How to use the 10-PPI-kernels-package

Domonkos Tikk, Illés Solt, Philippe Thomas
July 28, 2011

This document briefly summarizes how to use kernel methods provided in the on-line appendix of
our paper [15]. The tools have been further elaborated to support subsequent papers (in preparation).

Platform All the below experiments have been performed under Linux. Most programs can be
also compiled and run on other operating systems, but here we restrict our description to the Linux
platform.

Required software:

e Subversion (see Appendix A.1 for setup instructions)

¢ PostgreSQL (database server, see Appendix A.3 for setup instructions, tested with versions 8.2
and 8.4)

¢ GNU make (tested with version 3.80)

* gcc (tested with version 4.4)

¢ GNU flex (tested with version 2.5)

* Java runtime and compiler (tested with version 1.6)
¢ ant (tested with version 1.7)

* Python (tested with version 2.6)

¢ Python NumPy (tested with version 1.3)

On a Ubuntu machine you could install/update all of the above by issuing:

sudo apt-get install subversion postgresql make sun-java6-bin sun-java6-jdk ant gcc flex python
python-numpy

You could test the availability and version of all the above programs by observing the outputs of the
following commands:

svn --version

psql --version

java -version

javac -version

ant -version

gcc --version

flex --version

python --version

python -c "import numpy; print numpy.version.version"

Required hardware:
* 4GB RAM

¢ 80-100GB hard-disk space, depending on how many parameter combinations are evaluated.
(Alone the experiments with Kim’s kernel require 40 GB space.)

Availability
¢ SVN: program codes, running scripts
e ZIP: corpora, learning formats, sample results of experiments

The ZIP files contain only such codes that can be generated by using the programs in the SVN repos-
itory. Therefore this can be used partly to jump over some steps of the entire process, such as e.g.
the generation of the learning formats, and partly serves as samples the actual experiment may be
compared with. The ZIP is provided in two parts. This has only technical reason to avoid files with
size over 25MB.

When referring to a part of published code, we specify it sources as either SVN or ZIP.
Processing steps The processing pipeline is the following

1. Transform PPI-corpora into the appropriate learning format of the kernel-based classifier.

2. Learn a classification model on a given training set using the kernel, and then test the model on
the corresponding test set.

3. Write the details of learning/testing into an evaluation file in the form of SQL INSERT statements.
4. Upload data into a database by executing the SQL INSERT statements of the evaluation file.
5. Store experimental results in the database, so that experiments can be evaluated.

This document discusses steps 1-4.

1 Running the benchmark

The SVN distribution includes several Makefile-s that execute the various programs and scripts.
The most important files are:

¢ Makefile.config — contains the definition of directories and variables used overall in the experi-
ments (detailed in Section 1.1).

* Corpora/Makefile — downloads the corpora, makes necessary modifications and creates the learn-
ing format for syntactic tree based kernels and kBSPS kernel.

* Corpora/Makefile.Fayruzov — creates the learning format for the Fayruzov implementation [4] of
Kim'’s kernels.

* Corpora/APG/Makefile — creates the learning format for the APG kernel [1].

* Experiments/Makefile — runs the experiments for all supported kernels (except the ones having
separate Makefile, listed below); inserts the results of experiments into the database.

1.1 Configuration

Makefile.config contains all directory definition and variables that is needed to execute the entire
package. Here we depict only those ones which may need to be set after installation.

baseDir=${HOME}/ppi-benchmark
baseDir is the root directory of the package. All other directories are set relative to basedir. One may

need to modify this, if the package ppi-benchmark is not downloaded directly into the ${HoME} directory.
Assuming you followed instructions in Appendix A.1, you do not have to modify this setting.

PSQLCONNECT=psql -h racer

Specifies the connection to the PostgreSQL database server. Change the name racer to the host
computer where the Postgres DBMS resides, and ensure that the host can be connected without
explicit authentication. (Please follow the instructions in Appendix A.3 or refer to the documentation
of the psql command line client!.) Assuming you followed instructions in Appendix A.3 and have a
server running locally, set

PSQLCONNECT=psql -h localhost -U ppi

BENCHMARKCORPORA=AIMed BioInfer HPRD50 IEPA LLL
CORPORA=${BENCHMARKCORPORA}

KERNELS=ST SST PT SpT kBSPS APG cosine edit SL Kim
EXPTYPES=CV CC CL

In corporRA the identifiers of each corpus in the experiment listed. For convenience, this is copied
from BENCHMARKCORPORA to facilitate easier overriding. KERNELS and EXPTYPES contain the identifiers of
all kernels and experimentation types, respectively. One may add here new corpora, kernels and
experimentation types. In that case, the availability of the corpora, the learning-format and the
kernel implementation has to be assured.

runSynTree=${kernelDir}/SVM-Light-1.5-to-be-released/trunk

runSpT=${kernelDir}/svm_light/branches/svm_light_spectrum_tree_kernel
runkBSPS=${kernelDir}/svm_light/trunk

Definition of the root directory of SVM executables. This is only used for C++ implementations. Java
implementation uses classpath definition to locate the executable Java classes. These settings should
be not be altered normally, unless you migrate your executables.

In addition, the configuration file contains decompression and download related targets.

2 Corpora

2.1 Original version

Five corpora are used in the experiments: AIMed, Biolnfer, HPRD50, IEPA, and LLL. We use the
derived version of these corpora created by Pyysalo’s group [14], which unifies PPI-annotation and
contains parses created with the Charniak-Lease parser [9] and transformed to collapsed Stanford
format [3]. The files are in directory /Corpora/0Original (ZIP). The corpora can be downloaded directly
from http://mars.cs.utu.fi/PPICorpora/GraphKernel.html. This can be done also by

cd Corpora
make download

2.2 Syntax-Iree version

Syntax tree based kernels require syntax parses in the learning format. This conversion was done
first by Peter Palaga [13], then improved by the authors. The conversion is described in Sec-
tion 3 and in more detail in Appendix C-D. We provide the converted version in the directory
/Corpora/Syntax-Tree-Learning-Format (ZIP).

2.3 Split

In order to insure the reproducibility and comparativeness of the experiments, we use the de facto
standard document level splits of Airola [1].

The splits resides in /Corpora/Splits (SVN), under the respective corpus name. This version is used
by syntax tree kernels, kBSPS, and Kim'’s kernels. APG kernel uses the same train-test splits but in a
different format, which can be found in /Corpora/splits-test-train (SVN).

Thttp://www.postgresql.org/docs/8.1/static/app-psql.html

http://mars.cs.utu.fi/PPICorpora/GraphKernel.html
http://www.postgresql.org/docs/8.1/static/app-psql.html

2.4 Creating the enriched XML format

We created a separate target to perform exclusively the enrichment of XML files with all necessary
syntax parse and dependency parse information. To execute the target generate-enriched-xml the input
XML file should be in /Corpora/original, for instance /Corpora/Original/Test.xml. The XML file should be
in Airola format and should contain the sentence, entity, pair elements under corpus/document. Addition-
ally the value of CORPORA variable in /Makefile.config should be changed accordingly (e.g. to Test). After
the preprocessing, the execution is done as

cd Corpora
make generate-enriched-xml

3 Learning formats

Various kernel methods work with different learning formats. The learning format depends on the

+ The classification algorithm used; SVM or RLS; various SVM implementations (SVM/ 9", SVM-TK,
LibSVM)

¢ Integration of kernel function into the classifier;
e The kernel itself.

We provide learning formats for all experiment types, namely cross-validation (CV), cross-learning
(CL), and cross-corpus (CC) evaluations. In the subsequent subsections we describe the process of
learning format creation for all learning softwares.

3.1 Creating the learning format SL kernel

The learning format of SL is created by calling the following target:

cd Corpora
make create-SL-LF

This creates all the necessary training data for CV, CC and CL evaluation, performed for all corpora
in CORPORA.

3.2 Creating the learning format for the Moschitti and spectrum tree ker-
nels

Learning format creation is performed in several steps.

Step 1 Creates the appropriate input format from the derived XML files for the syntactic parser.
Step 2 Performs syntactic parsing.

Step 3 Injects the syntactic parses into the derived XML files.

Step 4 Aligns the original sentence with the syntactic parses (specifies the character offsets in the
raw text and the syntactic parse trees).

Step 5 Injects the results of the above alignment into the XML files.

Step 6 Creates the learning format for various evaluation scenarios (CV, CC, CL).

All steps can be executed via the provided Makefile in the Corpora directory (SVN). Below we de-
scribe its targets. The detailed description of each step can be found in Appendix C.

cd Corpora
make all

Runs the entire processing chain and creates learning format for all evaluation methods (CV, CC
and CL). This also includes the creation of kBSPS learning format for technical reason. The original
syntactic tree learning format does not include the identifier of each entity pair. This is copied from
the kBSPS version.

make pre-steps

Runs the following three steps together: download, repair-BioInfer and compile.

make download

Download the corpora and normalize their names.

make repair-BioInfer

The original Biolnfer corpus contains a minor tokenization error in sentence BioInfer.d109.s0, which
is repaired by this code. Without this repair, Step 4 would crash with an error on Biolnfer.

make compile

Compiles the Java code for the learning format transformation. Prior running it checks for java
updates in the SVN.

make main-steps

Runs all the 6 steps described above for syntax tree kernels and the 6th step for kBSPS kernel (see
Section 3.3).

make main-steps-syntree

Runs all the 6 steps described above for syntax tree kernels. Among them parsing (Step 2) takes the
longest time, but on a 4-core machine the entire pipeline is ready within 10 minutes.

make post-steps

Perform the below detailed four targets: clean, createCC, createCL and idVersion.

make clean

Delete temporary files.

make createCC

Creates cross-corpus (CC) learning formats based on the CV learning format.

make createCL

Creates cross-learning (CL) learning formats based on the CC learning format.

make idVersion

Add the id of each learning instances to the learning format based on the kBSPS files.

3.3 Creating the learning format for kBSPS

The creation of learning format is simpler because the kernel uses the dependency graphs already
available in the original learning script.

make all-kBSPS
Runs the entire processing chain for kBSPS kernel (that is indeed only the Step 6 from above, since
syntax trees do not need to be injected into the learning format) and creates learning format for all

evaluation methods (CV, CC and CL). This target can be executed on its own without preparing the
syntax tree learning formats.

make pre-steps

As above in Section 3.2.

make main-steps-kBSPS

Creates the learning format for kBSPS.

make post-steps-kBSPS

This consists of only two targets, createCC and createCL which create the corresponding CC and CL
evaluation files from CV files (in this order).

3.4 Creating the learning format for the APG kernel

The learning format of the APG kernel can be created by the Corpora/APG/Makefile as

cd Corpora/APG
make all

This requires that the enriched XML files (generated previously at syntax tree kernels) are available.
This calls the following three targets that belong to the appropriate experiment types:
generate-CV-data, generate-CL-data, generate-CC-data

3.5 Creating the learning format for Kim’s kernels

The creation of learning format is performed in two main steps. The target for those steps are defined
in Corpora/Makefile.Fayruzov. This file is imported into Corpora/Makefile. The steps are the followings:

cd Corpora
make parse-Fayruzov

Launch the Stanford parser to parse the available corpora. The target checks the availability of
the necessary JAR file and grammar definition file. The target does not download automatically the
required files, because they are embedded in larger packages which are not needed for the current
task. Instead when the required files are missing, it returns an error message specifying the missing
file and its location on the net.

make create-1ibSVM-LF

Calls the three targets to create the learning formats for CV, CC and CL evaluations.

4 Kernels and classifiers

For running experiments we provide Experiments/Makefile. The main target in the makefile is experiment
that should be called as described by make help:

cd Experiment
make help

use 'make experiment Corpora="AIMed BioInfer HPRD50 IEPA LLL" Kernel="ST | SST | PT | SpT | kBSPS | APG |
cosine | edit | SL | Kim" expType="CV | CC | CL"’

The target can be called with any subset of the available Corpora, with only a single kernel given
in kernel and a single experimentation type given in expType. The target accepts only those corpora,
kernels and experimentation types that are given in CORPORA, KERNELS, and EXPTYPES, resp., defined in
Makefile.config.

We provide an additional experiment-test target which runs only one experiment with the fastest
setting, in order to check the functionality of the kernel.

4.1 Shallow linguistic (SL) kernel

The source code of the classifier is located under Kernels/jsre/source (SVN). This was obtained from
Claudio Giuliano [5]. As its name suggests, the kernel uses only shallow linguistic features, but no
syntax or dependency parses.

This kernel does not require any compilation step before running. If a forced rebuild of the Java
executable is necessary, this can be done as:

cd Kernels/jsre/source
ant build

Experiments can be run using the experiment and experiment-test targets as specified above (page 6).

4.2 Syntax tree based kernels: ST, SST, and PT

The source code of the classifier, called SVM-Light V5.01-TK-1.5, can be found in
Kernels/SVM-Light-1.5-to-be-released/trunk (SVN). It is an extension of SVMY"* by Alessandro
Moschitti [11, 12]. SVMUght is the SVM implementation of Torsten Joachims [6]. As of
31.05.2010, only the earlier version 1.2 of the SVM-Light-TK software is available online:
http://dit.unitn.it/~moschitt/Tree-Kernel.htm. @ We received the pre-release version as
the courtesy of the author. It contains the file kernel.h created by Moschitti, which implements 3
kernels: subtree (ST), subset tree (SST), and partial tree (PT) kernels. The various kernels can be
selected via the -F option.
The kernel-based classifier can be compiled with

cd Kernels/SVM-Light-1.5-to-be-released/trunk
make all

that creates two executables, svm_learn and svm_classify.
The experiment and experiment-test targets call the Experiments/ST-SST-PT/execute-syntree.sh script with
the appropriate setting. The script is detailed in Appendix B.

4.3 Spectrum tree (SpT) kernel

Spectrum tree kernel was implemented by Peter Palaga [13] based on the work of Kuboyama [8].
The kernel is integrated into the SVM“"* package. It uses slightly different learning-format than the
Moschitti version, therefore we treat it separately. The source code of the classifier can be found in
Kernels/svm_light/branches/svm_light_spectrum_tree_kernel (SVN). The kernel function is embedded in the
same way as in the Moschitti implementation, using the user-defined kernel.h file.

The kernel-based classifier can be compiled with

cd Kernels/svm_light/branches/svm_light_spectrum_tree_kernel
make all

that creates two executables, svm_learn and svm_classify.
The experiment and experiment-test targets call the Experiments/SpT/execute-SpT.sh script with the ap-
propriate setting. The script is analogous to the execute-syntree.sh script detailed in Appendix B.

4.4 k-band shortest path spectrum (kBSPS) kernels

kBSPS kernel was invented by Peter Palaga [13]. The kernel is integrated into the SVM“9"* package. It
uses a different learning-format than the Moschitti version: only the k-band shortest paths are passed
to the classifier, where tokens (nodes) and edges (dependency types) are represented by integers,
which allows for a much faster learning. Consequently, the retrieval of k-band shortest paths from
the dependency graphs should be executed when creating the learning format. It requires that for
all possible combinations of parameters effective to the k-band shortest paths to be retrieved, a
separate learning corpus have to be created. Those parameters are k, ¢min and ¢ma.x. The provided
zip file contains the learning corpus for kBSPS for the following parameter settings:

http://dit.unitn.it/~moschitt/Tree-Kernel.htm

s k= {07 1}/ Gmin = {17 2} and gmax = {273}

When experiments with different parameter settings are required to be performed new learning cor-
pora have to be generated. The description of the script that creates the learning format can be found
in Section 3.3, details in Appendix D.
The source code of the classifier can be found in Kernels/svm_light/trunk (SVIN). The kernel function
is embedded in the same way as in the Moschitti implementation, using the user-defined kernetl.h file.
The kernel-based classifier can be compiled with

cd Kernels/svm_light/trunk
make all

that creates two executables, svm_learn and svm_classify.
The experiment and experiment-test targets call the Experiments/kBSPS/execute-kBSPS.sh script with the
appropriate setting. The script is analogous to the execute-syntree.sh script detailed in Appendix B.

4.5 Cosine similarity (cosine) based kernel
4.6 Edit distance (edit) based kernel
4.7 All-path graph (APG) kernel

This kernel does not require any compilation step before running. Experiments can be run using the
experiment and experiment-test targets as specified above (page 6). Before running the script, make
sure that python? and NumPy? are installed on your computer.

4.8 Kim'’s kernels

We obtained the implementation of Kim’s kernels from Timur Fayruzov [4] (December 2009), because
the original kernels published in [7] were not available at Autumn 2009. The package contains four
kernels called lex, syn, pos, and comp, which are, respectively, based on lexical dependency trees,
deep syntactic features, POS dependency trees, and the combination of all. The kernels are integrated
into the libSVM package [2]. Because we received the Fayruzov-implementation after the submission
of our paper [15], the results related to these kernels are not included therein, but are considered on
our subsequent PPI-related studies.

The source code of the classifier can be found in Kernels/Fayruzov (SVN). The kernels are embedded
into the libSVM package as the precomputed Gram-matrix of all instances (pairwise distance of the
all instances). Consequently, when working on large corpora, the size of those matrices can be pretty
large, for CL evaluation it attain even several GBs, therefore we refrain from providing these files
even in the zip archive.

The kernel-based classifier can be compiled with

cd Kernels/Fayruzov
make all

that compiles the Java project. The two executables, svm-train and svm-predict, can be found in
Kernels/Fayruzov/resource/svm; these are the binaries of the libSVM version 2.9 (November 2009)*.

The experiment and experiment-test targets call the Experiments/KimKernel/execute-KimKernel.sh script
with the appropriate setting. The script is analogous to the execute-syntree.sh script detailed in Ap-
pendix B.

2http://www.python.org/
Shttp://www.numpy.org
4http://www.csie.ntu.edu.tw/~cjlin/cgi-bin/libsvm.cgi?+http://www.csie.ntu.edu.tw/~cjlin/libsvm+zip

http://www.python.org/
http://www.numpy.org
http://www.csie.ntu.edu.tw/~cjlin/cgi-bin/libsvm.cgi?+http://www.csie.ntu.edu.tw/~cjlin/libsvm+zip

5 The PPI experiments database

We use PostgreSQL DBMS to store the experiments. We provide scripts to initialize the database
tables, create views and functions and finally to insert the results of the experiments described above
into the database. The database schema is further discussed in Appendix E

5.1 Creating the tables

The tables are created via the following three SQL scripts located in folder Database (SVN):
1. init-ppiCV.sql — creates the tables for CV experiments: ppiCV, ppiCVoutput and ppiCVfolds;
2. init-ppiCC.sql — creates the tables for CC experiments: ppiCC and ppiCCoutput;
3. init-ppiCL.sql — creates the tables for CL experiments: ppiCL and ppiCLoutput.

The scripts can be invoked e.g. via the PostgreSQL command line interface, assuming the name
ppi for the database

cd Database
psql ppi
> \1 init-ppiCV.sql

or from the shell (if the DBMS is located on the same machine):

cd Database
psql ppi -f init-ppiCV.sql

5.2 Uploading database scripts into the database

Uploading is done by Experiment/Makefile. The main target in the makefile is output2db that should be
invoked as:

make output2db Corpora="AIMed BioInfer HPRD50 IEPA LLL" Kernel="ST | SST | PT | SpT | kBSPS | APG |
cosine | edit | SL | Kim" expType="CV CC CL"

To be able to run this target the connection to the Postgres database should be assured (see Appendix
A.3). The target can be called with any subset of the available Corpora and expType, but with only a
single kernel given in Kernel. The target accepts only those corpora, kernels and experimentation
types that are given in CORPORA, KERNELS, and EXPTYPES, resp., defined in Makefile.config. In case of kernels
SL, cosine and edit, the value of Corpora is need not to be specified, since all results are stored in one
larger file (consequently the value of Corpora is ignored).

The final step assigns a separate identifier to the 10 fold-wise separately stored experiments of
each cross-validation run, which enables to handle the 10 runs together. This is performed by the
script manage_folds.sql as

cd Database
psql ppi -f manage_folds.sql

We remark that in addition to the averaged results of the experiments in terms of precision, recall,
F-measure and AUC, we also keep track of the prediction given for each test case. This allow of an
instance level error analysis, that is the focus of of current study.

References

[1]1 A. Airola, S. Pyysalo, J. Bjorne, T. Pahikkala, F. Ginter, and T. Salakoski. All-paths graph kernel
for protein-protein interaction extraction with evaluation of cross-corpus learning. BMC bioin-
formatics, 9(Suppl 11):S2, 2008.

[10]

[11]

[12]

[13]

[14]

[15]

C.-C. Chang and C.-]. Lin. LIBSVM: a library for support vector machines, 2001. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

M. C. de Marneffe, B. MacCartney, and C. D. Manning. Generating typed dependency parses
from phrase structure parses. In Proceedings of LREC’06, 2006.

T. Fayruzov, M. De Cock, C. Cornelis, and V. Hoste. Linguistic feature analysis for protein inter-
action extraction. BMC Bioinformatics, 10(1):374, 2009.

C. Giuliano, A. Lavelli, and L. Romano. Exploiting shallow linguistic information for relation
extraction from biomedical literature. In Proc. of the 11st Conf. of the European Chapter of the
Association for Computational Linguistics (EACL’06), pages 401-408, Trento, Italy, 2006. The
Association for Computer Linguistics.

T. Joachims. Making large-scale support vector machine learning practical, Advances in kernel
methods: support vector learning. MIT Press, Cambridge, MA, 1999.

S. Kim, J. Yoon, and J. Yang. Kernel approaches for genic interaction extraction. Bioinformatics,
24(1):118-126, Jan 2008.

T. Kuboyama, K. Hirata, H. Kashima, K. Aoki-Kinoshita, and H. Yasuda. A spectrum tree kernel.
Information and Media Technologies, 2(1):292-299, 2007.

M. Lease and E. Charniak. Parsing biomedical literature. In Natural Language Processing -
IJCNLP 2005, number 3651 in LNCS, pages 58-69. Springer, Berlin/Heidelberg, 2005.

D. McClosky. Any Domain Parsing: Automatic Domain Adaptation for Natural Language Parsing.
PhD thesis, Department of Computer Science, Brown University, 2009.

A. Moschitti. Efficient convolution kernels for dependency and constituent syntactic trees. In
Proc. of The 17th European Conf. on Machine Learning, pages 318-329, Berlin, Germany, 2006.

A. Moschitti. Kernel methods, syntax and semantics for relational text categorization. In Pro-
ceeding of ACM 17th Conf. on Information and Knowledge Management (CIKM’08), Napa Valley,
CA, USA, 2008.

P. Palaga. Extracting relations from biomedical texts using syntactic information. Master’s
thesis, Humboldt-Universitat zu Berlin, May 2009.

S. Pyysalo, A. Airola,]J. Heimonen, J. Bjorne, F. Ginter, et al. Comparative analysis of five protein-
protein interaction corpora. BMC Bioinformatics, 9 Suppl 3:S6, 2008.

D. Tikk, P. Thomas, P. Palaga,]J. Hakenberg, and U. Leser. A comprehensive benchmark of kernel
methods to extract protein-protein interaction from literature. PL0oS Computational Biology,
6(7):€1000837, 07 2010.

10

http://www.csie.ntu.edu.tw/~cjlin/libsvm

Appendix

A Getting dependencies to work

A.1 Setting up Subversion repository access
A.1.1 Installing Subversion client
Install Subversion client on Debian/Ubuntu:

sudo apt-get install subversion

Most other operating systems will have some way of installing Subversion as a pre-configured pack-
age. In a special case, you may still refer to the official Subversion download site’.

A.1.2 Obtaining the 10-PPI-Kernels package

To check out the package enter:

svn co 'http://categorizer.tmit.bme.hu/svn/ppi-benchmark’ ${HOME}/ppi-benchmark

This will download the package files into the local ppi-benchmark/ folder into your home directory.

A.2 Decompressing the zip files
The zip files should be decompressed as

unzip ppi-benchmarkl.zip ppi-benchmarkl.zip -d TARGET_DIRECTORY

uncompress both zip files to the given target directory. The content of a zip files can be listed with

unzip -1 ppi-benchmarkl.zip
unzip -1 ppi-benchmark2.zip

The first one contains 30 files, the second one 913 files.

A.3 Setting up a PostgreSQL database
A.3.1 Installing PostgreSQL client and server
Install PostgreSQL server and client on Debian/Ubuntu:

sudo apt-get install postgresql

If you already have a PostgreSQL server running on a remote machine:

sudo apt-get install postgresqgl-client

Most other operating systems will have some way of installing PostgreSQL as a pre-configured pack-
age. In a special case, you may still refer to the official PostgreSQL download site®.
A.3.2 Creating a new user and database

On the machine running the PostgreSQL server create a new user called ‘ppi’ with password “ppi’:’

sudo useradd ppi -s /bin/false
sudo passwd ppi

Log in to the database as the database administrator:

Shttp://subversion.apache.org/packages.html
bhttp://www.postgresql.org/download/
7See http://www.cyberciti.biz/faq/howto-add-postgresql-user-account/ for a more detailed description.

11

http://subversion.apache.org/packages.html
http://www.postgresql.org/download/
http://www.cyberciti.biz/faq/howto-add-postgresql-user-account/

sudo su -c "psqgl" postgres

You should get a database command prompt similar to this:

psql (8.4.4)
Type "help" for help.

postgres=#

On the database command prompt, enter the following commands to create a new database:
CREATE USER ppi WITH PASSWORD ’'ppi’;

CREATE DATABASE ppi;

GRANT ALL PRIVILEGES ON DATABASE ppi TO ppi;
CREATE LANGUAGE plpgsql;

Type “\q’ to quit.

A.3.3 Allow network access

Allow network-based access (both local and remote) Edit the server machine’s pg_hba. conf, €.g.:

sudo vim /etc/postgresql/8.*/main/pg_hba.conf

and append the following line:

host ppi ppi 0.0.0.0/0 md5

Optionally allow remote access If you will e accessing the PostgreSQL server from a remote
machine, you will have to allow remote access to the server.
Edit the server’s configuration file postgresql.conf, €.g.:

sudo vim /etc/postgresql/8.*/main/postgresql.conf

Locate the line

listen_addresses="localhost’

and add the server’s outside address.

Restart PostgreSQL Restart the PostgreSQL server process to make the changes take effect:

sudo /etc/init.d/postgresql-8.* restart

Test your connection:
psql -h localhost --user ppi -d ppi --password
If using a remote server, you should change localhost to the remote server’s address. Notice that you

will have to enter the password for user ‘ppi’.
You should get a database command prompt:

psql (8.4.4)
SSL connection (cipher: DHE-RSA-AES256-SHA, bits: 256)
Type "help" for help.

ppi=>

12

A.3.4 Set up password-less access

To avoid having to type the password for each connection, set up the ~/.pgpass password file on the
local machine:

touch ~/.pgpass

chmod 600 ~/.pgpass

cat >> ~/.pgpass <<EOF
#hostname:port:database:username:password
localhost:*:ppi:ppi:ppi

EOF

If using a remote server, you should change localhost to the remote server’s address.
Test your connection:

psql -h localhost -U ppi -d ppi

B Detailed description of cross-validation scripts

B.1 The execute-syntree.sh script

The script is normally called via the experiment target of the Experiment/Makefile, but can also be invoked
directly as

cd Experiments/ST-SST-PT
bash -c "corpusDir="$(corpusDir)’ learner=$(learner) tester=$(tester) test='$(test)’
allCorpora="$(Corpora)’ kernels='$(Kernel)’ expType='$(expType)’' ./execute-syntree.sh"

where the parameters are the followings:

* $(corpusbir) is the full path of directory corpora which contains the learning format in

learning-format;
e $(learner) is the full path of the svm_learn file;
e $(tester) is the full path of the svm_classify file;
e $(test) is optional; its should be set to 1 to perform a test;
* $(Corpora) is the list of corpora on which the experiment should be run;
¢ $(Kernel) is any of ST, SST or PT, i.e. specifies which kernel function to be used;
* $(expType) is any of CV, CC, CL; i.e. specifies the evaluation type.

Now we describe the content of the script in detail.

../config.sh

Imports the kernel-independent configuration of the experiments. This includes the calculation of
available processing units, and variable validation functions.

. config.sh

Imports the kernel-dependent configuration of the experiments. This includes the definition of test
and normal settings, relating the kernel and SVM parameters.

when CC then "location" is empty, otherwise, see below

if [${expType} != "CC" 1;
then

location=$corpus-folds
fi

inDir=${corpusDir}/learning-format/${expType}/MOSCHITTI/${location}

13

0

31

Specifies the location of the learning format. The $(location) is set according to the directory structure
of the learning format files. indir defines the actual directory where learning format files reside.

commands+="./${expType}_syntree_core.sh '${expType}’ ’'${corpus}’ "${j}’ ’"${c}’ ’'${lambda}’ ’'${mu}’
'${inDir}’ '${learner}’ ’'${kernel}’ ’'${tester}’"

Append the actual to-be-executed experiments to the command list. Depending on the type of exper-
iment ${expType} one of the three scripts are called:

1. cv_syntree_core.sh — CV evaluation;
2. CL_syntree_core.sh — CL evaluation;
3. CC_syntree_core.sh — CC evaluation.

Various parametrization of the experiment is collected in commands, which are then passed to the
computing cores using xargs:

[
\echo ${commands} | nice nice xargs --no-run-if-empty -d '#’ -P ${numberofcores} --max-args 1 -t bash -c
L

B.2 The cv_syntree_core.sh script

expType=$1; shift 1
corpus=$1; shift 1
j=%$1; shift 1

c=%$1; shift 1
lambda=$1; shift 1
mu=$1; shift 1
inDir=$1; shift 1
learner=$1; shift 1
kernel=$1; shift 1
tester=$1; shift 1

Parameter passing from the embedding script.

folds='0 1 2 3456 789
useFolds="0 1 2 3 456 7 8 9’

The definition of the ten folds. The variable folds is used for training and useFolds is used for test.

| . kernelparams.sh

Imports the local kernelparams.sh file containing fix kernel-specific values to be inserted into the
database input file.

outDir=./${kerneltext}/${expType}/${corpus}/out-${expType}-${corpus}t-j${j}-c${c}-L${lambda}-M${mu}
tmpDir=./${kerneltext}/${expType}/${corpus}/tmp-${expType}-${corpus}-j${j}-c${c}-L${lambda}-M${mu}

Location of output and temporal directory is defined.

ilogFile=${outDir}/${expType}-${corpus}-j${j}-c${c}-L${lambda}-M${mu}.1og

35 ievalFile=${outDir}/${expType}—${corpus}—j${j}—c${c}—L${lambda}—M${mu}.sql

Location of logFile and the evalFile is defined. The results of the experiments are printed into the
latter.

[
| for fold in ${useFolds};
L

Each fold is used once as test.

learnFolds=${folds/$fold/}
for learnFold in ${learnFolds};
do

cat ${inDir}/${learnFold}.txt.id >> ${learnCorpus}
done
cp ${inDir}/${fold}.txt.id ${testCorpus}
model=${outDir}/${fold}-model. txt

14

learnCorpus and testCorpus are constructed. It is important here that the files with .txt.id extension are
used, which contains also the identifier of each instance (entity pair).

echo -n "insert into ppi${expType} (corpus, parsertype, parser, kernel, c, j, fold, kernel_script) values
(" >> ${evalFile}

echo "’'${corpus}’, ’'${parsertype}’, '${combo}’, '${kerneltext}’, ${c}, ${j}, ${fold}, 'lambda:${lambda}
mu:${mu}’);" >> ${evalFile}

Specifies the unique parameters of the current experiment.

${learner} -v -1 -t 5 -F ${kernel} -D ppi${expType} -C T -c ${c} -j ${j} -L ${lambda} -M ${mu}
${learnCorpus} ${model} >> ${evalFile}

${tester} -v -1 -D ppi${expType} ${testCorpus} ${model} >> ${evalFile}
Calls the training process and then evaluates the created model on testCorpus
sed -i 's/nan/0.0/g’ ${evalFile}

Substitutes numerical errors caused by zero-devision.

C Details of learning format creation for syntax tree kernels

C.1 Step 1: preparing parsing input

The software is a part of Palaga’s Learning format APl Java library. The program extracts each sen-
tence from the derived XML file and embeds them within <s>...</s> tags.

e Program: PtbRawSentenceTransformer.java
¢ Input: derived XML (specified with the -f parameter)
* Parameters:

-f|--file input file name

-0|--out output file name (optional, default: <input>-ptb-s.txt)

¢ Run from command line:

java -classpath "${LFJARGSCLASSPATH}:${LFCLASSPATH}"
org.learningformat.transform.PtbRawSentenceTransformer -f PPIcorpus.xml

where ${LFJARGSCLASSPATH} is the learning-format-api/lib directory, and ${LFCLASSPATH} is the direc-
tory of java files.

e Output: PPIcorpus.xml-ptb-s.txt

C.2 Step 2: parsing

The second step is the parsing the corpora with Charniak-Lease-Johnson-McClosky parser. The input
format is done in Step 1 (PPIcorpus.xml-ptb-s.txt file) the output is the parsed trees of the each sen-
tence, e.g., the result of “ykuD was transcribed by SigK RNA polymerase from T4 of sporulation.”
is

(S1 (S (NP (NNP ykuD)) (VP (AUX was) (VP (VBN transcribed)

(PP (IN by) (NP (NP (NNP SigK) (NNP RNA) (NN polymerase))
(PP (IN from) (NP (NNP T4))) (PP (IN of) (NP (NN sporulation))))))) (. .)))

¢ Parser: Charniak-Lease reranking parser executables: parselt and bestparses, downloaded au-
tomatically by the Makefile, if missing. Located under RERANKINGPARSER=${baseDir}/Parsing/Charniak-
Lease-2006Aug-reranking-parser.

15

C.3
This

tags.

Model file: Self-training biomedical parsing model file from David McClosky (June 2009) [10]
(several files), downloaded by the Makefile, if missing. Located under BIOPARSINGMODEL=${baseDir}/
Parsing/Models/McClosky-2009

Input: PPIcorpus.xml-ptb-s.txt files in format <s>sentence</s>.
Parameter: to-be-parsed file (ptb-s.txt), output and error file should be redirected

Run from command line:

${parseIt} -1399 -N50 ${parser} PPIcorpus.xml-ptb-s.txt | ${bestparses} -1 ${featuresgz}
${weightsgz} > PPIcorpus.xml-ptb-s-parsed.txt 2>PPIcorpus.xml-ptb-s-parsed.txt.err

where

parseIlt=${RERANKINGPARSER}/first-stage/PARSE/parselt

parser=${BIOPARSINGMODEL}/parser/

bestparses=${RERANKINGPARSER}/second-stage/programs/features/best-parses

— featuresgz=${BIOPARSINGMODEL}/reranker/features.gz

weightsgz=${BIOPARSINGMODEL}/reranker/weights.gz

Output: PPicorpus.xml-ptb-s.txt-parsed.txt and PPIcorpus.xml-ptb-s-parsed.txt.err

Step 3: Injection of parsing results into XML files

program injects into the original XML files the parsing results in <bracketings>...</bracketings>

Program: PtbTreeInjector.java
Input: PPIcorpus.xml and the corresponding parse file: PPIcorpus.xml-ptb-s.txt-parsed.txt.
Parameters:

-f|--file input file name

-i|--inject this is a switch which should be given for this step
-0|--out output file name

-p| --parse parse file name

-t|--token token file name, this must not be given for Step 3.

Running from command line:

java -classpath "${LFJARGSCLASSPATH}:${LFCLASSPATH}" org.learningformat.transform.PtbTreeInjector
-f PPIcorpus.xml -p PPIcorpus.xml-ptb-s.txt-parsed.txt -o PPIcorpus.xml.injl -i \;

Output: specified by the -o option, an XML file that contains now the parsing results in
<bracketings>...</bracketings> tags, by convention: PPIcorpus.xml.injl

C.4 Step 4: alignments of the original sentence with the parsing results

This program aligns the original sentence with the parsing results, that is it specifies the character
offsets of the (from-to) of the tokens of the original text in the parsed texts. For the example sentence
“ykuD was transcribed by SigK RNA polymerase from T4 of sporulation.” it is:

LLL.d2.s1,0-3:16-19,5-7:32-34,9-19:46-56,21-22:67-68,24-27:84-87,29-31:95-97,
33-42:104-113,44-47:125-128,49-50:140-141,52-53:154-155,55-65:166-176,66-66:188-188

Program: BracketingTokenMapper.java

16

e Input: PPIcorpus.xml.inj1 that is the output file of Step 3.
¢ Parameter:

* Running from command line:

java -classpath "${LFJARGSCLASSPATH}:${LFCLASSPATH}"
org.learningformat.transform.BracketingTokenMapper PPIcorpus.xml.injl

¢ Output: a text file containing the alignments. The output text files gets the -bracketing-tokens. txt
suffix, i.e. for PPIcorpus.xml.inj1 it iS PPIcorpus.xml.injl-bracketing-tokens.txt.

C.5 Step 5: Injection of sentence-parsing alignments into XML files

This program injects into the original XML files the alignments created in Step 4, the alignments are
injected into the XML file within <char0ffsetMapEntry> tags.

e Program: PtbTreeInjector.java
¢ Input: PPIcorpus.xml.inj1 and the corresponding PPIcorpus.xml.injl-bracketing-tokens.txt
* Parameters:

-f|--file input file name

-i|--inject this switch must not given for Step 5

-0|--out output file name

-p| --parse parse file name, this must not be given for Step 5

-t|--token token file name.

¢ Running from command line:

java -classpath "${LFJARGSCLASSPATH}:${LFCLASSPATH}" org.learningformat.transform.PtbTreeInjector
-f PPIcorpus.xml.injl -t PPIcorpus.xml-bracketing-tokens.txt -o PPIcorpus.xml.injl.inj2

e Output: specified by the -o option, an XML file that contains now the parsing results in
<char0ffsetMapEntry> tags. By convention this is PPIcorpus.xml.injl.inj2.

C.6 Step 6: Creating folds for CV-evaluation

These programs create the training format for SVM based classifier, therefore are the last step in the
preprocessing pipeline. The programs assume the availability of test-train splits (see Section 2).
The first program creates the training data for SVM learners using the syntax tree based kernels.

¢ Program: SvmLightTreeKernelTransformer.java
e Input: the PPIcorpus.xml.inj.inj2 files.
e Parameters:

-f|--file input file name
-0|--out output directory name
-s|--split location of the split files (folder)

-m|--moschitti flag for Moschitti style learning format (for subtree (ST), subset tree (SST),
and partial tree (PT) kernels)

-c|--custom flag for custom learning format (for spectrum tree (SpT) kernel)

Exactly one of the -m and -c flags has to be given.

17

* Running from command line:

java -classpath "${LFJARGSCLASSPATH}:${LFCLASSPATH}"
org.learningformat.transform.SvmLightTreeKernelTransformer -f -m PPIcorpus.xml.inj.inj2 -s
${splitDir} -o ${outDir}

where under the subdirectory splitbir resides the PPIcorpus directory, which includes the corre-
sponding splits for the PPIcorpus.xml, files names PPIcorpusl.txt .. PPIcorpusl0.txt

e Qutput: under the directory specified by -o another directory named MoscHITTI (for -m flag) and
CUSTOM_KERNEL (for -c flag), under which a third directory PPIcorpus.xml-folds is created, which
contains 10 text files (named: 0.txt ... 9.txt).

Remark: There is only a slight difference between the two format (Moschitti and custom), namely
that the Moschitti based SVM learners require an embedding |BT|..|ET| tags around the training
parsed tree instances, while the custom format follows the requirement of T. Joachims’ SVM¥“9"¢,

D Details of learning format creation for kBSPS kernel

This program creates the 10-fold cross-validation data for the k-band shortest path spectrum kernel
based SVM learner.

¢ Program: SvmLightDependencyTreeKernelTransformer.java
¢ Input: the original PPIcorpus.xml.
* Parameters:

-f|--file input file name

-0|--out output directory name

-s|--split location of the split files (folder)

-gmin Minimal length of g-grams (allowed range: [1, 5], default: 2)

-gminmax Maximum of minimal length of g-grams (allowed range: [1, 5], default: 2)
-gmaxmin Minimum of maximal length of g-grams (allowed range: [1, 5], default: 2)
-gmax Maximal length of g-grams (allowed range: [1, 5], default: 2)

-k| --kvalue Value of k (allowed range: [0,2], default: 0)

* Running from command line:

java -classpath ’'${LFJARGSCLASSPATH}:${LFCLASSPATH}’
org.learningformat.transform.SvmLightDependencyTreeKernelTransformer -f PPIcorpus.xml --gmin 1
--gminmax 2 --gmaxmin 2 --gmax 3 -k 1 -s ${splitDir} -o ${CVDir}

which includes the corresponding splits for the PPIcorpus.xml, files names PPIcorpusl.txt ..
PPIcorpusl0.txt

¢ Output: under the directory specified by -o several other directories are created, under each of
which another directory PPIcorpus-folds created, which contains 10 text files (named: 0.txt ...
9.txt). The name of second level directories follow the following pattern:
CUSTOM_KERNEL - b - §yin t0Gmax - kk -UP_T0O-OUTSIDE-NO_SELF_REF-STEM-none Where ¢min < ¢max-

Remark: unlike for the syntax tree kernels, here strings are converted into numbers in order to speed
up the learning process of the SVM learner.

E Database schema
The database schema separates annotation data from experimental settings and their results. Cross-

validation and cross-learning and cross-corpus experiments are stored in separate sets of tables. A
fragment of the schema is shown in Figure 1.

18

ppicvfolds
ppicvfoldsid: serial

corpus: text
parsertype: text
parser: text

kernel: text
kernel_script: text
Tled: text

c_preset: double precision
j: double precision
nax: integer

nin: integer

k: integer

match_: text
normalized: boolean
input_format: text

W{ppicv_ppicvfoldsid_fkey}
1

.
ppicv 4
ppicvid: serial
ppicvfoldsid: integer
corpus: tex
parsertype: text
parser: text
kernel: text
kernel_script: text
led: text
c: double precision
j: double precision
max: integer
nin: integer
k: integer
match_: text
fold: integer
normalized: boolean
input_format: text
tp: integer
fn: integer
tn: integer
fp: integer
total: integer
auc: double precision
precision_: double precision
recall: double precision
f_measure: double precision
Tearn_sec: double precision
classify_sec: double precision
sv_num: integer
forced_threshold: double precision
ppicv_auc_check(CHECK (((auc >= (0)::double pr ..
ppicv_classify_sec_check(CHECK (((classify_sec
ppicv_f_measure_check(CHECK (((f_measure >= (0)
ppicv_fn_check(CHECK (((fn >= @) OR (fn IS NULL))))
ppicv_fp_check(CHECK (((fp >= ©) OR (fp IS NULL))))
ppicv_learn_sec_check(CHECK (((learn_sec >= (0)::dou
ppicv_precision_check(CHECK (((precision_ >= (0)
ppicv_recall_check(CHECK (((recall >= (6)::double
ppicv_sv_num_check(CHECK (((sv_num > 0) OR (sv_nu .
ppicv_tn_check(CHECK (((tn >= 8) OR (tn IS NULL))))
ppicv_total _check(CHECK (((total >= 0) OR (total
ppicv_tp_check(CHECK (((tp >= ©) OR (tp IS NULL))
'
1
Hppicvoutput_expid_fkey}
1
! -
1 R4
1 .
ppicvoutput - g
expid: integer L7

pair: text
output: boolean
prediction: double precision

doclabel:

text
corpus:
position:
origid:
fold: integer
doc_fold_not_null(CHECK ((fold IS NOT NULL)))
doc_position_check(CHECK (("position" >= 0)))

'?{sentence,aocjxey)
1
sentence

Tabel: text

doc: text

position: integer

origid: text

rawtext: text

dk_synt_tree: double precision

dkl_dep_graph:_double precision
nonnegative_positition(CHECK (("position’ >= 0))

:entltyisentenceifkey)

entity

entitylabel: text
sentence: text
position: integer
origid: text
entitytext: text
entitytype: text
beginoffset: integer
endoffset: integer
beginoffset2: integer
endoffset2: integer

Tess_begin_end(CHECK ((beginoffset <= endoffset)))

nonnegative_beginoffset(CHECK ((beginoffset >= 0)))

nonnegative_beginoffset2(CHECK ((beginoffset2 >= 0)))
0))

nonnegative_endoffset (CHECK ((endoffset >=
nonnegative_endoffset2(CHECK ((endoffset2
nonnegative_position(CHECK (("position" >=

’ N
Apair_entityl fkey} N {pair_entity2 fkey}
’ N

N
N

pair

pairlabel: text
entityl: text

entity2: text

groundtruth: boolean

depshortestpath: integer
syntshortestpath: integer
dkl_synt_shortest_path: double precision
dk1_dep_shortest_path: double precision
border_subj: integer

border_obj: integer

inequal_entity (CHECK ((entityl <> entity2)))
obj_range(CHECK (((border_obj IS NULL) 0 ... 2)))))
subj_obj_range(CHECK ((((border_subj IS NULL) ... 2)))))
subj_range (CHECK (((border_subj IS NULL) ... 2)))))

Figure 1: Fragment of the databse schema. Corpora and CV experiments related tables are drawn
with light and dark colors respectively.

19

	Running the benchmark
	Configuration

	Corpora
	Original version
	Syntax-Tree version
	Split
	Creating the enriched XML format

	Learning formats
	Creating the learning format SL kernel
	Creating the learning format for the Moschitti and spectrum tree kernels
	Creating the learning format for kBSPS
	Creating the learning format for the APG kernel
	Creating the learning format for Kim's kernels

	Kernels and classifiers
	Shallow linguistic (SL) kernel
	Syntax tree based kernels: ST, SST, and PT
	Spectrum tree (SpT) kernel
	k-band shortest path spectrum (kBSPS) kernels
	Cosine similarity (cosine) based kernel
	Edit distance (edit) based kernel
	All-path graph (APG) kernel
	Kim's kernels

	The PPI experiments database
	Creating the tables
	Uploading database scripts into the database

	Getting dependencies to work
	Setting up Subversion repository access
	Installing Subversion client
	Obtaining the 10-PPI-Kernels package

	Decompressing the zip files
	Setting up a PostgreSQL database
	Installing PostgreSQL client and server
	Creating a new user and database
	Allow network access
	Set up password-less access

	Detailed description of cross-validation scripts
	The execute-syntree.sh script
	The CV_syntree_core.sh script

	Details of learning format creation for syntax tree kernels
	Step 1: preparing parsing input
	Step 2: parsing
	Step 3: Injection of parsing results into XML files
	Step 4: alignments of the original sentence with the parsing results
	Step 5: Injection of sentence–parsing alignments into XML files
	Step 6: Creating folds for CV-evaluation

	Details of learning format creation for kBSPS kernel
	Database schema

