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1 Motivation and Background

Most of the information Protein-Protein Interactions (PPIs) and bio-molecular events can
be found in unstructured natural language texts. PubMed, a publicly accessible database
for biomedical literature, nowadays consists of over 21 million citations1 and is still growing
fast. Thus, methods that extract information about biological processes automatically from
natural language texts are of great importance. They can, for example, lower manual curation
efforts of metabolic databases drastically (Ono et al., 2001). For instance, PPIs extracted
from natural language texts can be used to automatically build PPI databases or to support
curators in building them.

Competitions are held to evaluate the progress achieved by the research community in
the extraction of PPIs and bio-molecular events. For instance, the BioCreative II Chal-
lenge (Krallinger et al., 2008) focused on the extraction of PPIs. In contrast, the BioNLP
Shared Task 2009 (Kim et al., 2009) and 2011 (Kim et al., 2011) both aimed at extracting
fine-grained information about detailed behavior of bio-molecules, known as bio-molecular
events.

Both, the BioNLP 2009 and 2011 event extraction tasks aimed at extracting the follow-
ing event types selected from the GENIA ontology (Kim et al., 2003): gene expression,
transcription, protein catabolism, phosphorylation, localization, binding, regulation, positive
regulation and negative regulation. All these events have a protein as their theme (primary
argument). Binding has several proteins as its themes. For regulation events, extracting their
cause is required. All events have event triggers that need to be extracted as well. Phos-
phorylation, localization, binding and regulation take a secondary argument (a location or a
site). Notably, a regulation event may also take another event as its argument (called nested
events).

To separate concerns, in competitions evaluating PPI and bio-molecular event extraction, it
is common to use gold standard annotations for all protein mentions. Hence, protein named
entity recognition (NER) is not considered and solely the performance for relation extraction
(RE) is measured. Kim et al. (2009) noted that the only feature which detracts from the
BioNLP task’s realism is the fact that RE systems were provided with gold standard protein
annotations.

Kabiljo et al. (2009) showed that the use of gold standard annotations has a high impact on
the performance of methods for PPI extraction. This is due to the fact that error propagation
caused by NER is neglected. They evaluated AkanePPI (Sætre et al., 2007), a state-of-the-
art system for PPI extraction, on five PPI corpora. Kabiljo et al. observed a drop in F1
measure between 2.2 and 22.7 percentage points when protein annotations were discarded
and had to be previously identified by a NER system (we refer to this setting as pipeline
architecture). Thus, the quality of NER has a strong impact on the quality of PPI extraction.
The NER system used by Kabiljo et al. is BANNER (Leaman and Gonzalez, 2008), which
is based on a second order linear-chain Conditional Random Field (CRF) (see Section 4.2)
and achieves competitive results in protein name recognition tasks2.

1http://www.ncbi.nlm.nih.gov/pubmed last accessed: November 9, 2011
2http://banner.sourceforge.net/ last accessed: November 9, 2011
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Clearly, a similar drop in performance can be expected for bio-molecular event extraction
when depending on protein NER. One idea to reduce the impact of NER on RE is to
perform both steps jointly. We believe that by performing protein NER and bio-molecular
event extraction simultaneously, both steps will be able to beneficially influence each other.
We expect a performance gain for the joint approach compared to the often used pipeline
architecture. This would have a strong impact on the real-life application of bio-molecular
event extractors, which rely on NER of proteins and suffer from error propagation.

In this thesis, we want to show that NER and RE can beneficially influence each other. We
will employ a probabilistic graphical model for joint extraction, since they can be used to
model and query complex joint probabilities. Although we will implement this approach for
the example of protein NER and bio-molecular event extraction, the insights gained in this
thesis will similarly apply to joint protein NER and PPI extraction. We hope the joint model
reduces bio-molecular event extraction errors caused by NER. In addition, event extraction
might have a positive influence on the performance of protein NER. Consequently, we will
evaluate the joint NER and event extractor in a realistic scenario where no gold standard
entities are given and compare it with the pipeline architecture. Furthermore, in contrast to
previous work, we aim at extracting all multi-token proteins rather than only single-token
proteins that participate in a relation.

1.1 Probabilistic Graphical Models and Factor Graphs

In the following, we will give a brief introduction to probabilistic graphical models based
on Koller and Friedman (2009); Bishop (2006); Klinger and Tomanek (2007). Probabilistic
graphical models are used to specify joint distributions of random variables. Models are
represented as a graph, where the nodes correspond to the variables of the distribution and
edges between nodes express probability relationships between these variables (Bishop, 2006,
p. 360). More specifically, two random variables are conditionally independent if they are not
connected with an edge in the graph (Klinger and Tomanek, 2007). Two random variables
X and Y are called conditionally independent given Z, if P (X,Y|Z) = P (X|Z)P (Y|Z).

One can distinguish between directed graphical models, known as Bayesian Networks (BNs),
and undirected graphical models, called Markov Networks (MNs) or Markov Random Fields
(MRFs). Only the absence of edges, i.e., the assertion of conditional independence, is infor-
mative in graphical models (Klinger and Tomanek, 2007). Hence, they can be seen as a set
of independence assumptions. This set of independencies is equivalent with the factorization
of the joint distribution into a product of factors (Koller and Friedman, 2009, p. 5).

The factorization of a probabilistic graphical model can be represented by a factor graph,
i.e., a bipartite graph where the random variables are connected with their corresponding
factors (Kschischang et al., 2001). We shall use FACTORIE (see Section 3.2) to imperatively
build undirected graphical models as factor graphs.

In the case of MRFs, a factor Φ is defined as a function from the values of a set of random
variables to R. Thus, factors are not probability functions, but measure the compatibility
between the variables connected them. However, we get a probability distribution by nor-
malizing the product of factors (Koller and Friedman, 2009, p. 108). Let X = X1, . . . , Xn be
the set of random variables, let k be the number of factors that factorizes the distribution
and let Di be the subset of X over which factor Φi is defined. A MRF factorizes over the
distribution with a set Φ = {Φ1, . . . ,Φk} of factors, if every Di is a clique in the MRF. In
other words, all random variables of a factor are fully connected to each other in the MRF.
The probability distribution can be obtained by calculating
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PΦ(X) =
∏k

i=1 Φi(Di)∑
X1,...,Xn

∏k
i=1 Φi(Di)

.

The denominator is a function of X, called normalization constant. As we sum over all pos-
sible assignments to the random variables X1, . . . , Xn, calculating this constant is extremely
expensive. However, sampling methods for approximate learning and inference exist, where
calculating this constant is not needed (see Metropolis-Hasting Section 4.1.1).

2 Goal

The primary goal of this thesis is to employ a MRF, represented as factor graph, to jointly
perform protein NER and bio-molecular event extraction. For this purpose, we will extend
the event extraction system introduced by Klinger et al. (2011) (see Section 3.2) with protein
NER capabilities and train and evaluate it on the BioNLP 2009 corpus.

Secondarily, we will investigate whether a combination of the pipeline architecture and the
joint model is beneficial. Therefore, in addition to the protein mentions in the bio-event
corpus, we will also incorporate protein annotations from the BioCreative II corpus into the
NER component of the joint model by using a custom objective function. Hence, we will
address the problem that a bio-event corpus might not be sufficient for training a protein
NER component.

3 Related Work

In previous work (Rocktäschel, 2011), we attempted to perform protein NER and PPI ex-
traction jointly by using Support Vector Machines (SVMs) (Joachims, 1998). Thereby we
encountered the problem of training SVMs on extremely imbalanced datasets. This resulted
in an overall performance decrease compared to the pipeline architecture. With SVMs, we
found it labour-intensive and time-consuming to model complex dependencies between dif-
ferent components. In addition, modelling these dependencies with a SVM was costly as it
resulted in classifications that were quadratic in the number of tokens for each sentence.
Moreover, our approach was limited to single-token proteins. Thus, we could not compare
this approach with a pipeline architecture consisting of a state-of-the-art NER and PPI
component. Another drawback was the fact that we could solely extract entities that also
participated in a PPI. However, joint inference has been successfully applied in several in-
formation extraction tasks from different domains.
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Kate and Mooney (2010) jointly extracted entities (locations, persons and organizations)
and relations (e.g. “works for”, “is located in”) using a “card-pyramid” graph structure that
captures possible entities and relations in a sentence. Their system outperformed a pipeline
approach for four out of the five relation types.

The system developed by Zhu et al. (2006) extracts records from web pages and jointly
labels attributes within a record. It is based on a CRF with a hierarchical graph structure.
Their experiments show an improvement for both tasks when performed jointly.

A joint model for parsing and NER was introduced by Finkel and Manning (2009). By
using a feature-based CRF-CFG parser and incorporating NER information, they improved
the performance of both steps (1.36 percentage points F1 measure for parsing and 9.0 for
NER).

3.1 Markov Logic Networks

Poon and Domingos (2007) extracted citations from unstructured natural language texts
by jointly segmenting records and matching them with those records that refer to the same
entity (entity resolution). They used a Markov Logic Network (MLN) (Richardson and
Domingos, 2006), which is a set of weighted first order logic formulas with which one can
define predicates to describe relations. The formulas representing the MLN are then used to
instantiate a MRF. By employing a MLN, their system was able to outperform all previous
approaches.

In the BioNLP 2009 core event extraction task, Riedel et al. (2009) obtained the 4th best F1
measure of 44.4% with a MLN. The MLN was used to jointly predict triggers and arguments
of bio-molecular events, whereas a common approach is to use several classifiers in a pipeline
architecture. Riedel et al. used predicates to link arguments and triggers in the dependency
tree. Furthermore, they used formulas to model constraints that every extracted event should
satisfy. Later, a similar system based on a MLN was developed by Poon and Vanderwende
(2010) for this task, achieving an F1 measure of 50.0%. Note that these approaches focused
on joint extraction of triggers and events given protein gold standard annotations, whereas
we also aim at jointly extracting protein mentions.

A modification (Riedel and McCallum, 2011) of this system achieved the 2nd best F1 measure
(55.2%) in the BioNLP 2011 Genia Event Task. By combining this system with event parsing,
the resulting stacked system (Riedel et al., 2011) yielded the best F1 measure (56.0%) among
all participants in this task.

3.2 Imperatively Defined Factor Graphs

McCallum et al. (2009, 2008) introduced FACTORIE, a library for implementing Impera-
tively Defined Factor Graphs (IDFs). Arbitrary factor graphs (e.g. for MRFs) can be imper-
atively constructed with FACTORIE by defining variables and factor templates, i.e., factors
that are tied to the same parameters. The resulting factor graph is called a IDF. Further-
more, so-called user-defined proposal (see Section 4.1.1) and objective functions (see Section
4.1.2) can be implemented to improve the resulting model and to speed up training and
inference. In experiments on joint segmentation and co-reference of research paper citations,
McCallum et al. achieved an error reduction by 20 − 25% and were 3 to 15 times faster
than a MLN. Besides this performance advantage, IDFs allow more accurate and expressive
modeling than MLNs (McCallum et al., 2009).
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FACTORIE has already been employed successfully for various other tasks: For instance,
Wick et al. (2010) implemented a probabilistic database with it. A phrase-based machine
translation system modeled as CRF was introduced by Roth et al. (2010). Yao et al. (2010)
used FACTORIE for relation extraction. They applied joint inference and distant supervi-
sion, i.e., they trained their model on a knowledge base rather than a gold standard.

Klinger et al. (2011) developed a cross-sentence event extractor modeled as factor graph
and reported competitive results on the BioNLP 2009 Shared Task. Their key idea was to
incorporate information about event-event dependencies. These dependencies were used to
model the observation that events are introduced across sentences in a discourse of a paper.
Thus, extracting a particular event should have an influence on extracting following events
in that paper.

4 Approach

As mentioned in Section 2, we will build a joint factor graph by extending the event extrac-
tion system developed by Klinger et al. (2011) with protein NER capabilities. The resulting
model will be used to jointly extract proteins and bio-molecular events from natural language
texts.

4.1 Markov Chain Monte Carlo Methods

Factor graphs can become extremely large due to complex variable dependencies, rich fea-
ture sets and large training corpora. Inference and parameter estimation (learning) becomes
intractable in large factor graphs. Fortunately, Markov Chain Monte Carlo (MCMC) (Hast-
ings, 1970) can be used to draw samples from the high-dimensional probability distribution
p encoded in a factor graph. Subsequently, these samples can be used to calculate marginal
and conditional probabilities and, thus, to answer various kinds of queries (Richardson and
Domingos, 2006). To obtain accurate models with FACTORIE, the principle of MCMC-
sampling using a proposal function and learning with an objective function is essential. The
former can be achieved with Metropolis-Hastings and the latter with SampleRank.

A Markov Chain is defined over a state space where each state corresponds to an assignment
of values to the variables in the graphical model. Additionally, a transition model is used
to specify the probability of going from one state to another (i.e. assigning other values to
the variables). The basic idea of MCMC is to perform random walks over Markov Chains to
sample from the high-dimensional probability distribution p underlying a graphical model
(Koller and Friedman, 2009, p. 507). If the Markov Chain fulfils certain properties (if it is
irreducible and aperiodic), it will converge to a unique stationary distribution π (Brooks,
1998). Thus, after we have constructed a Markov Chain of a certain length, all samples
generated from this Markov Chain will be sampled from its stationary distribution.

The key is to ensure that the stationary distribution π is the desired distribution p (Gilks
and Richardson, 1996, p. 5). This can be achieved by a suitable transition model for the
Markov Chain.
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4.1.1 Metropolis-Hastings

A very popular MCMC method that ensures that the Markov Chain converges to a desired
stationary distribution p is Metropolis-Hastings (MH) (Hastings, 1970). The following ex-
planations are based on (Koller and Friedman, 2009, pp. 516-518) and (Andrieu et al., 2003,
pp. 13-16).

The main advantage of MH is the fact that we only have to know p up to a normalization
constant. We do not have to sample from p directly, but instead use another distribution q,
called proposal distribution, to generate samples. In fact, we do not use q to generate actual
samples, but instead we only propose transitions for the Markov Chain based on q. These
proposals can be seen as a transition model TQ, where TQ(x, x′) denotes the probability
proposing a change from x to x′ (we shall call TQ a proposer or sampler). Subsequently,
MH will correct the error made by not sampling from p. Thus, in the end the Markov Chain
will generate samples that are distributed as if we would have drawn them directly from p.
However, MH does not keep track of the error corrections while constructing the Markov
Chain. Instead, MH randomly decides to accept or reject a proposal made by TQ based
on an acceptance probability A. This probability specifies for every pair (x, x′) whether to
accept the proposed transition to x′ or to stay at x. By defining a transition model T and
an acceptance probability A in the following way, the resulting Markov Chain will have p as
its stationary distribution:

A(x, x′) = min
[
1, p(x

′)TQ(x′, x)
p(x)TQ(x, x′)

]
T (x, x′) = TQ(x, x′)A(x, x′) for x 6= x′

T (x, x) = TQ(x, x)
∑
x 6=x′

TQ(x, x′)(1−A(x, x′))

As we choose a TQ that is easy to calculate, the ratio TQ(x′, x)/TQ(x, x′) will also be easy
to calculate. In the context of MRFs, both p(x′) and p(x) can be calculated using only the
factors that are connected to the variable which TQ proposed to change. Note that because
p is used in the numerator and denominator, it is sufficient to know p up to a normalization
constant. To obtain the ratio p(x′)/p(x), we can thus simply multiply the corresponding
factors without normalizing them to actual probabilities.

4.1.2 FACTORIE’s SampleRank

SampleRank (Wick et al., 2009, 2011) is a MCMC-based parameter estimation algorithm
used in FACTORIE to train the parameters of factor graphs. Parameter updates are per-
formed after each MCMC step. While exploring the parameter space, SampleRank ranks
local moves in this space using an objective function. A main feature of SampleRank is the
fact that we can incorporate user-defined objective functions, which results in faster training
and more accurate models. For instance, we can use an objective function correlated to F1,
which probably results in a model that will be more balanced between precision and recall
on the evaluation data then a model using, for instance, per-token accuracy.
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4.2 Named Entity Recognition of Proteins

We will use FACTORIE to model a factor graph for protein NER. The underlying graphical
model will be a Conditional Random Field (CRF). A CRF is a MRF which directly defines
the conditional probability p(Y|X), where X is a set of input variables (observation) and
Y is a set of output variables (Lafferty et al., 2001). CRFs have a great advantage over
generative models (e.g. Hidden Markov Models (HMMs)) as they do not have to make
assumptions about the underlying observation distribution X. Furthermore, a huge number
of non-independent features can be used to describe the input data (McCallum et al., 2000).
CRFs have become the de facto standard for machine-learning-based NER methods over the
last decade.

To achieve near state-of-the-art performance, we will use common morphological, ortho-
graphical and syntax features for protein NER provided by BANNER (Leaman and Gon-
zalez, 2008). When using FACTORIE, we have to implement a proposer (see Section 4.1.1)
for protein mentions in text. Furthermore, we will experiment with user-defined objective
functions (see Section 4.1.2). Subsequently, we can compare the performance of our system
with BANNER by training it on the BioCreative II Gene Mention Tagging3 training set and
evaluating it on the test set.

Additionally, we will measure the impact of protein NER on the performance of Klinger
et al. (2011)’s bio-event extraction system using a pipeline architecture. Hence, the bio-
event extraction system will only rely on the proteins sampled by our protein NER proposer
instead of gold standard proteins. The pipeline will be trained on the training corpus of
the BioNLP 2009 Shared Task and evaluated on the development corpus. We expect a
performance drop for bio-event extraction similar to the severe drop observed by Kabiljo
et al. (2009) for PPI extraction when relying on protein NER rather than gold standard
entities.

4.3 Joint Extraction of Proteins and Bio-Molecular Events

The primary goal of this thesis is the joint extraction of proteins and bio-molecular events.
Our proposer for protein NER and the proposers included in Klinger et al.’s bio-event extrac-
tor will be used to simultaneously propose proteins and bio-molecular events. By applying a
Metropolis-Hastings-like MCMC algorithm (see Section 4.1.1), FACTORIE jointly accepts
or rejects this proposal, resulting in joint learning and joint inference.

We will compare the joint extractor with the pipeline architecture. Here, we expect a per-
formance gain for both, the bio-event extraction and protein NER, since they will probably
be able to beneficially influence each other when performed jointly.

3http://biocreative.sourceforge.net/biocreative_2_gm.html last accessed: November 9, 2011
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4.4 Training on two corpora

Since the joint extractor is trained on an event-extraction corpus, the protein proposer will,
during training, only have access to proteins contained in this corpus. This might result in
a low-performing model.

SampleRank only evaluates variables whose value were changed by the proposer. Thus,
different objective functions can be used for different stages in the process of joint extraction.
For instance, by specifying an objective function that has access to other corpora (e.g. the
BioCreative II corpus), it should be possible to provide the protein proposer with additional
training data.

The resulting model will still be able to perform joint extraction of proteins and bio-events.
However, additional training data should improve the protein NER. Hence, this could have
a positive effect on both, the quality protein NER and, subsequently, also the quality of
bio-molecular event extraction. Implementing and evaluating such a model is a secondary
goal of this thesis. However, its feasibility and performance-advantages are rather unclear.
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