Wintersemester 08/09 20. Januar 2009

Übungsblatt 13

Besprechung der mündlichen Aufgaben am 27.–30.01.2009 Abgabe der schriftlichen Lösungen bis zum 3.2.2009

Aufgabe 100 mündlich

Für eine Reihe von algorithmischen Problemstellungen wurden 6 verschiedene Algorithmen mit folgenden Laufzeiten entworfen ($\log n$ steht als Abkürzung für $\lceil \log_2 n \rceil$):

Algorithmus	A_1	A_2	A_3	A_4	A_5	A_6
Laufzeit	$5 \cdot 10^8 n$	$10^5 n \log n$	$10^{3}n^{2}$	$10 \cdot 2^{n/2}$	2^{2n}	n!

Die Algorithmen werden auf einem Rechner implementiert, der mit einer Geschwindigkeit von 10^9 Operationen pro Sekunde arbeitet.

- (a) Bestimmen Sie jeweils die maximale Länge der Probleminstanzen, die mit diesen Algorithmen innerhalb einer Minute lösbar sind.
- (b) Um wieviel vergrößert sich jeweils die maximale Eingabelänge, wenn ein Rechner mit 10facher Geschwindigkeit benutzt wird?

Aufgabe 101 mündlich

Betrachten Sie die Menge der Palindrome $L = \{x \in \Sigma^* \mid x = x^R\}$. Beschreiben Sie eine möglichst zeiteffiziente 1-DTM M und eine möglichst zeiteffiziente 2-DTM M' für L. Vergleichen Sie die Laufzeiten von M und M' bei Eingaben der Länge n.

Aufgabe 102 10 Punkte

Seien $f,g\colon \mathbb{N} \to \mathbb{R}^+$ Funktionen. Beweisen oder widerlegen Sie folgende Aussagen:

(a)
$$\sum_{i=1}^{n} i = \mathcal{O}(n^2)$$
 (mündlich)

(b)
$$f(n) + \mathcal{O}(g(n)) = \mathcal{O}(f(n) + g(n))$$
 (mündlich)

(c)
$$\mathcal{O}(f(n) + g(n)) = f(n) + \mathcal{O}(g(n))$$
 (mündlich)

(d)
$$2^{n+\mathcal{O}(1)} = \mathcal{O}(2^n)$$
 (mündlich)

(e)
$$f(n) + g(n) = \mathcal{O}(\max\{f(n), g(n)\})$$
 (mündlich)

(f) Wenn
$$f(n) = \mathcal{O}(g(n))$$
, dann gilt $f^2(n) = \mathcal{O}(g^2(n))$ (mündlich)

(g) Wenn
$$f(n) = \mathcal{O}(g(n))$$
, dann gilt $f(n^2) = \mathcal{O}(g(n^2))$ (5 Punkte)

(h)
$$2^{\mathcal{O}(n)} = \mathcal{O}(2^n)$$
 (5 Punkte)

Aufgabe 103 Zeigen Sie:

- (a) $REG \subsetneq L$,
- (b) $CFL \subseteq P$,
- (c) $L \not\subseteq CFL$.

Aufgabe 104 Zeigen Sie:

10 Punkte

 $m\ddot{u}ndlich$

(a)
$$\mathsf{E} \subseteq \mathsf{DTIME}(2^{n^2}),$$

(mündlich)

(10 Punkte)

Hinweis: Zeigen Sie, dass die Diagonalsprache

$$D = \{w \mid M_w \text{ ist eine DTM, die } w \text{ in höchstens } 2^{|w|^2} \text{ Schritten verwirft}\}$$

in EXP, aber nicht in $\mathsf{DTIME}(2^{n^2})$ entscheidbar ist.

Aufgabe 105 Zeigen Sie:

miindlich

- (a) Jede Sprache $A \in \mathsf{DTIME}(t(n))$ ist in Polynomialzeit auf eine Sprache $B \subseteq \{0,1\}^*$ in $\mathsf{DTIME}(O(t(n)))$ reduzierbar.
- (b) Die Sprache

$$L = \left\{ w \# x \# bin(m) \middle| \begin{array}{l} x \in \{0,1\}^* \text{ und } M_w \text{ ist eine } k\text{-DTM, die} \\ x \text{ in höchstens } m \text{ Schritten akzeptiert} \end{array} \right\}$$

ist EXP-vollständig (bin(m) bezeichne die Binärdarstellung von m).

- (c) Der Abschluss von E unter \leq^p ist EXP (d.h. EXP = $\{A \mid \exists B \in E : A \leq^p B\}$).
- (d) E ist nicht unter \leq^p abgeschlossen (also ist $P \subsetneq E$ und $E \neq NP$).

 Hinweis: Verwenden Sie die Separation $E \subseteq EXP$ (siehe Aufgabe 104).

Aufgabe 106 5 Punkte

Eine boolesche Formel F heißt **Tautologie**, falls F(a) für alle Belegungen a den Wert 1 annimmt. F heißt **monoton**, falls in F nur die Junktoren \vee und \wedge vorkommen. Klassifizieren Sie folgende Entscheidungsprobleme für boolesche Formeln entsprechend ihrer Komplexität als effizient lösbar (d.h. in P) bzw. nicht effizient lösbar (d.h. NP-hart oder co-NP-hart). Begründen Sie Ihre Antwort.

- (a) $L_1 = \{F \mid F \text{ ist eine erfüllbare monotone Formel}\},$ (mündlich)
- (b) $L_2 = \{F \mid F \text{ ist eine erfullbare Formel der Form } G \to H\},$ (mündlich)
- (c) $L_3 = \{F \mid F \text{ ist eine Tautologie der Form } G \to H\},$ (mündlich)
- (d) $L_4 = \{F \mid F \text{ ist in KNF und es ex. eine Belegung } a \text{ mit } F(a) = 0\}, \text{ (mündlich)}$
- (e) $L_5 = \{F \mid \text{es gibt eine Belegung } a \text{ mit } F(a) = 0\}.$ (5 Punkte)

Aufgabe 107 Zeigen Sie:

5 Punkte

Die Reduktionsrelation \leq^p ist reflexiv und transitiv, aber nicht antisymmetrisch.