Einführung in die Theoretische Informatik

Johannes Köbler

Institut für Informatik Humboldt-Universität zu Berlin

WS 2016/17

Bemerkung

• Wie wir gesehen haben, ist folgende Sprache nicht regulär:

$$L = \{a^n b^n \mid n \ge 0\}.$$

• Es ist aber leicht, eine kontextfreie Grammatik für L zu finden:

$$G = (\{S\}, \{a, b\}, P, S) \text{ mit } P = \{S \rightarrow aSb, S \rightarrow \varepsilon\}.$$

 Damit ist klar, dass die Klasse der regulären Sprachen echt in der Klasse der kontextfreien Sprachen enthalten ist:

REG
$$\subsetneq$$
 CFL.

 Als nächstes wollen wir zeigen, dass die Klasse der kontextfreien Sprachen wiederum echt in der Klasse der kontextsensitiven Sprachen enthalten ist:

Kontextfreie Sprachen sind auch kontextsensitiv

- Kontextfreie Grammatiken sind dadurch charakterisiert, dass sie nur Regeln der Form $A \rightarrow \alpha$ haben.
- Dies lässt die Verwendung von beliebigen ε -Regeln der Form $A \to \varepsilon$ zu.
- Eine kontextsensitive Grammatik darf dagegen höchstens die ε -Regel $S \to \varepsilon$ haben.
- Voraussetzung hierfür ist, dass S das Startsymbol ist und dieses nicht auf der rechten Seite einer Regel vorkommt.
- Daher sind nicht alle kontextfreien Grammatiken kontextsensitiv.
- Beispielsweise ist die Grammatik $G = (\{S\}, \{a, b\}, \{S \rightarrow aSb, S \rightarrow \varepsilon\}, S)$ nicht kontextsensitiv, da sie die Regel $S \rightarrow \varepsilon$ enthält, obwohl S auf der rechten Seite der Regel $S \rightarrow aSb$ vorkommt.
- Wir werden jedoch sehen, dass sich zu jeder kontextfreien Grammatik eine äquivalente kontextsensitive Grammatik konstruieren lässt.

Satz

Zu jeder kontextfreien Grammatik $G = (V, \Sigma, P, S)$ gibt es eine kontextfreie Grammatik $G' = (V, \Sigma, P', S)$ ohne ε -Regeln mit $L(G') = L(G) \setminus \{\varepsilon\}$.

Beweis

• Zuerst berechnen wir die Menge $E = \{A \in V \mid A \Rightarrow^* \varepsilon\}$ aller ε -ableitbaren Variablen:

```
1 E' := \{A \in V \mid A \rightarrow \varepsilon\}

2 repeat

3 E := E'

4 E' := E \cup \{A \in V \mid \exists B_1, \dots, B_k \in E : A \rightarrow B_1 \dots B_k\}

5 until E = E'
```

Nun bilden wir P' wie folgt:

$$\left\{ A \to \alpha' \middle| \begin{array}{l} \text{es ex. eine Regel } A \to_G \alpha, \text{ so dass } \alpha' \neq \varepsilon \text{ aus } \alpha \text{ durch} \\ \text{Entfernen von beliebig vielen Variablen } A \in E \text{ entsteht} \end{array} \right\}.$$

Beispiel

Betrachte die Grammatik $G = (\{S, T, U, X, Y, Z\}, \{a, b, c\}, P, S)$ mit

$$P: S \to aY, bX, Z; Y \to bS, aYY; T \to U; X \to aS, bXX; Z \to \varepsilon, S, T, cZ; U \to abc.$$

Berechnung von E:

$$\begin{array}{c|cc}
E' & \{Z\} & \{Z,S\} \\
E & \{Z,S\} & \{Z,S\}
\end{array}$$

• Entferne $Z \to \varepsilon$ und füge $Y \to b$ (wegen $Y \to bS$), $X \to a$ (wegen $X \to aS$) und $Z \to c$ (wegen $Z \to cZ$) hinzu:

$$P': S \rightarrow aY, bX, Z; Y \rightarrow b, bS, aYY; T \rightarrow U;$$

 $X \rightarrow a, aS, bXX; Z \rightarrow c, S, T, cZ; U \rightarrow abc.$

<

Satz

Zu jeder kontextfreien Grammatik $G = (V, \Sigma, P, S)$ gibt es eine kontextfreie Grammatik $G' = (V, \Sigma, P', S)$ ohne ε -Regeln mit $L(G') = L(G) \setminus \{\varepsilon\}$.

Korollar

 $REG \nsubseteq CFL \subseteq CSL \subseteq RE$.

Beweis

- Es ist nur noch die Inklusion CFL ⊆ CSL zu zeigen.
- Nach obigem Satz ex. zu $L \in CFL$ eine kontextfreie Grammatik $G = (V, \Sigma, P, S)$ ohne ε -Regeln mit $L(G) = L \setminus \{\varepsilon\}$.
- Da G dann auch kontextsensitiv ist, folgt hieraus im Fall $\varepsilon \notin L$ unmittelbar $L(G) = L \in CSL$.
- Im Fall $\varepsilon \in L$ erzeugt die kontextsensitive Grammatik

$$G' = (V \cup \{S'\}, \Sigma, P \cup \{S' \rightarrow S, \varepsilon\}, S')$$

die Sprache L(G') = L, d.h. $L \in CSL$.

Satz

CFL ist abgeschlossen unter Vereinigung, Produkt und Sternhülle.

Beweis

Seien $G_1 = (V_1, \Sigma, P_1, S_1)$ und $G_2 = (V_2, \Sigma, P_2, S_2)$ kontextfreie Grammatiken mit $V_1 \cap V_2 = \emptyset$ und sei S eine neue Variable. Dann erzeugen die kontextfreien Grammatiken

$$G_3 = (V_1 \cup V_2 \cup \{S\}, \Sigma, P_1 \cup P_2 \cup \{S \rightarrow S_1, S_2\}, S)$$

die Vereinigung $L(G_3) = L(G_1) \cup L(G_2)$,

$$G_4 = (V_1 \cup V_2 \cup \{S\}, \Sigma, P_1 \cup P_2 \cup \{S \to S_1 S_2\}, S)$$

das Produkt $L(G_4) = L(G_1)L(G_2)$ und

$$G_5 = (V_1 \cup \{S\}, \Sigma, P_1 \cup \{S \rightarrow S_1S, \varepsilon\}, S)$$

die Sternhülle $L(G_1)^*$.

Abschlusseigenschaften von CFL

Satz

CFL ist abgeschlossen unter Vereinigung, Produkt und Sternhülle.

Frage

Ist die Klasse CFL auch abgeschlossen unter

- Schnitt und
- Komplement?

Antwort

Nein.

Hierzu müssen wir für bestimmte Sprachen nachweisen, dass sie nicht kontextfrei sind. Dies gelingt mit einem Pumping-Lemma für kontextfreie Sprachen, für dessen Beweis wir Grammatiken in Chomsky-Normalform benötigen.

Definition

Eine Grammatik (V, Σ, P, S) ist in Chomsky-Normalform (CNF), falls $P \subseteq V \times (V^2 \cup \Sigma)$ ist, also alle Regeln die Form $A \to BC$ oder $A \to a$ haben.

Satz

Zu jeder kontextfreien Sprache $L \in CFL$ gibt es eine CNF-Grammatik G' mit $L(G') = L \setminus \{\varepsilon\}$.

Anwendungen der Chomsky-Normalform

- CNF-Grammatiken ermöglichen den Beweis des Pumping-Lemmas für kontextfreie Sprachen.
- Zudem bilden sie die Basis für eine effiziente Lösung des Wortproblems für kontextfreie Sprachen.

Das Pumping-Lemma für kontextfreie Sprachen

Satz (Pumping-Lemma für kontextfreie Sprachen)

Zu jeder kontextfreien Sprache L gibt es eine Zahl I, so dass sich alle Wörter $z \in L$ mit $|z| \ge I$ in z = uvwxy zerlegen lassen mit

- $vx \neq \varepsilon,$
- $|vwx| \le I$ und
- $uv^i wx^i y \in L$ für alle $i \ge 0$.

Das Wortproblem für CFL

Das Wortproblem für kontextfreie Grammatiken

Gegeben: Eine kontextfreie Grammatik G und ein Wort x.

Gefragt: Ist $x \in L(G)$?

Satz

Das Wortproblem für kontextfreie Grammatiken ist effizient entscheidbar.

Um eine kontextfreie Grammatik in Chomsky-Normalform zu bringen, müssen wir neben den ε -Regeln $A \to \varepsilon$ auch sämtliche Variablenumbenennungen $A \to B$ loswerden.

Definition

Regeln der Form $A \rightarrow B$ heißen Variablenumbenennungen.

Satz

Zu jeder kontextfreien Grammatik G ex. eine kontextfreie Grammatik G' ohne Variablenumbenennungen mit L(G') = L(G).

Beweis

• Zuerst entfernen wir sukzessive alle Zyklen

$$A_1 \rightarrow A_2 \rightarrow \cdots \rightarrow A_k \rightarrow A_1$$
.

Hierzu entfernen wir diese Regeln aus P und ersetzen alle Vorkommen der Variablen A_2, \ldots, A_k in den übrigen Regeln durch A_1 .

(Sollte sich unter den entfernten Variablen $A_2, ..., A_k$ die Startvariable S befinden, so sei A_1 die neue Startvariable.)

Entfernen von Variablenumbenennungen

Beispiel (Fortsetzung)

$$P: S \to aY, bX, Z; Y \to b, bS, aYY; T \to U;$$

 $X \to a, aS, bXX; Z \to c, S, T, cZ; U \to abc.$

• Entferne den Zyklus $S \rightarrow Z \rightarrow S$ und ersetze alle Vorkommen von Z durch S:

$$S \rightarrow aY, bX, c, T, cS; Y \rightarrow b, bS, aYY; T \rightarrow U;$$

 $X \rightarrow a, aS, bXX; U \rightarrow abc.$

Entfernen von Variablenumbenennungen

Satz

Zu jeder kontextfreien Grammatik G ex. eine kontextfreie Grammatik G' ohne Variablenumbenennungen mit L(G') = L(G).

Beweis

• Zuerst entfernen wir alle Zyklen

$$A_1 \rightarrow A_2 \rightarrow \cdots \rightarrow A_k \rightarrow A_1$$
.

- Nun werden wir sukzessive die restlichen Variablenumbenennungen los, indem wir
 - eine Regel $A \rightarrow B$ wählen, so dass in P keine Variablenumbenennung $B \rightarrow C$ mit B auf der linken Seite existiert,
 - diese Regel $A \rightarrow B$ aus P entfernen und
 - für jede Regel $B \to \alpha$ in P die Regel $A \to \alpha$ zu P hinzunehmen.

Beispiel (Fortsetzung)

$$S \rightarrow aY, bX, c, T, cS; Y \rightarrow b, bS, aYY; T \rightarrow U;$$

 $X \rightarrow a, aS, bXX; U \rightarrow abc.$

• Entferne die Regel $T \to U$ und füge die Regel $T \to abc$ hinzu (wegen $U \to abc$):

$$S \rightarrow aY, bX, c, T, cS; Y \rightarrow b, bS, aYY; T \rightarrow abc;$$

 $X \rightarrow a, aS, bXX; U \rightarrow abc.$

• Entferne dann auch die Regel $S \to T$ und füge die Regel $S \to abc$ (wegen $T \to abc$) hinzu:

$$S \rightarrow abc, aY, bX, c, cS; Y \rightarrow b, bS, aYY; T \rightarrow abc; X \rightarrow a, aS, bXX; U \rightarrow abc.$$

• Da T und U nirgends mehr auf der rechten Seite vorkommen, können wir die Regeln $T \to abc$ und $U \to abc$ weglassen:

 $S \rightarrow abc, aY, bX, c, cS; Y \rightarrow b, bS, aYY; X \rightarrow a, aS, bXX.$

Bereits gezeigt:

Korollar

Zu jeder kontextfreien Grammatik G ex. eine kontextfreie Grammatik G' ohne ε -Regeln und ohne Variablenumbenennungen mit $L(G') = L(G) \setminus \{\varepsilon\}$.

Noch zu zeigen:

Satz

Zu jeder kontextfreien Sprache $L \in CFL$ gibt es eine CNF-Grammatik G' mit $L(G') = L \setminus \{\varepsilon\}$.

Umwandlung in Chomsky-Normalform

Satz

Zu jeder kontextfreien Sprache $L \in CFL$ gibt es eine CNF-Grammatik G' mit $L(G') = L \setminus \{\varepsilon\}$.

Beweis

- Sei $G = (V, \Sigma, P, S)$ eine kontextfreie Grammatik ohne ε -Regeln und ohne Variablenumbenennungen für $L \setminus \{\varepsilon\}$.
- Wir transformieren *G* wie folgt in eine CNF-Grammatik.
- Füge für jedes Terminalsymbol $a \in \Sigma$ eine neue Variable X_a zu V und eine neue Regel $X_a \rightarrow a$ zu P hinzu.
- Ersetze alle Vorkommen von a durch X_a , außer wenn a alleine auf der rechten Seite einer Regel steht.
- Ersetze jede Regel $A \rightarrow B_1 \dots B_k$, $k \ge 3$, durch die k-1 Regeln

$$A \to B_1 A_1, A_1 \to B_2 A_2, \dots, A_{k-3} \to B_{k-2} A_{k-2}, A_{k-2} \to B_{k-1} B_k,$$

wobei A_1, \ldots, A_{k-2} neue Variablen sind.

Beispiel (Fortsetzung)

Betrachte die Regeln

$$P\colon\thinspace S\to abc, aY, bX, cS, c;\ X\to aS, bXX, a;\ Y\to bS, aYY, b.$$

• Ersetze a, b und c durch A, B und C (außer wenn sie alleine rechts vorkommen) und füge die Regeln $A \rightarrow a$, $B \rightarrow b$, $C \rightarrow c$ hinzu:

$$S \rightarrow ABC$$
, AY , BX , CS , c ; $X \rightarrow AS$, BXX , a ; $Y \rightarrow BS$, AYY , b ; $A \rightarrow a$; $B \rightarrow b$; $C \rightarrow c$.

• Ersetze die Regeln $S \rightarrow ABC$, $X \rightarrow BXX$ und $Y \rightarrow AYY$ durch die Regeln $S \rightarrow AS'$. $S' \rightarrow BC$. $X \rightarrow BX'$. $X' \rightarrow XX$ und $Y \rightarrow AY'$. $Y' \rightarrow YY$:

$$S \rightarrow AS'$$
, AY , BX , CS , c ; $S' \rightarrow BC$; $X \rightarrow AS$, BX' , a ; $X' \rightarrow XX$; $Y \rightarrow BS$, AY' , b ; $Y' \rightarrow YY$; $A \rightarrow a$; $B \rightarrow b$; $C \rightarrow c$.

Definition

Sei $G = (V, \Sigma, P, S)$ eine kontextfreie Grammatik.

• Eine Ableitung

$$\underline{S} \Rightarrow l_1 \underline{A_1} r_1 \Rightarrow \cdots \Rightarrow l_{m-1} \underline{A_{m-1}} r_{m-1} \Rightarrow \alpha_m$$

heißt Linksableitung von α_m (kurz $S \Rightarrow_L^* \alpha_m$), falls in jedem Ableitungsschritt die am weitesten links stehende Variable ersetzt wird, d.h. es gilt $l_i \in \Sigma^*$ für $i = 1, \ldots, m-1$.

- Rechtsableitungen $S_0 \Rightarrow_R^* \alpha_m$ sind analog definiert.
- G heißt mehrdeutig, wenn es ein Wort $x \in L(G)$ gibt, das zwei verschiedene Linksableitungen hat. Andernfalls heißt G eindeutig.

Leicht zu sehen:

Für alle $x \in \Sigma^*$ gilt: $x \in L(G) \Leftrightarrow S \Rightarrow^* x \Leftrightarrow S \Rightarrow^*_L x \Leftrightarrow S \Rightarrow^*_R x$.

Beispiel

• In $G = (\{S\}, \{a, b\}, \{S \rightarrow aSbS, \varepsilon\}, S)$ gibt es 8 Ableitungen für das Wort aabb:

Beispiel

- Die Grammatik $G = (\{S\}, \{a, b\}, \{S \rightarrow aSbS, \varepsilon\}, S)$ ist eindeutig.
- Dies liegt daran, dass in jeder Satzform $\alpha S\beta$ von G das Suffix β entweder leer ist oder mit einem b beginnt.
- Daher muss jede Linksableitung eines Wortes $x \in L(G)$ die am weitesten links stehende Variable der aktuellen Satzform $\alpha S\beta$ genau dann nach aSbS expandieren, wenn in x auf das Präfix α ein a folgt.
- Dagegen ist die Grammatik $G' = (\{S\}, \{a, b\}, \{S \rightarrow aSbS, ab, \varepsilon\}, S)$ mehrdeutig, da das Wort x = ab zwei Linksableitungen hat:

$$S \Rightarrow ab \text{ und } S \Rightarrow aSbS \Rightarrow abS \Rightarrow ab.$$

Sei G = (V, E) ein Digraph.

- Ein (gerichteter) v_0 - v_k -Weg in G ist eine Folge von Knoten v_0, \ldots, v_k mit $(v_i, v_{i+1}) \in E$ für $i = 0, \ldots, k-1$. Seine Länge ist k.
- Ein Weg heißt Pfad, falls alle Knoten paarweise verschieden sind.
- Ein u-v-Weg der Länge ≥ 1 mit u = v heißt Zyklus.
- G heißt azyklisch, wenn es in G keinen Zyklus gibt.
- G heißt gerichteter Wald, wenn G azyklisch ist und jeder Knoten $v \in V$ Eingangsgrad $\deg^-(v) \le 1$ hat.
- Ein Knoten $u \in V$ vom Ausgangsgrad $deg^+(u) = 0$ heißt Blatt.
- Ein Knoten $w \in V$ heißt Wurzel von G, falls alle Knoten $v \in V$ von w aus erreichbar sind (d.h. es gibt einen w-v-Weg in G).
- Ein gerichteter Wald, der eine Wurzel hat, heißt gerichteter Baum.
- Da die Kantenrichtungen durch die Wahl der Wurzel eindeutig bestimmt sind, kann auf ihre Angabe verzichtet werden. Man spricht dann auch von einem Wurzelbaum.

Wir ordnen einer Ableitung

$$A_0 \Rightarrow I_1 A_1 r_1 \Rightarrow \cdots \Rightarrow I_{m-1} A_{m-1} r_{m-1} \Rightarrow \alpha_m$$

den Syntaxbaum (oder Ableitungsbaum, engl. parse tree) T_m zu, wobei die Bäume T_0, \ldots, T_m induktiv wie folgt definiert sind:

- T_0 besteht aus einem einzigen Knoten, der mit A_0 markiert ist.
- Wird im (i+1)-ten Ableitungsschritt die Regel $A_i \rightarrow v_1 \dots v_k$ mit $v_1, \dots, v_k \in \Sigma \cup V$ angewandt, so ensteht T_{i+1} aus T_i , indem wir das Blatt A_i durch folgenden Unterbaum ersetzen:

$$k > 0$$
: A_i $k = 0$: A_i \downarrow \downarrow ε

- Hierbei stellen wir uns die Kanten von oben nach unten gerichtet und die Kinder $v_1 \dots v_k$ von links nach rechts geordnet vor.
- Syntaxbäume sind also geordnete Wurzelbäume.

Beispiel

• Betrachte die Grammatik $G = (\{S\}, \{a, b\}, \{S \rightarrow aSbS, \varepsilon\}, S)$ und die Ableitung

$$\underline{S} \Rightarrow a\underline{S}bS \Rightarrow aaSb\underline{S}bS \Rightarrow aa\underline{S}bbS \Rightarrow aabb\underline{S} \Rightarrow aabb$$

Die zugehörigen Syntaxbäume sind dann

Beispiel

• In $G = (\{S\}, \{a, b\}, \{S \rightarrow aSbS, \varepsilon\}, S)$ führen alle 8 Ableitungen des Wortes aabb auf denselben Syntaxbaum:

<

Syntaxbäume und Linksableitungen

- Seien T_0, \ldots, T_m die zu einer Ableitung $S = \alpha_0 \Rightarrow \cdots \Rightarrow \alpha_m$ gehörigen Syntaxbäume.
- Dann haben alle Syntaxbäume T_0, \ldots, T_m die Wurzel S.
- Die Satzform α_i ergibt sich aus T_i , indem wir die Blätter von T_i von links nach rechts zu einem Wort zusammensetzen.
- Auf den Syntaxbaum T_m führen neben $\alpha_0 \Rightarrow \cdots \Rightarrow \alpha_m$ alle Ableitungen, die sich von dieser nur in der Reihenfolge der Regelanwendungen unterscheiden.
- Dazu gehört genau eine Linksableitung.
- Linksableitungen und Syntaxbäume entsprechen sich also eineindeutig.
- Dasselbe gilt für Rechtsableitungen.
- Ist T Syntaxbaum einer CNF-Grammatik, so hat jeder Knoten in T höchstens zwei Kinder (d.h. T ist ein Binärbaum).

Abschätzung der Blätterzahl bei Binärbäumen

Definition

Die Tiefe eines Baumes mit Wurzel w ist die maximale Länge eines Weges von w zu einem Blatt.

Lemma

Ein Binärbaum B der Tiefe $\leq k$ hat $\leq 2^k$ Blätter.

Beweis durch Induktion über k:

k = 0: Ein Baum der Tiefe 0 kann nur einen Knoten haben.

 $k \rightsquigarrow k+1$: Sei *B* ein Binärbaum der Tiefe $\leq k+1$.

Dann hängen an B's Wurzel maximal zwei Unterbäume. Da deren Tiefe < k ist. haben sie nach IV $< 2^k$ Blätter.

Also hat $B \le 2^{k+1}$ Blätter.

Mindesttiefe von Binärbäumen

Lemma

Ein Binärbaum B der Tiefe $\leq k$ hat $\leq 2^k$ Blätter.

Korollar

Ein Binärbaum B mit $> 2^{k-1}$ Blättern hat eine Tiefe $\ge k$.

Beweis

Wäre die Tiefe von B kleiner als k (also $\leq k-1$), so hätte B nach obigem Lemma $\leq 2^{k-1}$ Blätter (Widerspruch).

Das Pumping-Lemma für kontextfreie Sprachen

Satz (Pumping-Lemma für kontextfreie Sprachen)

Zu jeder kontextfreien Sprache $L \in CFL$ gibt es eine Zahl I, so dass sich alle Wörter $z \in L$ mit $|z| \ge I$ in z = uvwxy zerlegen lassen mit

- $|vwx| \le I \text{ und}$

Das Pumping-Lemma für kontextfreie Sprachen

Beispiel

- Betrachte die Sprache $L = \{a^n b^n | n \ge 0\}.$
- Dann lässt sich jedes Wort $z = a^n b^n = a^{n-1} ab b^{n-1}$ in L mit $|z| \ge 2$ pumpen:
 - Zerlege z in z = uvwxy mit $u = a^{n-1}$, v = a, $w = \varepsilon$, x = b, $y = b^{n-1}$.
 - Dann ist für alle $i \ge 0$ das Wort $uv^i wx^i y = a^{n-1}a^ib^ib^{n-1} \in L$.

Anwendung des Pumping-Lemmas

Beispiel

- Die Sprache $\{a^nb^nc^n \mid n \ge 0\}$ ist nicht kontextfrei.
- Für eine vorgegebene Zahl $l \ge 0$ hat nämlich $z = a^l b^l c^l$ die Länge $|z| = 3l \ge l$.
- Dieses Wort lässt sich aber nicht pumpen:

Für jede Zerlegung z = uvwxy mit $vx \neq \varepsilon$ und $|vwx| \leq I$ gehört $z' = uv^0wx^0y = uwy$ nicht zu L:

- Wegen $vx \neq \varepsilon$ ist |z'| < |z|.
- Wegen $|vwx| \le l$ kann in vx nicht jedes der drei Zeichen a, b, c vorkommen.
- Kommt aber in vx beispielsweise kein a vor, so ist $\#_a(z) = \#_a(z')$ und somit gilt

$$|z'| < |z| = 3 \#_a(z) = 3 \#_a(z').$$

Also gehört z' nicht zu L.

4

Satz (Pumping-Lemma für kontextfreie Sprachen)

Zu jeder kontextfreien Sprache $L \in CFL$ gibt es eine Zahl I, so dass sich alle Wörter $z \in L$ mit $|z| \ge I$ in z = uvwxy zerlegen lassen mit

- $|vwx| \le l \text{ und}$
- 3 $uv^i wx^i y \in L$ für alle $i \ge 0$.

Beweis

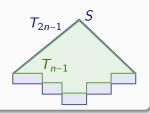
- Sei $G = (V, \Sigma, P, S)$ eine CNF-Grammatik für $L \setminus \{\varepsilon\}$.
- Ist nun $z = z_1 \dots z_n \in L$ mit $n \ge 1$, so ex. in G eine Ableitung $S = \alpha_0 \Rightarrow \alpha_1 \dots \Rightarrow \alpha_m = z$.
- Da *G* in CNF ist, werden hierbei genau n-1 Regeln der Form $A \to BC$ und genau n Regeln der Form $A \to a$ angewandt.

Beweis

- Sei $G = (V, \Sigma, P, S)$ eine CNF-Grammatik für $L \setminus \{\varepsilon\}$.
- Ist nun $z = z_1 \dots z_n \in L$ mit $n \ge 1$, so ex. in G eine Ableitung

$$S = \alpha_0 \Rightarrow \alpha_1 \cdots \Rightarrow \alpha_m = z$$
.

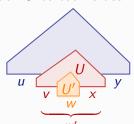
- Da G in CNF ist, werden hierbei genau n-1 Regeln der Form $A \to BC$ und genau n Regeln der Form $A \to a$ angewandt.
- Folglich ist m = 2n 1 und z hat den Syntaxbaum T_{2n-1} .
- Wir können annehmen, dass die n-1 Regeln der Form $A \to BC$ vor den n Regeln der Form $A \to a$ zur Anwendung kommen.
- Dann besteht α_{n-1} aus n Variablen und T_{n-1} hat wie T_{2n-1} genau n Blätter.
- Setzen wir $I = 2^k$, wobei k = ||V|| ist, so hat T_{n-1} im Fall $n \ge l$ mindestens die Tiefe k, da T_{n-1} mindestens $l = 2^k > 2^{k-1}$ Blätter hat.



Beweis des Pumping-Lemmas

Beweis (Fortsetzung)

- Setzen wir $I = 2^k$, wobei k = ||V|| ist, so hat T_{n-1} im Fall $n \ge I$ mindestens die Tiefe k, da T_{n-1} mindestens $I = 2^k > 2^{k-1}$ Blätter hat.
- Sei π ein von der Wurzel ausgehender Pfad maximaler Länge in T_{n-1} .
- Dann hat π mindestens die Länge k und unter den letzten k+1 Knoten von π müssen zwei mit derselben Variablen A markiert sein.
- Seien U und U' die von diesen Knoten ausgehenden Unterbäume des vollständigen Syntaxbaums T_{2n-1} .
- Nun zerlegen wir z wie folgt:
 - w' ist das Teilwort von z = uw'y, das von U erzeugt wird und
 - w ist das Teilwort von w' = vwx, das von U' erzeugt wird.



 T_{2n-1}

Beweis des Pumping-Lemmas

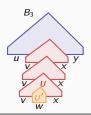
Beweis (Schluss)

- Dann ist $vx \neq \varepsilon$ (Bed. 1), da U mehr Blätter hat als U'.
- Zudem hat U höchstens $2^k = I$ Blätter, da der Baum $U^* = U \cap T_{n-1}$ höchstens die Tiefe k hat

Folglich ist $|vwx| \le I$ (Bed. 2).

(andernfalls wäre π nicht maximal).

- Schließlich lassen sich Syntaxbäume B_i für die Wörter uv^iwx^iy , $i \ge 0$, wie folgt konstruieren (Bed. 3):
 - B_0 entsteht aus $B_1 = T_{2n-1}$, indem wir U durch U' ersetzen.
 - B_{i+1} entsteht aus B_i , indem wir U' durch U ersetzen:



Abschlusseigenschaften von CFL

Wie wir gesehen haben, ist die Klasse CFL abgeschlossen unter

- Vereinigung,
- Produkt und
- Sternhülle.

Satz

CFL ist nicht abgeschlossen unter

- Schnitt und
- Komplement.

Beweis von $L_1, L_2 \in CFL \not\Rightarrow L_1 \cap L_2 \in CFL$

Die beiden Sprachen

$$L_1 = \{a^n b^m c^m \mid n, m \ge 0\} \text{ und } L_2 = \{a^n b^n c^m \mid n, m \ge 0\}$$

sind kontextfrei (siehe Übungen).

- Nicht jedoch ihr Schnitt $L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}.$
- Also ist CFL nicht unter Schnitt abgeschlossen.

Beweis von $L \in CFL \Rightarrow \bar{L} \in CFL$

Wäre CFL unter Komplement abgeschlossen, so wäre CFL wegen de Morgan auch unter Schnitt abgeschlossen:

$$A, B \in \mathsf{CFL} \Rightarrow \overline{A}, \overline{B} \in \mathsf{CFL} \Rightarrow \overline{A} \cup \overline{B} \in \mathsf{CFL} \Rightarrow \overline{\overline{A} \cup \overline{B}} = A \cap B \in \mathsf{CFL} \not \downarrow$$

Das Wortproblem für CFL

Das Wortproblem für kontextfreie Grammatiken

Gegeben: Eine kontextfreie Grammatik G und ein Wort x.

Gefragt: Ist $x \in L(G)$?

Frage

Wie lässt sich das Wortproblem für kontextfreie Grammatiken entscheiden?

- Sei eine Grammatik $G = (V, \Sigma, P, S)$ und ein Wort $x = x_1 \dots x_n$ gegeben.
- Falls $x = \varepsilon$ ist, können wir effizient prüfen, ob $S \Rightarrow^* \varepsilon$ gilt.
- Hierzu genügt es, die Menge $E = \{A \in V \mid A \Rightarrow^* \varepsilon\}$ aller ε -ableitbaren Variablen zu berechnen und zu prüfen, ob $S \in E$ ist.
- Andernfalls bringen wir G in CNF und starten den nach seinen Autoren Cocke, Younger und Kasami benannten CYK-Algorithmus.
- Dieser bestimmt mittels dynamischer Programmierung für l = 1, ..., n und k = 1, ..., n l + 1 die Menge $V_{l,k}$ aller Variablen, aus denen das Teilwort $x_k ... x_{k+l-1}$ ableitbar ist.
- Dann gilt $x \in L(G) \Leftrightarrow S \in V_{n,1}$.

- Sei $G = (V, \Sigma, P, S)$ eine CNF-Grammatik und sei $x \in \Sigma^+$.
- Dann lassen sich die Mengen $V_{l,k} = \{A \in V \mid A \Rightarrow^* x_k \dots x_{k+l-1}\}$ wie folgt bestimmen.
- Für l=1 gehört A zu $V_{1,k}$, falls die Regel $A \rightarrow x_k$ existiert:

$$V_{1,k} = \left\{ A \in V \mid A \to x_k \right\}$$

• Für I > 1 gehört A zu $V_{I,k}$, falls eine Regel $A \rightarrow BC$ und eine Zahl $I' \in \{1, ..., I-1\}$ ex. mit $B \in V_{I',k}$ und $C \in V_{I-I',k+I'}$:

$$V_{I,k} = \{ A \in V \mid \exists I' < I, B \in V_{I',k}, C \in V_{I-I',k+I'} : A \to BC \in P \}$$

```
Algorithmus CYK(G,x)
         Input: CNF-Grammatik G = (V, \Sigma, P, S) und Wort x = x_1 \dots x_n
 1
            for k := 1 to n do
 2
              V_{1,k} := \{ A \in V \mid A \rightarrow x_k \in P \}
 3
            for l := 2 to n do
 4
              for k := 1 to n - l + 1 do
                 V_{l,k} := \emptyset
                 for l' := 1 to l - 1 do
                    for all A \rightarrow BC \in P do
 8
                       if B \in V_{l',k} and C \in V_{l-l',k+l'} then
                         V_{l,k} \coloneqq V_{l,k} \cup \{A\}
10
            if S \in V_{n,1} then accept else reject
11
```

Der CYK-Algorithmus lässt sich leicht dahingehend modifizieren, dass er im Fall $x \in L(G)$ auch einen Syntaxbaum T von x bestimmt.

Beispiel

• Betrachte die CNF-Grammatik mit den Regeln

$$P: \begin{subarray}{ll} S \rightarrow AS', AY, BX, CS, c, & S' \rightarrow BC, & X \rightarrow AS, BX', a, & X' \rightarrow XX, \\ Y \rightarrow BS, AY', b, & Y' \rightarrow YY, & A \rightarrow a, & B \rightarrow b, & C \rightarrow c. \end{subarray}$$

• Dann erhalten wir für das Wort x = abb folgende Mengen $V_{I,k}$:

• Wegen $S \notin V_{3,1}$ ist $x \notin L(G)$.

Der CYK-Algorithmus

Beispiel (Fortsetzung)

• Betrachte die CNF-Grammatik mit den Regeln

P:
$$S \rightarrow AS'$$
, AY , BX , CS , c , $S' \rightarrow BC$, $X \rightarrow AS$, BX' , a , $X' \rightarrow XX$, $Y \rightarrow BS$, AY' , b , $Y' \rightarrow YY$, $A \rightarrow a$, $B \rightarrow b$, $C \rightarrow c$.

• Dagegen gehört das Wort y = aababb zu L(G):

а	а	Ь	а	Ь	Ь
{ X , A }	{ X , A }	{ Y , B }	{ X , A }	{ Y , B }	{ Y , B }
{ X' }	{ <i>5</i> }	{ <i>S</i> }	{ <i>5</i> }	{ Y' }	
{ X }	{ X }	{ Y }	{ Y }		
{ X '}	{ <i>5</i> }	{ Y' }			
{ X }	{ Y }				
{ <i>S</i> }					

Ein Maschinenmodell für die kontextfreien Sprachen

Frage

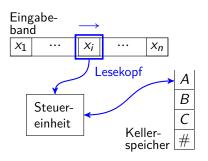
Wie lässt sich das Maschinenmodell des DFA erweitern, um die Sprache

$$L = \{a^n b^n \mid n \ge 0\}$$

und alle anderen kontextfreien Sprachen erkennen zu können?

Antwort

- Ein DFA kann Sprachen wie L nicht erkennen, da er nur seinen Zustand als Speicher benutzen kann und die Anzahl der Zustände zwar von L aber nicht von der Eingabe abhängen darf.
- Um kontextfreie Sprachen erkennen zu können, genügt bereits ein Kellerspeicher (auch Stapel, engl. *stack* oder *pushdown memory*).
- Dieser erlaubt nur den Zugriff auf die höchste belegte Speicheradresse.



- verfügt zusätzlich über einen Kellerspeicher,
- ullet kann auch arepsilon-Übergänge machen,
- hat Lesezugriff auf das aktuelle Eingabezeichen und auf das oberste Kellersymbol,
- kann das oberste Kellersymbol löschen (durch eine pop-Operation) und
- durch beliebig viele Symbole ersetzen (durch eine push-Operation).

Formale Definition des Kellerautomaten

Notation

Für eine (unendliche) Menge M bezeichne $\mathcal{P}_e(M)$ die Menge aller endlichen Teilmengen von M, d.h.

$$\mathcal{P}_e(M) = \{ A \subseteq M \mid A \text{ ist endlich} \}.$$

Definition

Ein Kellerautomat (kurz: PDA, engl. *pushdown automaton*) wird durch ein 6-Tupel $M = (Z, \Sigma, \Gamma, \delta, q_0, \#)$ beschrieben, wobei

- $Z \neq \emptyset$ eine endliche Menge von Zuständen,
- \bullet Σ das Eingabealphabet,
- Γ das Kelleralphabet,
- $\delta: Z \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \to \mathcal{P}_e(Z \times \Gamma^*)$ die Überführungsfunktion,
- $q_0 \in Z$ der Startzustand und
- # ∈ Γ das Kelleranfangszeichen ist.

Arbeitsweise eines PDA

- Wenn p der momentane Zustand, A das oberste Kellerzeichen und $u \in \Sigma$ das nächste Eingabezeichen (bzw. $u = \varepsilon$) ist, so kann M im Fall $(q, B_1 \dots B_k) \in \delta(p, u, A)$
 - in den Zustand q wechseln,
 - den Lesekopf auf dem Eingabeband um $|u| \in \{0,1\}$ Positionen vorrücken und
 - das Zeichen A aus- sowie die Zeichenfolge $B_1 \dots B_k$ einkellern (danach ist B_1 das oberste Kellerzeichen).
- Hierfür sagen wir auch, M führt die Anweisung

$$puA \rightarrow qB_1 \dots B_k$$

aus.

• Im Fall $u = \varepsilon$ spricht man auch von einem ε -Übergang.

Formale Definition der Konfiguration eines PDA

• Eine Konfiguration wird durch ein Tripel

$$K = (p, x_i \dots x_n, A_1 \dots A_l) \in Z \times \Sigma^* \times \Gamma^*$$

beschrieben und besagt, dass

- p der momentane Zustand,
- $x_i \dots x_n$ der ungelesene Rest der Eingabe und
- $A_1 \dots A_l$ der aktuelle Kellerinhalt ist (A_1 ist oberstes Symbol).
- In der Konfiguration $K = (p, x_i ... x_n, A_1 ... A_l)$ kann M eine bel. Anweisung $puA_1 \rightarrow qB_1 ... B_k$ mit $u \in \{\varepsilon, x_i\}$ ausführen.

Diese überführt M in die Folgekonfiguration

$$K' = (q, x_1 ... x_n, B_1 ... B_k A_2 ... A_l) \text{ mit } j = i + |u|.$$

Hierfür schreiben wir auch kurz $K \vdash K'$.

• Eine Rechnung von M bei Eingabe x ist eine Folge von Konfigurationen $K_0, K_1, K_2 \dots$ mit $K_0 = (q_0, x, \#)$ und $K_0 \vdash K_1 \vdash K_2 \dots$ K_0 heißt Startkonfiguration von M bei Eingabe x.

Definition der von einem PDA erkannten Sprache

Notation

Die reflexive, transitive Hülle von \vdash bezeichnen wir wie üblich mit \vdash^* .

Definition

Die von $M = (Z, \Sigma, \Gamma, \delta, q_0, \#)$ akzeptierte oder erkannte Sprache ist $L(M) = \{x \in \Sigma^* \mid \exists \ q \in Z : (q_0, x, \#) \vdash^* (q, \varepsilon, \varepsilon)\}.$

Bemerkung

- Ein PDA M akzeptiert also genau dann eine Eingabe x, wenn es eine Rechnung gibt, bei der M
 - das gesamte Eingabewort bis zum Ende liest und
 - den Keller leert.
- Man beachte, dass bei leerem Keller kein weiterer Übergang mehr möglich ist.

 $\varepsilon \#, \varepsilon$ (1)

a#, A (2)

aA, AA(3) $bA, \varepsilon(5)$

 bA, ε (4)

Ein Kellerautomat

Beispiel

• Sei $M = (Z, \Sigma, \Gamma, \delta, q, \#)$ mit $Z = \{q, p\}$, $\Sigma = \{a, b\}$, $\Gamma = \{A, \#\}$ und

 $qbA \rightarrow p(4) pbA \rightarrow p(5)$

- = $\{a, b\}$, $\Gamma = \{A, \#\}$ und $\delta : q\varepsilon\# \to q(1) \quad qa\# \to qA(2) \quad qaA \to qAA(3)$
- Dann akzeptiert M die Eingabe x = aabb:

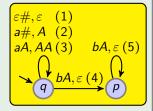
$$(q, aabb, \#) \underset{(2)}{\vdash} (q, abb, A) \underset{(3)}{\vdash} (q, bb, AA) \underset{(4)}{\vdash} (p, b, A) \underset{(5)}{\vdash} (p, \varepsilon, \varepsilon)$$

• Allgemeiner akzeptiert M das Wort $x = a^n b^n$ mit folgender Rechnung:

• Dies zeigt, dass M alle Wörter der Form $a^n b^n$, $n \ge 0$, akzeptiert.

Beispiel

- Sei $M = (Z, \Sigma, \Gamma, \delta, q, \#)$ mit $Z = \{q, p\}$, $\Sigma = \{a, b\}$, $\Gamma = \{A, \#\}$ und
 - $= \{a, b\}, \Gamma = \{A, \#\} \text{ und}$ $\delta : q\varepsilon\# \to q(1) \quad qa\# \to qA(2) \quad qaA \to qAA(3)$ $qbA \to p(4) \quad pbA \to p(5)$

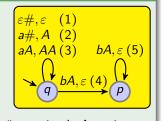


- Als nächstes zeigen wir, dass jede von M akzeptierte Eingabe $x = x_1 \dots x_n \in L(M)$ die Form $x = a^m b^m$ haben muss.
- Ausgehend von der Startkonfiguration (q, x, #) sind nur die Anweisungen (1) oder (2) ausführbar.
- Führt M zuerst Anweisung (1) aus, so wird der Keller geleert.
- Daher kann M in diesem Fall nur das leere Wort $x = \varepsilon = a^0 b^0$ akzeptieren.
- Falls M mit Anweisung (2) beginnt, muss M später mittels Anweisung
 (4) in den Zustand p gelangen, da sonst der Keller nicht geleert wird.

Ein Kellerautomat

Beispiel

- Sei $M = (Z, \Sigma, \Gamma, \delta, q, \#)$ mit $Z = \{q, p\}$, $\Sigma = \{a, b\}$, $\Gamma = \{A, \#\}$ und
- $\delta: q\varepsilon\# \to q\ (1) \quad qa\# \to qA\ (2) \quad qaA \to qAA\ (3)$ $qbA \to p\ (4) \quad pbA \to p \quad (5)$



- Falls M mit Anweisung (2) beginnt, muss M später mittels Anweisung (4) in den Zustand p gelangen, da sonst der Keller nicht geleert wird.
- Dies geschieht, sobald M nach Lesen von $m \ge 1$ a's das erste b liest:

$$(q, x_1 \dots x_n, \#) \vdash_{(2)} (q, x_2 \dots x_n, A) \vdash_{(3)}^{m-1} (q, x_{m+1} \dots x_n, A^m)$$

 $\vdash_{(4)} (p, x_{m+2} \dots x_n, A^{m-1})$

mit $x_1 = x_2 = \dots = x_m = a$ und $x_{m+1} = b$.

• Um den Keller leeren zu können, muss M nun noch genau m-1 b's lesen, weshalb x auch in diesem Fall die Form $a^m b^m$ haben muss.

1

Ein Maschinenmodell für die Klasse CFL

Ziel

Als nächstes wollen wir zeigen, dass PDAs genau die kontextfreien Sprachen erkennen.

Satz

 $CFL = \{L(M) \mid M \text{ ist ein PDA}\}.$

Idee:

Konstruiere zu einer kontextfreien Grammatik $G = (V, \Sigma, P, S)$ einen PDA $M = (\{q\}, \Sigma, \Gamma, \delta, q, S)$ mit $\Gamma = V \cup \Sigma$, so dass folgende Äquivalenz gilt:

$$S \Rightarrow^* x_1 \dots x_n \text{ gdw. } (q, x_1 \dots x_n, S) \vdash^* (q, \varepsilon, \varepsilon)$$

ullet Hierzu fügen wir folgende Anweisungen zu δ hinzu:

für jede Regel
$$A \rightarrow_G \alpha$$
: $q \in A \rightarrow q \alpha$
für jedes Zeichen $a \in \Sigma$: $qaa \rightarrow q \in A$

- *M* versucht also, eine Linksableitung für die Eingabe *x* zu finden.
- Da *M* hierbei den Syntaxbaum von oben nach unten aufbaut, wird *M* als *Top-Down Parser* bezeichnet.
- Dann gilt $S \Rightarrow_{l}^{l} x_1 \dots x_n$ gdw. $(q, x_1 \dots x_n, S) \vdash^{l+n} (q, \varepsilon, \varepsilon)$.
- Daher folgt

$$x \in L(G) \Leftrightarrow S \Rightarrow_{L}^{*} x \Leftrightarrow (q, x, S) \vdash^{*} (q, \varepsilon, \varepsilon) \Leftrightarrow x \in L(M)$$

Beispiel

• Betrachte die Grammatik $G = (\{S\}, \{a, b\}, P, S)$ mit den Regeln

$$P: S \rightarrow aSb \ (1) \ S \rightarrow \varepsilon \ (2)$$

Der zugehörige PDA besitzt dann die Anweisungen

$$\delta: qaa \rightarrow q$$
 (0) $qbb \rightarrow q$ (0') $q\varepsilon S \rightarrow qaSb$ (1') $q\varepsilon S \rightarrow q$ (2')

• Der Linksableitung $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$ in G entspricht dann die Rechnung

$$(q, aabb, S) \underset{(1')}{\vdash} (q, aabb, aSb) \underset{(0)}{\vdash} (q, abb, Sb) \underset{(1')}{\vdash} (q, abb, aSbb)$$

$$\underset{(0)}{\vdash} (q, bb, Sbb) \underset{(2')}{\vdash} (q, bb, bb) \underset{(0')}{\vdash} (q, b, b) \underset{(0')}{\vdash} (q, \varepsilon, \varepsilon)$$
von M und umgekehrt.

Idee:

Konstruiere zu einem PDA $M=(Z,\Sigma,\Gamma,\delta,q_0,\#)$ eine kontextfreie Grammatik $G=(V,\Sigma,P,S)$ mit Variablen $X_{pAq},\ A\in\Gamma,\ p,q\in Z$, so dass folgende Äquivalenz gilt:

$$X_{pAq} \Rightarrow^* x \text{ gdw. } (p, x, A) \vdash^* (q, \varepsilon, \varepsilon).$$

- Ein Wort x soll also genau dann in G aus X_{pAq} ableitbar sein, wenn M ausgehend vom Zustand p bei Lesen von x in den Zustand q gelangen kann und dabei das Zeichen A aus dem Keller entfernt.
- Hierzu fügen wir für jede Anweisung $puA \rightarrow p_1A_1 \dots A_k, \ k \ge 0$, die folgenden Regeln zu P hinzu:

Für jede Zustandsfolge
$$p_2, \ldots, p_{k+1}: X_{pAp_{k+1}} \rightarrow uX_{p_1A_1p_2} \ldots X_{p_kA_kp_{k+1}}$$

ullet Um damit alle Wörter $x \in L(M)$ aus S ableiten zu können, benötigen wir jetzt nur noch die Regeln

$$S \to X_{q_0 \# q}, \ q \in Z$$
.

Beispiel

• Betrachte den PDA $M = (\{p,q\},\{a,b\},\{A,\#\},\delta,p,\#)$ mit den Anweisungen

$$\delta: p\varepsilon\# \to q \quad (1)$$
 $pa\# \to pA \quad (2)$ $paA \to pAA \quad (3)$ $pbA \to q \quad (4)$ $qbA \to q \quad (5)$

ullet Dann erhalten wir die Grammatik $G=(V,\Sigma,P,S)$ mit der Variablenmenge

$$V = \{S, X_{p\#p}, X_{p\#q}, X_{q\#p}, X_{q\#q}, X_{pAp}, X_{pAq}, X_{qAp}, X_{qAq}\}.$$

Beweis von $\{L(M) \mid M \text{ ist ein PDA}\} \subseteq CFL$

Beispiel (Fortsetzung)

• P enthält neben den beiden Startregeln $S \rightarrow X_{p\#p}, X_{p\#q} \ (0,0')$ die folgenden Produktionen:

Anweisung			p_2,\ldots,p_{k+1}	zugehörige Regeln	
<i>p</i> ε# → <i>q</i>	(1)	0	-	$X_{p\#q} \rightarrow \varepsilon$	(1')
<i>pa#</i> → <i>pA</i>	(2)	1	p	$X_{p\#p} \rightarrow aX_{pAp}$	(2')
			q	$X_{p\#q} \rightarrow aX_{pAq}$	(2")
$paA \rightarrow pAA$	(3)	2	p , p	$X_{pAp} \rightarrow aX_{pAp}X_{pAp}$	(3')
			p,q	$X_{pAq} \rightarrow aX_{pAp}X_{pAq}$	(3'')
			q, p	$X_{pAp} \rightarrow aX_{pAq}X_{qAp}$	(3''')
			q,q	$X_{pAq} \rightarrow aX_{pAq}X_{qAq}$	(3"")
$pbA \rightarrow q$	(4)	0	-	$X_{pAq} \rightarrow b$	(4')
$qbA \rightarrow q$	(5)	0	-	$X_{qA_{\mathbf{q}}} \rightarrow b$	(5')

Beweis von $\{L(M) \mid M \text{ ist ein PDA}\} \subseteq CFL$

Beispiel (Schluss)

Die Anweisungen

$$\delta: p\varepsilon\# \to q \quad (1) \qquad pa\# \to pA \quad (2) \qquad paA \to pAA \quad (3)$$
$$pbA \to q \quad (4) \qquad qbA \to q \quad (5)$$

von M führen also auf die folgenden Regeln von G:

$$S \to X_{p\#p}, X_{p\#q}$$
 $(0,0')$ $X_{p\#q} \to \varepsilon$ $(1')$ $X_{p\#p} \to aX_{pAp}$ $(2')$ $X_{p\#q} \to aX_{pAq}$ $(2'')$ $X_{pAq} \to aX_{pAp}X_{pAp}$ $(3')$ $X_{pAq} \to aX_{pAp}X_{pAq}$ $(3'')$ $X_{pAq} \to aX_{pAq}X_{qAq}$ $(3''')$

(4')

Der akzeptierenden Rechnung

 $X_{pAq} \rightarrow b$

 $X_{aAa} \rightarrow b$

von M entspricht dann in G die Linksableitung

 $\underline{S} \underset{(0')}{\Rightarrow} X_{p\#q} \underset{(2'')}{\Rightarrow} aX_{pAq} \underset{(3'''')}{\Rightarrow} aaX_{pAq} X_{qAq} \underset{(4')}{\Rightarrow} aabX_{qAq} \underset{(5')}{\Rightarrow} aabb$

(5')

Beweis von $\{L(M) \mid M \text{ ist ein PDA}\} \subseteq CFL$

• Für einen PDA $M=(Z,\Sigma,\Gamma,\delta,q_0,\#)$ sei G die Grammatik (V,Σ,P,S) mit $V=\{S\}\cup\{X_{pAq}\mid p,q\in Z,A\in\Gamma\}$, wobei P neben den Regeln $S\to X_{q_0\#q},\ q\in Z$, für jede Anweisung

$$puA \rightarrow p_1A_1 \dots A_k, \ k \geq 0$$

von M und jede Zustandsfolge p_2, \dots, p_{k+1} die folgende Regel enthält:

$$X_{pAp_{k+1}} \to uX_{p_1A_1p_2} \dots X_{p_kA_kp_{k+1}}$$

Dann lässt sich mit Hilfe der Aquivalenz

$$X_{pAq} \Rightarrow^* x \text{ gdw. } (p, x, A) \vdash^* (q, \varepsilon, \varepsilon)$$

deren Beweis wir später nachholen, leicht die Korrektheit von G zeigen:

$$x \in L(M)$$
 \Leftrightarrow $(q_0, x, \#) \vdash^* (q, \varepsilon, \varepsilon)$ für ein $q \in Z$ \Leftrightarrow $S \Rightarrow X_{q_0 \# q} \Rightarrow^* x$ für ein $q \in Z$ \Leftrightarrow $x \in L(G)$