is the directory where the executable files of the learner reside.

e foldsDir is the directory where the output of SvmLightTreeKernelTransformer resides
(MOSCHITTI subdirectory).

e the set kernels specifies which kernel to apply: 0 for ST, 1 for SST, 3 for PT. For all let
kernels=’0 1 3’

The scripts produce the results in the out/eval.txt as database insert and update commands.
Therefore in order to browse the results, one should upload them into a database. Before doing that
a minor change should be done:

sed -ie ’s/0::boolean/false/g’ eval.txt
TODO: change this in the scripts already!

4 Browsing the results in the Database

The results of the scripts are PostgreSQL database command. The corresponding database can be
found on siegfried. The following steps should be done to upload

e login into siegfried (from paprika or racer)
e login into the corresponding database, ppi, ppi-test or ppi_production by typing
psql -U <username> <databasename>

e create the necessary table and views. See an example for the creation in Appendix A.3

e execute
\i eval.txt
here the pathname of eval.txt also should be given.

After that the results can be browsed in the database. For the attributes of the database see also
Appendix A.3.

References

[1] A. Airola, S. Pyysalo, J. Bjorne, T. Pahikkala, F. Ginter, and T. Salakoski. All-paths graph
kernel for protein-protein interaction extraction with evaluation of cross-corpus learning. BMC
bioinformatics, 9(Suppl 11):52, 2008.

[2] E. Charniak and M. Lease. Parsing biomedical literature. In Proceedings of 1J CNLP’05, 2005.

[3] M. C. de Marneffe, B. MacCartney, and C. D. Manning. Generating typed dependency parses from
phrase structure parses. In Proceedings of LREC’06, 2006.

[4] T. Kuboyama, K. Hirata, H. Kashima, K. Aoki-Kinoshita, and H. Yasuda. A spectrum tree kernel.
Information and Media Technologies, 2(1):292-299, 2007.

[5] P. Palaga. Extracting relations from biomedical texts using syntactic information. Master’s thesis,
Humboldt-Universitat zu Berlin, May 2009.

A Appendix
A.1 The preprocessing script

#0.) Download all 5 corpora into folder original

wget http://mars.cs.utu.fi/PPICorpora/AImed-learning-format.xml.gz
wget http://mars.cs.utu.fi/PPICorpora/BioInfer-learning-format.xml.gz
wget http://mars.cs.utu.fi/PPICorpora/HPRD50-1learning-format.xml.gz
wget http://mars.cs.utu.fi/PPICorpora/IEPA-learning-format.xml.gz
wget http://mars.cs.utu.fi/PPICorpora/LLL-learning-format.xml.gz

gunzip *.gz

#For das File ein $PWD/$file
#1)
#Extracts sentences from the original XML
#Result is written in $file-ptb-s.txt
for file in *.xml
do
java -classpath $HOME/workspace/learning-format-api/bin/ org.learningformat.transform.PtbRawSentenceTransformer $fi
done

#2.) Parsing
#Results in two files -parsed.txt and -parsed.err
for file in *-ptb-s.txt;
do
~/Desktop/svm/training/reranking-parser/parse.sh $file > $file-parsed.txt 2>$file-parsed.err;
done

#Also exectuted it on racer:
#To check if the results are similar between the two parses
#/vol/home-vol3/wbi/thomas/tmp/parsingTest/original

mkdir charniak-johnson
mv *-parsed.* charniak-johnson/
mkdir trees

#3.)Combine XML and PTB together
Input is the original XML
Requires the corresponding file in directory "charniak-johnson" with file extension "-ptb-s.txt-parsed.txt"
#Writes into trees
for file in $PWD/*.xml;
do
java -classpath $HOME/workspace/learning-format-api/bin/:$HOME/workspace/learning-format-api/lib/jargs.jar org.lez
done

#4.)Generates a mapping between POS and ?7?real text??
Input is the XML-File in folder "trees"
Writes output in the folder "trees" suffix "-bracketing-tokens.txt" in folder
for file in $PWD/trees/*.xml;
do
java -classpath /home/philippe/workspace/learning-format-api/bin/ org.learningformat.transform.BracketingTokenMapy
done

5.) Needs folder mapped trees, because it stores results there
#Important InjectTreees=FALSE
#needs parametrization

mkdir trees/mapped-trees
for file in $PWD/trees/*.xml;
do
java -classpath /home/philippe/workspace/learning-format-api/bin/:$HOME/workspace/learning-format-api/lib/jargs. jz
done

#6.) Create final splits

#Needs final XML-Files in folder "trees/mapped-trees"

#Result is written into folder "$PWD/Corpora/" and then Moschitti or Custom
mkdir corpora

for file in $PWD/trees/mapped-trees/*.xml;
do

java -classpath /home/philippe/workspace/learning-format-api/bin/:$HOME/workspace/learning-format-api/lib/jargs.jaz
done

A.2 Parser fixes with gcc 4.4.0

The following steps need to be performed (tested on Windows under cygwin)
For the 2009 February pre-release version:

1. add into first-stage/PARSE/utils.C

#include <cstdio>

2. add into second-stage/programs/features/lexical_cast.h and
second-stage/programs/prepare-data/lexical_cast.h

namespace std {
typedef std::basic_string <wchar_t> wstring;

1
3. add into second-stage/programs/features/best-parses.cc
#include <unistd.h>

4. Additionally, the program flex is also needed for compilation (can be simply downloaded from
cygwin).
For the 2006 August version:
1. add into first-stage/PARSE/BchartSm.C

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

2. add into popen.h (2 files)

#include <string.h> //actually this is a change from <string>
#include <stdio.h>

3. add into second-stage/programs/features/lexical_cast.h and
second-stage/programs/prepare-data/lexical_cast.h

namespace std {
typedef std::basic_string <wchar_t> wstring;

1
4. add into second-stage/programs/features/best-parses.cc

#include <unistd.h>

5. add into second-stage/programs/features/utility.h and
second-stage/programs/prepare-data/utility.h

#include <memory>
change lines 497, 509 from
return is >> cp+i;
to
return is >> (cp+1);
6. add into first-stage/PARSE/ECArgs.C
#include <algorithm>

7. add into first-stage/PARSE/Feature.C, first-stage/PARSE/FeatureTree.C, first-stage/PARSE/InputTree.C
first-stage/PARSE/Params.C, and first-stage/PARSE/Parselt.C

#include <stdlib.h>
8. add into first-stage/PARSE/Params.C

#include <stdio.h>
#include <string.h>

9. add into first-stage/PARSE/utils.C
#include <cstdio>
10. change in second-stage/programs/features/sstring.h in lines 158, 160, 162
basic_sstring
to
basic_sstring_
11. add into second-stage/programs/prepare-data/lexical_cast.h

#include <limits>

A.3 Creating the table and views

This file can be found on /vol/home-vol3/wbi/tikk/Kernels/experiments/init-db-exb.

CREATE TABLE exb (exbid serial NOT NULL, corpus text, kernel
integer, c double precision, j double precision, lmax integer,
Imin integer, k integer, match_ text, fold integer, normalized
boolean, input_format text, tp integer, fn integer, tn integer,
fp integer, total integer, auc double precision, precision_
double precision, recall double precision, f_measure double
precision, learn_sec double precision, classify_sec double
precision, kernel_script text, sv_num integer, led text,
CONSTRAINT exb_pkey PRIMARY KEY (exbid));

CREATE OR REPLACE VIEW fold AS SELECT exb.corpus, exb.kernel,

exb.c, exb.j, exb.lmax, exb.lmin, exb.k, exb.match_, exb.normalized,
exb.input_format, exb.kernel_script, avg(exb.auc) AS auc,
avg(exb.precision_) AS precision_, avg(exb.recall) AS recall,
avg(exb.f_measure) AS f_measure, avg(exb.learn_sec) AS learn_sec,
avg(exb.classify_sec) AS classify_sec, avg(exb.sv_num) AS sv_num,

count (exb.exbid) AS cnt, exb.led FROM exb GROUP BY exb.corpus,
exb.kernel, exb.c, exb.j, exb.lmax, exb.lmin, exb.k, exb.match_,
exb.normalized, exb.input_format, exb.kernel_script, exb.led

ORDER BY exb.corpus, avg(exb.auc) DESC, exb.c, exb.j, exb.kernel_script;

CREATE OR REPLACE VIEW fold_top_6 AS (((SELECT fold.corpus, fold.c,
fold.j, fold.kernel_script, fold.auc, fold.precision_, fold.recall,
fold.f_measure, fold.learn_sec, fold.classify_sec, fold.sv_num, fold.cnt,
fold.led FROM fold WHERE fold.corpus = ’AImed’::text LIMIT 6) UNION ALL

(SELECT fold.corpus, fold.c, fold.j, fold.kernel_script, fold.auc,
fold.precision_, fold.recall, fold.f_measure, fold.learn_sec,
fold.classify_sec, fold.sv_num, fold.cnt, fold.led FROM fold WHERE

10

fold.corpus = *HPRD50’::text LIMIT 6)) UNION ALL (SELECT fold.corpus,
fold.c, fold.j, fold.kernel_script, fold.auc, fold.precision_, fold.recall,
fold.f_measure, fold.learn_sec, fold.classify_sec, fold.sv_num, fold.cnt,
fold.led FROM fold WHERE fold.corpus = ’IEPA’::text LIMIT 6)) UNION ALL

(SELECT fold.corpus, fold.c, fold.j, fold.kernel_script, fold.auc,
fold.precision_, fold.recall, fold.f_measure, fold.learn_sec,
fold.classify_sec, fold.sv_num, fold.cnt, fold.led FROM fold WHERE
fold.corpus = ’LLL’::text LIMIT 6);

11

