
Beyond Good Shapes: Diffusion-based
Graph Partitioning is Relaxed Cut Optimization?

Henning Meyerhenke

University of Paderborn, Department of Computer Science
Fuerstenallee 11, D-33102 Paderborn, Germany

E-mail: henningm@upb.de

Abstract. In this paper we study the prevalent problem of graph partitioning
by analyzing the diffusion-based partitioning heuristic BUBBLE-FOS/C, a key
component of the practically successful partitioner DIBAP [14]. Our analysis re-
veals that BUBBLE-FOS/C, which yields well-shaped partitions in experiments,
computes a relaxed solution to an edge cut minimizing binary quadratic program
(BQP). It therefore provides the first substantial theoretical insights (beyond in-
tuition) why BUBBLE-FOS/C (and therefore indirectly DIBAP) yields good ex-
perimental results. Moreover, we show that in bisections computed by BUBBLE-
FOS/C, at least one of the two parts is connected. Using arguments based on
random walk techniques, we prove that in vertex-transitive graphs actually both
parts must be connected components each. All these results may help to eventu-
ally bridge the gap between practical and theoretical graph partitioning.

Keywords: Diffusive graph partitioning, relaxed cut optimization, disturbed dif-
fusion.

1 Introduction

Partitioning the vertices of a graph such that certain optimization criteria are met, oc-
curs in many applications in computer science, engineering, and related fields. The
most common formulation of the graph partitioning problem for an undirected (possi-
bly edge-weighted) graph G= (V,E) (or G= (V,E,ω)) asks for a division Π of V into k
pairwise disjoint subsets (parts) {π1, . . . ,πk} of size at most d|V |/ke each, such that the
edge cut is minimized. The edge cut is defined as the total number (or total weight) of
edges having their incident nodes in different subsets. Among many others, the applica-
tions of this N P-hard problem include load balancing in numerical simulations [19]
and image segmentation [6,20].

Despite recent approximation algorithms, simpler heuristics are preferred in prac-
tice, many of which can be found in the surveys [19] (graph partitioning) and [18]
(graph clustering). Spectral algorithms have been widely used [8]; they are global
optimizers based on graph eigenvectors. For computational efficiency or quality rea-
sons, they have been mostly superseded by local improvement algorithms. Integrated
into a multilevel framework, local optimizers such as Kernighan-Lin (KL) [10] can be

? Partially supported by German Research Foundation (DFG) Priority Programme 1307 Algo-
rithm Engineering.

found in several popular partitioning libraries [4,9]. Unfortunately, theoretical quality
guarantees are not known for KL. Another class of improvement strategies comprises
diffusion-based methods [14,17]. While they are slower than KL, diffusive methods of-
ten yield a better quality, also when repartitioning dynamic graphs [14,15].

Motivation. The hybrid algorithm DIBAP is a multilevel combination of the diffusive
algorithms BUBBLE-FOS/C [15] and TRUNCCONS. Particularly on graphs arising in
numerical simulations, DIBAP is very successful [14]. For example, it has computed
for six of the eight largest graphs of a popular benchmark set [21] a large number (more
than 80 out of 144 when DIBAP was published) of their best known partitions with
respect to the edge cut. The algorithm BUBBLE-FOS/C, which is related to Lloyd’s
k-means method [11], is an integral part of DIBAP responsible for good solutions on
smaller representations of the input graphs. In experiments with graphs from numerical
simulations, BUBBLE-FOS/C computes partitions with well-shaped parts. This comes
along with a small number of boundary nodes (i. e., nodes with at least one neighbor in
a different part) and a small edge cut [15]. However, apart from intuition (see Section 2),
there has been no satisfactory theoretical explanation why BUBBLE-FOS/C and ulti-
mately DIBAP produce such good partitions.

Contribution. With this work we answer several open questions regarding diffusion-
based partitioning with BUBBLE-FOS/C. In Section 3 we prove a major insight about
the optimization criterion of BUBBLE-FOS/C. The heuristic computes a k-way (k≥ 2)
balanced partition that is the relaxed solution of a binary quadratic program (BQP)
for finding the partition with minimum edge cut. As a byproduct, computing new center
nodes for each part is related to a very similar BQP by the contribution to the constraints.
Note that, while the insight about relaxed cut optimization alone may not be sufficient
to guarantee a heuristic’s practical success, we pursue here the other way around and
analyze a heuristic known to produce good partitions. These results may pave the way
for finding bounds on BUBBLE-FOS/C’s quality for certain graph classes.

The achievements in Section 4 concern the connectedness of the parts in a bipar-
tition (k = 2) computed by BUBBLE-FOS/C. We prove a result known for spectral
partitioning [5], which is new for BUBBLE-FOS/C: In any undirected connected graph
G, at least one of the two parts is connected. For vertex-transitive graphs (such as torus
or hypercube), we use the random walk measure hitting times and conditional expecta-
tions to show that both parts are always connected.

2 Notation and Related Work

2.1 Notation

We consider in this paper undirected edge-weighted graphs G = (V,E,ω), which are
triples with the set of n vertices (or nodes) V , a set of m edges E ⊆V ×V , and an edge
weight function ω : E → R≥0. We also assume that the graphs are finite, connected,
and simple, i. e., they do not contain self-loops (u,u) or multiple edges with the same
endpoints. Connectedness can be enforced by focusing on the connected components.

Matrices M are written in bold font, a matrix entry at position (u,v) as [M]u,v. We
use column vectors; the v-th entry of a vector w is denoted by [w]v. In case we refer to the

v-th entry of the i-th vector, we write [wi]v. The symmetric positive semidefinite Laplace
matrix matrix L of G [3, p. 27ff.] has the entries [L]u,v = −ω({u,v}) for {u,v} ∈ E,
[L]u,u = deg(u) (with deg(u) =−∑v6=u[L]u,v), and [L]u,v = 0 otherwise.

2.2 Diffusion-based and Related Partitioning Techniques

Intuitively, a random walk [12] is likely to stay a long time in a dense graph region
before leaving it via one of the few outgoing edges. There exist many graph cluster-
ing/partitioning techniques exploiting this notion (see [18]). Many diffusive processes
are described by stochastic matrices and are therefore related to random walks [12].
Diffusion models many important transport phenomena such as heat flow; another ap-
plication is localized load balancing in parallel computations. In such a discrete setting,
diffusion is a local iterative process which exchanges splittable load entities between
neighboring vertices, usually until all vertices have the same amount of load. For graph
partitioning, diffusive algorithms and similarity measures are used to compute well-
shaped partitions [15,17]. These works exploit the fact that diffusive processes send
load faster into densely connected graph regions, which corresponds to the intuition
that random walks stay longer in dense graph regions.

Meila and Shi [13] connect random walks to spectral partitioning. Spectral methods
such as [20] solve relaxations of IPs that minimize the edge cut or the related ratio cut.
They build on Fiedler’s seminal work on spectral partitioning [5] and use eigenvectors
of Laplace or adjacency matrices for partitioning. A spectral relaxation to the geometric
k-means clustering problem is given by Zha et al. [22].

The diffusive partitioning algorithm BUBBLE-FOS/C, which we consider in this
paper, is composed of the BUBBLE framework (described below) and the similarity
measure FOS/C [15]. FOS/C (first order scheme with constant drain) introduces a drain-
based disturbance into the first order diffusion scheme. With the disturbance, FOS/C
reaches a steady state whose load vector w represents similarities of nodes. These sim-
ilarities reflect whether nodes are connected by many paths of short length.

Definition 1. (FOS/C) [15] Given a connected and undirected graph G=(V,E,ω) free
of self-loops, a set of source nodes /0 6= S ⊂ V , initial load vector w(0), and constants
0 < α ≤ (deg(G)+ 1)−1 and δ > 0.1 Let the drain vector d (which is responsible for
the disturbance) be defined as [d]v = (δn/|S|)− δ if v ∈ S and [d]v = −δ otherwise.
Then, the FOS/C iteration in time step t ≥ 1 is defined as w(t) = Mw(t−1)+ d, where
M = I−αL is the doubly-stochastic diffusion matrix and L the Laplace matrix of G.

Lemma 1. [15] For any d ⊥ (1, . . . ,1)T (i. e., 〈d,(1, . . . ,1)T 〉= 0), the FOS/C iteration
reaches a steady state, which can be computed by solving the linear system Lw = d.

Definition 2. If |S|= 1 (|S| > 1), we call the FOS/C iteration to the steady state or its
corresponding linear system a single-source (multiple-source) FOS/C procedure. Also,
let [w(t)]uv ([w]uv) denote the load on node v in time step t (in the steady state) of a single-
source FOS/C procedure with node u as source.

1 Here, the maximum degree of G is defined as deg(G) := maxu∈V deg(u).

Remark 1. [16] [w]uv = limt→∞([Mtw(0)]uv +nδ (∑t−1
l=0[M

l]v,u)− tδ), where [Ml]v,u is the
probability of a random walk (defined by the stochastic diffusion matrix M) starting at
v to be on u after l steps. [Mtw(0)]uv converges to the balanced load distribution. Thus,
the important part of an FOS/C load in the steady state is nδ (∑t−1

l=0[M
l]v,u) – the sum

of transition probabilities of random walks with increasing lengths. Observe that load
vectors w can be made comparable by normalizing them such that ∑v∈V [w]v = n.

Algorithm Bubble-FOS/C(G, k)→Π

01 Z = InitialCenters(G, k) /* Arbitrary disjoint centers */
02 for τ = 1,2, . . . until convergence

/* AssignPartition: */
03 parallel for each part πp

04 Init dp (Sp = {zp}), solve and normalize Lwp = dp

05 parallel for each node v ∈V
06 Π(v) = argmax1≤p≤k[wp]v

/* ComputeCenters: */
07 parallel for each part πp

08 Initialize dp (Sp = πp) and solve Lwp = dp

09 zp = argmaxv∈πp
[wp]v

10 return Π

Fig. 1. Sketch of the main BUBBLE-FOS/C algorithm.

The generic algorith-
mic framework behind
the partitioning algorithm
BUBBLE-FOS/C is the
so-called BUBBLE frame-
work. BUBBLE is related to
Lloyd’s k-means clustering
algorithm [11] and transfers
Lloyd’s idea to graphs.
The framework’s first step
chooses one initial repre-
sentative (center) for each
of the k parts. All remaining
vertices are assigned to
the closest (with respect
to some measure) center
vertex. After that, each part
computes its new center
for the next iteration. Then,
the two latter operations
are repeated alternately.

BUBBLE-FOS/C is outlined in Figure 1, where Π = {π1, . . . ,πk} denotes the set
of parts, Π(v) the part of node v, and Z = {z1, . . . ,zk} the set of the corresponding
center nodes. First, the algorithm determines possibly arbitrary, but pairwise disjoint
initial centers (line 1). After that, with the new centers, the main loop is executed. It
determines in alternating calls a new partition (AssignPartition, lines 3-6) and new
centers (ComputeCenters, lines 7-9). BUBBLE-FOS/C implements these framework
operations with k FOS/C procedures (more precisely with equivalent linear systems for
efficiency) per major operation, single-source ones (Sp = {zp}) for AssignPartition
and multiple-source (Sp = πp) ones for ComputeCenters. The loop is iterated until
convergence is reached (convergence is guaranteed [14]) or, if time is important, a
constant number of times.

Within the partitioner DIBAP one uses BUBBLE-FOS/C to compute solutions for
smaller representations of the input graph with only a few thousand nodes and edges.
This computation is reasonably fast and gives initial solutions that are usually better
suited than KL-based ones. Initial solutions are refined by a faster local diffusion pro-
cess (which yields initial solutions of lower quality, but refines well) within a multilevel
process, see [14] for details. DIBAP is the combination of these two diffusive algo-
rithms and yields very good experimental results in a reasonable amount of running

time (as an example, for k≤ 16 and graphs with less than one million nodes and edges,
DIBAP requires less than a minute on standard hardware). Except for the connection to
random walks and other intuitive explanations mentioned earlier in this section, there
has been no theoretical evidence until now why the important initial solutions produced
by BUBBLE-FOS/C have a high quality.

3 Optimization Criterion of BUBBLE-FOS/C

It has been shown before [14, Thm. 10], that the iterative optimization performed by the
graph partitioning heuristic BUBBLE-FOS/C can be described by a potential function.
This function F sums up the diffusion load of each vertex v ∈ V in a single-source
FOS/C procedure in time step τ with v’s closest center vertex zp as source. In fact,
the results computed by the operations AssignPartition and ComputeCenters each
maximize F for their fixed input (centers or parts, respectively). Moreover, random
walks (and also related diffusion processes) can identify dense vertex subsets because
they do not escape these regions easily via one of the few external edges. However,
it has been unclear so far how these facts relate to the good experimental results of
BUBBLE-FOS/C with respect to metrics more specific to graph partitioning.

With the upcoming analysis of BUBBLE-FOS/C, we show that – under mild con-
ditions – BUBBLE-FOS/C solves a relaxed edge cut minimization problem. This is
slightly surprising: In previous experiments with numerical simulation graphs [15],
BUBBLE-FOS/C was compared to the popular partitioning libraries KMETIS and JOS-
TLE. The best improvements by BUBBLE-FOS/C could be seen regarding the number
of boundary nodes and the shape of the parts. Yet, concerning the edge cut, the improve-
ment over the other libraries was not as clear, probably because KMETIS and JOSTLE
focus chiefly on the edge cut.

3.1 Edge Cut Minimization

Our plan is to express cut minimization by a binary quadratic programming problem
(BQP) based on matrices and vectors equivalent or similar to those used in BUBBLE-
FOS/C. For this purpose we introduce some notation first. Define a binary indicator
vector x(p) ∈ {0,1}n for part p, 1≤ p≤ k, with [x(p)]v = 1⇔ v ∈ πp. Let X ∈ {0,1}n×k

be the matrix whose p-th column is x(p). Moreover, let y(p,p′) := x(p)− x(p′) and Y the
matrix whose columns are the vectors y(p,p′), 1≤ p < p′ ≤ k.

It is well-known [5] that xT Lx = ∑{u,v}∈E ω({u,v})([x]u− [x]v)2. Hence, finding a
balanced partition with minimum edge cut can be written as:

min
X∈{0,1}n×k

∑1≤p≤k xT
(p)Lx(p) (1)

subject to ‖x(p)‖1 =
n
k (balanced parts)

∑1≤p≤k[x(p)]v = 1∀v ∈V (exactly one part per node).

3.2 AssignPartition Computes Relaxed Minimum Cuts

Assume we use BUBBLE-FOS/C to find a balanced (|πi| = |π j| ∀1 ≤ i, j ≤ k) k-
partition with minimum (or in practice at least small) edge cut of an undirected graph
G = (V,E,ω) with n nodes, n/k ∈ N. To find a good solution, BUBBLE-FOS/C alter-
nates the operations AssignPartition and ComputeCenters. Eventually, it finds a
local optimum of the potential function F described above [14]. In the original formu-
lation of BUBBLE-FOS/C, we solve k linear systems Lwp = dp, 1 ≤ p ≤ k, for each
AssignPartition and ComputeCenters operation, respectively. Recall that dp is the
drain vector that changes according to the set of source nodes and wp is the resulting
load vector.

To ensure balanced parts, AssignPartition can be followed by an operation
called ScaleBalance [15]. ScaleBalance searches iteratively for scalars βp such
that the assignment of vertices to parts according to argmax1≤p≤k[βpwp]v (instead of
argmax1≤p≤k[wp]v) results in balanced parts. A simple iterative search for suitable βp
is not always successful in practice, but in many cases it is.

Remark 2. Let 1 ≤ p ≤ k. If the βp were known beforehand, they could be integrated
into the drain vector. The resulting linear systems to solve would be L(βpwp) = (βpdp).
Hence, it does not make a difference whether suitable βp are searched such that
argmax1≤p≤k[βpwp]v results in balanced parts or if we solve L(βpwp) = (βpdp) from
the very beginning.

That is why we assume the scalars βp to be known for now with 0 < βp 6= βp′ < 1 for
all 1≤ p 6= p′ ≤ k. For the BQP formulation this is feasible, as will become clear in the
remainder of this section. It is essential that the drain vectors are adapted accordingly:

Definition 3. The entry of vertex v ∈ V in the drain vector d(A)
p (A for assign) for the

FOS/C procedure of part πp with center zp in the operation AssignPartition with
scale value βp is defined as

[d(A)
p]v = δ ·βp ·

{
(n−1) if v = zp

−1 otherwise.

Remark 3. If k = 2, instead of solving Lw = d(A)
1 and Lw2 = d(A)

2 , it is sufficient to
solve L(w1−w2) = d(A)

1 − d(A)
2 . Then, to assign vertices to parts, one does not search

for argmax (the part with the highest load for the vertex) but makes a sign test. Such a
new linear system Lw(p,p′) = d(A)

(p,p′) with w(p,p′) := wp−wp′ and d(A)
(p,p′) := d(A)

p −d(A)
p′

(if k = 2, then p= 1 and p′ = 2) is called fused (linear) system. We will see in the proofs
of Lemmas 2 and 3 that this fusion technique can be extended easily to k > 2 parts.

Lemma 2. Let 1 ≤ p ≤ k. Given a graph G = (V,E,ω) with n vertices and n
k ∈ N, its

Laplace matrix L, k center vertices Z = {z1, . . . ,zk}, k pairwise different real scalars
0 < βp < 1 (with 1

3 <
βp
βq

< 3 for 1≤ p 6= q≤ k), the FOS/C drain constant δ , and the

corresponding drain vectors d(A)
p (one for each part p).

The BQP for finding a balanced k-partition Π = {π1, . . . ,πk} with minimum cut in
G under the condition zp ∈ πp can be reformulated as:

min
X∈{0,1}n×k

∑
1≤p≤k

xT
(p)Lx(p) (2)

subject to yT
(p,p′)d

(A)
(p,p′) = nδ (βp +βp′) ∀(p, p′) (3)

with y(p,p′) := x(p)− x(p′) for all 1≤ p < p′ ≤ k.

In the proof (full paper version) it becomes clear that the
(k

2

)
constraints are chosen such

that the center vertices do not change their parts and that the parts have equal size.

Corollary 1. Let Π = {π1, . . . ,πk} be a balanced partition with minimum cut. If the set
of center nodes Z = {z1, . . . ,zk} is chosen in Lemma 2 such that zp ∈ πp (1 ≤ p ≤ k),
then the BQP (2), (3) computes Π or another balanced partition with minimum cut.

Due to the N P-hardness of BQP optimization, we aim at relaxed solutions. In-
stead of choosing only 0 or 1 in the indicator vectors, we now allow the entries of
the relaxed indicator vectors x(p) to take on arbitrary real values. Moreover, we use
y(p,p′) := x(p)− x(p′) in the objective function to use the fusion technique described in
Remark 3 (in the integral problem, the use of y(p,p′) instead of x(p) in the objective func-
tion would still model the edge cut, as the change is constant). These changes yield the
new optimization problem

min
Y∈Rn×(k

2)
∑

1≤p<p′≤k
yT
(p,p′)Ly(p,p′) with constraints as in (3). (4)

Lemma 3. The global minimum Y of Problem (4) can be computed by solving and
evaluating k linear equations of the form Lzp =− 1

2 d(A)
p (1≤ p≤ k), where

y(p,p′) =
nδ (βp +βp′)

zT
(p,p′) ·d

(A)
(p,p′)

· z(p,p′) and z(p,p′) := zp− zp′ , 1≤ p < p′ ≤ k.

Proof. Recall that AssignPartition solves k linear systems of the form Lx(p) = d(A)
p

and assigns each node to the part with the highest load for that node. It is essential to
observe that this is equivalent to solving

(k
2

)
linear systems of the form Ly(p,p′) = d(A)

(p,p′)
and deciding a partial order with respect to the higher load for each node based on
its sign in y(p,p′) = x(p)− x(p′). Note that, before performing scale balancing, all load
vectors x are normalized by adding a proper multiple of 1 = (1, . . . ,1)T such that
∑v∈V [x]v = n. This ensures a common basis for comparison and does not affect the
equations, because L1 = 0 and dp · 1 = 0. After

(k
2

)
comparisons for each node v, the

“winning” part (i. e., the one with the highest load for v) has been determined. (Of
course, for efficiency reasons, one would not perform such a large number of compar-
isons. Instead one solves k linear systems and makes k−1 comparisons per node.)

Regarding Eq. (4), using standard multidimensional calculus, one can easily see
that the function f (Y) := ∑1≤p<p′≤k yT

(p,p′)Ly(p,p′) is differentiable over Rn×(k
2), be-

cause it is a sum of differentiable functions. Furthermore, each constraint function

h(y(p,p′)) := yT
(p,p′)d

(A)
(p,p′)−nδ (βp +βp′) is continuously differentiable over Rn. Hence,

we can continue by using a Karush-Kuhn-Tucker argument (see [2, Ch. 4]) and let
Y = (y(1,2),y(1,3), . . . ,y(k−1,k)) be a feasible solution. For Y to be a global minimum, a

vector Λ = (Λ(1,2),Λ(1,3), . . . ,Λ(k−1,k)) ∈ R(
k
2) must exist with

∇ f (Y)+∑1≤p<p′≤k Λ(p,p′)∇h(y(p,p′)) = 0,

which yields 2L∑1≤p<p′≤k y(p,p′) =− ∑
1≤p<p′≤k

Λ(p,p′)d
(A)
(p,p′) .

Such a vector Λ indeed exists: We first solve the linear systems Lzp =− 1
2 d(A)

p for all

1≤ p≤ k. With z(p,p′) := zp− zp′ we have for all 1≤ p < p′ ≤ k : Lz(p,p′) =− 1
2 d(A)

(p,p′),

so that L∑1≤p<p′≤k z(p,p′) =− 1
2 ∑1≤p<p′≤k d(A)

(p,p′). Let y(p,p′) :=Λ(p,p′)z(p,p′), so that we
arrive at

Ly(p,p′) = −
1
2

Λ(p,p′)d
(A)
(p,p′) ∀1≤ p < p′ ≤ k

⇒ L ∑
1≤p<p′≤k

y(p,p′) = −
1
2 ∑

1≤p<p′≤k
Λ(p,p′)d

(A)
(p,p′) .

Hence, a suitable Λ exists. Following [2, Thm. 4.3.8], f and h are convex functions
or the sum of convex functions (again, this is easy to check, for f by using that L is
positive semidefinite (xT Lx ≥ 0∀x)), so that Y is a global optimum of Equation (4).
Finally, some rearranging suffices to compute each y(p,p′) and Λ(p,p′) from z(p,p′). ut

Let us make clear now why the assumption of already known βp is feasible. First, recall
from Remark 2 that the result of the linear systems is the same regardless when the
βp are introduced into the equations. Lemma 2 tells us that the actual choice of the βp
is hardly relevant for the BQP to work – as long as they are not equal, lie between 0
and 1, and their quotient is neither too small nor too large. Hence, we choose suitable
βp such that the BQP works. In practice, however, we cannot make such a choice for
BUBBLE-FOS/C a priori. Yet, given the mild conditions, we can assume that the scalars
βp computed by ScaleBalance will fulfill the constraints mentioned above in the vast
majority of cases. Therefore, we can conclude this section with the following insight:

Theorem 1. Let k ≥ 2. Given a graph G = (V,E,ω) with n nodes (n/k ∈ N) and a set
Z with one center vertex for each of the k parts. Then, the two consecutive operations
AssignPartition and ScaleBalance with suitable βp (1≤ p≤ k) together compute
the global minimum of the Optimization Problem (4). Problem (4) is a relaxed version
of BQP (2), (3). If Z = {z1,...,zk} is given such that zp ∈ πp and Π = {π1, . . . ,πp} is an
(unknown) optimal (with respect to the edge cut) partition, then this BQP computes an
optimal partition.

Proof. We solve for each AssignPartition operation the linear systems Lwp = dp,
where each dp is the original drain vector without integration of βp, 1 ≤ p ≤ k. Per-
forming ScaleBalance results in the load vector βpwp. With the Remarks 2 and 3

and the proof of Lemma 3, it follows that the assignment process can be regarded as
making

(k
2

)
comparisons per vertex, i. e., vertices are assigned according to their sign

in the
(k

2

)
fused load vectors w(p,p′) = βpwp−βp′wp′ . As a direct consequence of the

results above, for suitable βp these load vectors w(p,p′) correspond to a relaxed optimal
solution of the BQP (2), (3). As shown before, this BQP would find the solution with
minimum edge cut given an optimal placement of the center nodes. ut

3.3 ComputeCenters Maximizes Constraint Contribution

Recall that the iteration of BUBBLE-FOS/C with its alternating calls to
AssignPartition and ComputeCenters maximizes the potential function F (see the
beginning of Section 3). Insofar it is interesting to find out if a similar optimization prop-
erty holds when ComputeCenters is described as the relaxation of a cut-minimizing
BQP. Note that in the case of ComputeCenters we are given a fixed partition and need
to return one center vertex for each part.

Compared to our derivation in Section 3.2, the drain vector for part πp is not d(A)
p

any more, but d(C)
p (C for centers). This change reflects that the total drain is not given

to one center vertex, but shared among all vertices of the part under consideration.
Moreover, the scale values βp are not needed any more, i. e., they can be set to 1 here.
Consequently, [d(C)

p]v = δβp(n/|πp|−1) if v ∈ πp and [d(C)
p]v =−βpδ if v /∈ πp.

Remark 4. To establish a BQP for ComputeCenters given the input partition Π , we
simply replace all occurrences of d(A) by d(C) in Equation (3), eliminate the unnecessary
βp, and use the indicator vectors x(p) here:

xT
(p)d

(C)
p = δ (n−|πp|) ∀1≤ p≤ k . (5)

As shown below, the modified constraints ensure that all vertices stay in their part. This
is important because the operation ComputeCenters is not supposed to change the
partition. In particular, the computed centers must come from different parts.

Lemma 4. The constraints in Equation (5) ensure that the centers Z = {z1, . . . ,zk}
computed by the BQP (2), (5) are in pairwise different parts with respect to Π .

Immediately the question arises how the computation of centers is supposed to min-
imize the edge cut. Indeed, the BQP formulation only computes an indicator vector
that represents the input partition. Yet, the new centers do have an extremal property,
the contribution to Constraint (5). Again, we relax the binary condition on x(p), i. e.,
let x(p) ∈ Rn. Since d(C) is constant for all vertices of the same part and [x(p)]zp =
argmax1≤v≤n[x(p)]v:

Corollary 2. Given a partition Π = {π1, . . . ,πk}, let ComputeCenters compute the
vertices Z = {z1, . . . ,zk} as new centers. The respective entry [x(p)]zpd(C)

zp contributes

the highest value of all vertices in πp to xT
(p) ·d

(C)
p , 1≤ p≤ k.

4 Connectedness Properties of BUBBLE-FOS/C

For some applications that use partitioning as an intermediate step (e. g., tracking par-
ticles in parallel), it is advantageous that the parts are connected, i. e., that they have
exactly one connected component each. Experiments with graphs from finite element
discretizations reveal that the subdomains computed by BUBBLE-FOS/C are (nearly
always) connected if the algorithm is allowed to perform sufficiently many iterations.
Unfortunately, there has been no theoretical evidence for this observation until now.

In this section we make a step towards gaining more knowledge about the connect-
edness properties of BUBBLE-FOS/C. Similar to Fiedler’s classical result [5] about
spectral bipartitioning (but by using a different proof approach), we state that at least
one part in a partition {π1,π2} computed by BUBBLE-FOS/C is connected.

Theorem 2. If the graph G = (V,E,ω) is connected, then at least one of k = 2 parts
computed by AssignPartition on G is connected.

The proof relies on the fact that the diffusion loads increase monotonically on some path
from a vertex to a center. Note that the results of this section as well as some missing
auxiliary results are proved in the full version of this paper. Now we tighten the result
for all connected vertex-transitive graphs (a graph is vertex-transitive if for any pair of
distinct vertices there is an automorphism mapping one to the other [3]), where both
parts are shown to be connected. Two well-known vertex-transitive classes are torus
graphs and hypercubes, which are important network topologies.

Theorem 3. Let G = (V,E) be a connected vertex-transitive graph. Fix two arbitrary
different vertices z1, z2 ∈V . Let the operation AssignPartition divide V into the two
subdomains π1 = {u ∈ V | [w]z1

u ≥ [w]z2
u } and π2 = {u ∈ V | [w]z1

u < [w]z2
u }. Then, π1

and π2 are each connected components in G.

Proof. The random walk measure hitting time H[u,v] between nodes u and v is the
expected timestep in which a random walk starting in u visits v for the first time. By
using [16, Thm. 1], we know that 1

α
([w]vu− [w]vv) = δ (H[v,v]−H[u,v]). First, we show

that hitting times are symmetric on vertex-transitive graphs. For this we use that [w]uu =
[w]vv, which follows from the fact that [Mt]v,v = [Mt]u,u for all u,v ∈V and all t ≥ 0 for
an unweighted vertex-transitive graph G [1, p. 151]. Also, the symmetry [w]uv = [w]vu
holds for all u,v ∈V [16] and H[v,v] is zero (definition of hitting times). Thus:

([w]vv = [w]uu) ∧ ([w]uv = [w]vu) ⇒ [w]vu− [w]vv = [w]uv− [w]uu ⇒ H[u,v] = H[v,u].

Assume now for the sake of contradiction that π2 is not connected. In this case
there exists a node-separator T ⊆ π1 such that there are at least two components A,B⊆
π2 which are not connected by a path via nodes in π2. Assume w. l. o. g. that z2 ∈ B.
Then for each vertex a ∈ A we obtain [w]z2

a > [w]z1
a ⇔ [w]z2

a − [w]z2
z2 > [w]z1

a − [w]z1
z1 ⇔

H[z2,z2]−H[a,z2]> H[z1,z1]−H[a,z1]⇔ H[a,z1]> H[a,z2] .
In the same manner we have for each vertex x ∈ T that H[x,z1] ≤ H[x,z2]. Let

X (t) be the random variable representing the node visited in time step t by a random
walk, and let Fu(x) be the event that a fixed vertex x is the first vertex visited in T of
a random walk starting from u ∈ V . Furthermore, denote by τa(T) := mint∈N{X (t) ∈

T | X (0) = a} and let τa,T (z1) := mint∈N{X (t) = z1 | X (0) = a}− τa(T). By using con-
ditional expectations (E [Y] = ∑z Pr [Z = z] ·E [Y |Z = z]) [7], we obtain H[a,z1] =
E [τa(z1)] = E [τa(T)+ τa,T (z1)] = ∑x∈T Pr [Fa(x)] ·

(
E [τa(T)+ τa,T (z1) |Fa(x)]

)
,

which is transformed by using the linearity of conditional expectations into

H[a,z1] = ∑
x∈T

Pr [Fa(x)] ·
(
E [τa(T) |Fa(x)]+E [τa,T (z1) |Fa(x)]

)
= ∑

x∈T
Pr [Fa(x)] ·

(
E [τa(x) |Fa(x)]+E [τx(z1) |Fa(x)]

)
= ∑

x∈T
Pr [Fa(x)] ·

(
E [τa(x) |Fa(x)]+H[x,z1]

)
.

Exactly the same arguments yield H[a,z2] = ∑x∈T Pr [Fa(x)] ·
(
E [τa(x) |Fa(x)] +

H[x,z2]
)
. Due to H[x,z1]≤ H[x,z2] for each x ∈ T , we finally obtain

H[a,z1] = ∑
x∈T

Pr [Fa(x)] ·
(
E [τa(x) |Fa(x)]+H[x,z1]

)
≤ ∑

x∈T
Pr [Fa(x)] ·

(
E [τa(x) |Fa(x)]+H[x,z2]

)
= H[a,z2] ,

which is a contradiction to our assumption H[a,z1]>H[a,z2]. Therefore, the subdomain
π2 has to be connected. The remainder of the proof is analogous (switch π1 and π2). ut
Generalizing this result to other graph classes will probably require new techniques, as
the FOS/C load property [w]vv = [w]uu does not hold any more. Also, our hitting time
argument in the proof cannot be generalized to k > 2 in a straightforward manner since
the vertex separator may contain vertices from more than one part.

5 Conclusions and Future Work

As explained in the introduction, diffusion-based graph partitioning has proved to be
very successful in practice. Here we have provided the first substantial theoretical ev-
idence for this success by proving that the assignment of vertices to parts in the parti-
tioning algorithm BUBBLE-FOS/C is relaxed cut optimization. In this sense BUBBLE-
FOS/C is similar to spectral partitioning, but does not require the (possibly numerically
problematic) computation of eigenvectors. Moreover, we have proved two results on the
connectedness of parts, which is a property that is important for some applications.

With these new tools at hand, we would like to consider the iterative nature of
BUBBLE-FOS/C and explore the faster partitioning algorithm DIBAP in future work.
DIBAP uses BUBBLE-FOS/C as one of two key components. It will be interesting
to learn more about the interaction of these components, whose combination is
responsible for obtaining high quality at reasonable speed. Eventually, it might also
be possible to derive an approximation guarantee on BUBBLE-FOS/C’s and DIBAP’s
quality from our relaxed BQP results, at least for certain graph classes. Since there are
no such guarantees known for the popular KL heuristic, such a result would be a major
step towards uniting theoretical and practical graph partitioning.

Acknowledgments. The author thanks T. Sauerwald, who contributed to the proof of
Thm. 3, and C. Buchheim, R. Feldmann, and B. Monien for helpful discussions.

References

1. N. Alon and J. H. Spencer. The Probabilistic Method. J. Wiley & Sons, 2nd edition, 2000.
2. M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear Programming. Theory and Algo-

rithms. John Wiley, second edition, 1993.
3. N. Biggs. Algebraic Graph Theory. Cambridge University Press, 1993.
4. C. Chevalier and F. Pellegrini. Pt-scotch: A tool for efficient parallel graph ordering. Parallel

Comput., 34(6-8):318–331, 2008.
5. M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its application

to graph theory. Czechoslovak Mathematical Journal, 25:619–633, 1975.
6. L. Grady and E. L. Schwartz. Isoperimetric graph partitioning for image segmentation. IEEE

Trans. Pattern Anal. Mach. Intell., 28(3):469–475, 2006.
7. G. R. Grimmett and D. R. Stirzaker. Probability and Random Processes. Oxford University

Press, 3rd edition, 2001.
8. B. Hendrickson and R. Leland. An improved spectral graph partitioning algorithm for map-

ping parallel computations. SIAM Journal on Scientific Computing, 16(2):452–469, 1995.
9. G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs. Journal

of Parallel and Distributed Computing, 48(1):96–129, 1998.
10. B. W. Kernighan and S. Lin. An efficient heuristic for partitioning graphs. Bell Systems

Technical Journal, 49:291–308, 1970.
11. S. P. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory,

28(2):129–136, 1982.
12. L. Lovász. Random walks on graphs: A survey. Combinatorics, Paul Erdös is Eighty, 2:1–46,

1993.
13. M. Meila and J. Shi. A random walks view of spectral segmentation. In Eighth International

Workshop on Artificial Intelligence and Statistics (AISTATS), 2001.
14. H. Meyerhenke, B. Monien, and T. Sauerwald. A new diffusion-based multilevel algorithm

for computing graph partitions. Journal of Parallel and Distributed Computing, 69(9):750–
761, 2009. Best Paper Awards and Panel Summary: IPDPS 2008.

15. H. Meyerhenke, B. Monien, and S. Schamberger. Graph partitioning and disturbed diffusion.
Parallel Computing, 35(10–11):544–569, 2009.

16. H. Meyerhenke and T. Sauerwald. Analyzing disturbed diffusion on networks. In Proc. 17th
Int. Symp. on Algorithms and Computation, pages 429–438. Springer-Verlag, 2006.

17. F. Pellegrini. A parallelisable multi-level banded diffusion scheme for computing balanced
partitions with smooth boundaries. In Proc. 13th International Euro-Par Conference, volume
4641 of Lecture Notes in Computer Science, pages 195–204. Springer-Verlag, 2007.

18. S. E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, August 2007.
19. K. Schloegel, G. Karypis, and V. Kumar. Graph partitioning for high performance scientific

simulations. In The Sourcebook of Parallel Computing, pages 491–541. Morgan Kaufmann,
2003.

20. J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(8):888–905, 2000.

21. C. Walshaw. The graph partitioning archive. http://staffweb.cms.gre.ac.uk/~c.

walshaw/partition/, 2010. Last access: 1 Mar 2010.
22. H. Zha, X. He, C. H. Q. Ding, M. Gu, and H. D. Simon. Spectral relaxation for k-means clus-

tering. In Proceedings of Advances in Neural Information Processing Systems 14 (NIPS’01),
pages 1057–1064. MIT Press, 2001.

http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/
http://staffweb.cms.gre.ac.uk/~c.walshaw/partition/

Appendix

A Optimization Criterion Results (Section 3)

A.1 Proof of Lemma 2

Proof. The constraints ensure that the center vertices do not change their parts in the
computed partition and that the new parts have equal size.

Case 1. If all centers are contained within their corresponding parts, then all
(k

2

)
con-

straints can only be fulfilled by a balanced partition. To see this, consider two arbitrary
parts πp and πp′ (1≤ p, p′ ≤ k):

yT
(p,p′)d

(A)
(p,p′) = (xT

(p)− xT
(p′))(d

(A)
p −d(A)

p′) = (∑
v∈πp

[d(A)
p −d(A)

p′]v + ∑
v∈πp′

[d(A)
p′ −d(A)

p]v)

= δ (βp(n−1−|πp|+1)+βp′(n−1−|πp′ |+1)+βp|πp′ |+βp′ |πp|)
= δ (n(βp +βp′)+(βp′ −βp)(|πp|− |πp′ |)).

This equation can only fulfill the constraint if (βp′−βp)(|πp|−|πp′ |) = 0. Hence, either
βp′ = βp or |πp| = |πp′ |. Since the former is excluded in the initial choice (all βi are
pairwise different), we have |πp| = |πp′ |. We have chosen |πp| and |πp′ | arbitrarily, so
that this case is completed.

Otherwise there exists a p with zp /∈ πp and a p′ with zp ∈ πp′ . We need to distinguish
a few more cases to show that the constraint corresponding to the pair (p, p′) cannot be
fulfilled.

Case 2. zp ∈ πp′ and zp′ ∈ πp: This case would mean that both centers change their
parts. Substituting [y]zp by −1 and [y]zp′ by 1 as well as some rearranging yields

yT
(p,p′)d

(A)
(p,p′) = δ

−n(βp +βp′)− ∑
j 6=zp,zp′

(βp−βp′)[y(p,p′)] j

 .

The expression above can only fulfill the constraint if ∑ j 6=zp,zp′
(βp − βp′)[y(p,p′)] j =

−2n(βp +βp′), which is impossible given βp,βp′ > 0:

∑
j 6=zp,zp′

(βp−βp′)[y(p,p′)] j ≥−(n−2)(βp−βp′)>−(n−2)(βp+βp′)>−2n(βp+βp′).

Case 3. zp ∈ πp and zp′ ∈ πp: Substituting both [y]zp and [y]zp′ by 1 yields

yT
(p,p′)d

(A)
(p,p′) = δ

(n−2)(βp−βp′)− ∑
j 6=zp,zp′

(βp−βp′)[y(p,p′)] j

 .

The value we need to achieve by the sum over all j 6= zp,zp′ is

−(n(βp +βp′)− (n−2)(βp−βp′)) =−2((n−1)βp′ +βp)

to meet the constraint. Let us assume for now that βp > βp′ . The largest absolute contri-
bution of the sum is obtained by putting all remaining n−2 vertices into πp′ . Then, the
sum evaluates to −(n−2)(βp−βp′). Finally, the constraint is not fulfilled whenever

−(n−2)(βp−βp′) 6= −2((n−1)βp′ +βp)

⇔ (n−4)βp 6= (3n−4)βp′ .

Thus, a choice of βp
βp′

< 3 = 3n−12
n−4 < 3n−4

n−4 avoids the constraint to be fulfilled with

zp ∈ πp, zp′ ∈ πp and βp > βp′ . The remaining part with βp′ > βp is analogous: We
need to put all remaining vertices into πp and the sum evaluates to (n− 2)(βp−βp′).
The constraint is not fulfilled whenever (n− 2)(βp− βp′) 6= −2((n− 1)βp′ + βp)⇔
nβ1 6=−nβ2. Since 0 < βp < βp′ , a different sign is not possible.

Case 4. zp ∈ πp′ and zp′ /∈ πp∪πp′ : Since both centers are not in their respective part,

the respective scalar products yT
(p,p′)d

(A)
(p,p′) evaluate to simple expressions:

yT
(p,p′)d

(A)
(p,p′) = (xT

(p)− xT
(p′))(d

(A)
p −d(A)

p′) = δ (−βp · |πp|−βp′ · |πp′ |−βp · |πp′ |+βp′ · |πp|)
= δ ((βp−βp′)(|πp′ |− |πp|))

Fulfilling the constraint would mean δ ((βp−βp′)(|πp′ |−|πp|)) = n(βp+βp′)⇔|πp′ |−
|πp| = n · βp+βp′

βp−βp′
. The choice of βp and βp′ results in

∣∣ |πp′ |− |πp|
∣∣ = ∣∣∣n · βp+βp′

βp−βp′

∣∣∣ > n,

which is not possible because
∣∣ |πp′ |− |πp|

∣∣ cannot exceed n.

All other possible cases can be reduced to the ones above. In particular, if more than
two centers are in one part, at least one of the respective constraints is violated in a very
similar way as shown above. ut

A.2 Proof Remainder for Lemma 3

To compute the missing expressions, some rearrangements are necessary:
yT
(p,p′)d

(A)
(p,p′) = nδ (βp + βp′) ⇒ Λ(p,p′)

y(p,p′)
Λ(p,p′)

d(A)
(p,p′) = nδ (βp + βp′) ⇒ Λ(p,p′) =

nδ (βp+βp′)

zT
(p,p′)·d

(A)
(p,p′)

and finally y(p,p′) = Λ(p,p′)z(p,p′) =
nδ (βp+βp′)

zT
(p,p′)·d

(A)
(p,p′)

· z(p,p′). ut

A.3 Proof of Lemma 4

Proof. Let the part p be chosen arbitrarily with 1 ≤ p ≤ k. Recall that scale balancing
is not required, so that βp = βp′ = 1 here. If πp remains unchanged as desired, then

xT
(p)d

(C)
p evaluates to

xT
(p)d

(C)
p = ∑

j∈πp

[d(C)
p] j = |πp|(δ (

n
|πp|
−1)) = δ (n−|πp|) ,

which fulfills the constraint. Assume now for the sake of contradiction that πp does
not remain unchanged. We categorize the vertices into the sets πpp and πpp′ such that

the vertices in the set πpp are in the input part πp before and after ComputeCenters,
and such that the vertices in πp′p have not been in πp before ComputeCenters, but
are so afterwards. We need to show that πp′p is in fact empty and that πpp = πp. With

spp := |πpp| and sp′p := |πp′p|, one can rewrite xT
(p)d

(C)
p as

xT
(p)d

(C)
p = ∑

v∈πpp

[d(C)
p]v + ∑

v∈πp′ p

[d(C)
p]v

= δ (spp ·
n
|πp|
− spp− sp′p) .

To fulfill the constraint, we must obtain spp · n
|πp| − spp − sp′p = n− |πp|. However,

regardless of the actual size of sp′p, spp · n
|πp| − spp− sp′p ≤ spp(

n
|πp| −1) = spp(n−|πp|)

|πp| .

If spp < |πp|, i. e., some nodes would leave the current input part, then spp(n−|πp|)
|πp| < n−

|πp|, so that the constraint cannot be fulfilled. If spp = |πp| and sp′p > 0, then similarly

spp · n
|πp| − spp− sp′p < spp(

n
|πp| −1) = spp(n−|πp|)

|πp| = n−|πp|. Hence, the constraints can
only be fulfilled if the input partition Π remains unchanged. ut

B Connectedness Results (Section 4)

B.1 Proof of Theorem 2

For the proof we need a few auxiliary results first.

Lemma 5. (due to Hu and Blake2 and Diekmann et al.3) Let Ã = AF be the (edge-
weighted) node-edge incidence matrix of G = (V,E,ω) and let F be an m × m
diagonal matrix with [F]i,i =

√
ωi. The solution of the `2-minimization problem

minimize ‖F−1 f‖2 over all f with Ã f = d is given by f = ÃT z, where Lz = d with
d,z ∈ Rn, provided that d ⊥ w. Using this minimization problem, it can be shown that
the FOS migrating flow f ∗ is the unique ‖ · ‖2-minimal balancing flow.

Remark 5. [15] The load differences f =AT w(∞) in the converged state of the disturbed
diffusion scheme FOS/C equal the ‖ · ‖2-minimal flow f that balances the load vector
d/α , sending from the vertices in S (sources) the respective load amount δ to every
vertex in the graph (sinks): A f = AAT w(∞) = Lw(∞) = d/α .

Proposition 1. [16] Let the graph G = (V,E,ω) and the load vector w of an FOS/C
procedure with source set S be given. Then for each vertex v ∈ V there is a path (v =
v0,v1, . . . ,vl = s) with s ∈ S and {vi,vi+1} ∈ E such that wvi < wvi+1 ,0≤ i < l.

2 Y. F. Hu and R. F. Blake, An Improved Diffusion Algorithm for Dynamic Load Balancing,
Parallel Computing (1999), p. 417–444.

3 R. Diekmann and A. Frommer and B. Monien, Efficient schemes for nearest neighbor load
balancing, Parallel Computing (1999), p. 789–812.

Proof. Assume that the claim is false, so that no such monotonously increasing path
exists. Moreover, recall that the convergence state of FOS/C is equivalent to a flow
problem where all vertices v ∈ V\S receive a load amount of δ . Now, let j be the
smallest index such that the monotonous path from v to s ∈ S stops in v j /∈ S because
wv j ≥wv′ ∀(v j,v′)∈ E. This means that v j is a local maximum w. r. t. its load, so that the
flow on its incident edges directs from v j away. Hence, v j would not receive any load.
As all non-source vertices must receive a load amount of δ , our assumption is wrong
and the claim true. ut

Lemma 6. Consider the load vector w in the convergence state of FOS/C and the cor-
responding flow problem described in Remark 5. Then, the node v with maximum load
value in w belongs to the set of source nodes S.

Proof. Assume the opposite, i.e., v /∈ S. Since v has the highest load, no flow is directed
towards v because the flow on an edge is the load difference of its incident nodes.
Hence, in the flow problem equivalent to FOS/C v does not receive any load. This is a
contradiction to the initial setting because all nodes not in S receive a load amount of δ

by definition. ut

Using this lemma, we can construct load-increasing paths from each vertex to its cen-
ter. The nodes on these paths all belong to the same part, which yields the following
connectedness result for general graphs.

Proof of Theorem 2

Proof. In a single-source AssignPartition operation the source set S of diffusion
system p, 1≤ p≤ 2, contains only the center vertex zp. Assume for now that β1 > β2.
Then all entries of the drain vector d(A) are negative except for the entry correspond-
ing to z1. This means according to Remark 5 that all non-center vertices act as load-
consuming sinks. Hence, using the arguments of Proposition 1 and Lemma 6, there
must be a path P = 〈v = v1,v2, . . . ,vl = z1〉 from every vertex v ∈ π1 to z1 on which the
load increases, i. e., [w]vi < [w]vi+1 for 1 ≤ i < l. All vertices on this path have a posi-
tive load in the fused load vector and belong to π1, so that π1 is connected. If β1 < β2,
the same argument applies analogously. We only need to change the signs, direction of
inequalities, and local maxima become local minima. ut

B.2 Proof of Theorem 3

For the proof (remainder), we need to establish a few auxiliary definitions and lemmas
used therein.

Definition 4. [3, p. 115] Given a graph G = (V,E), a permutation π of V is an auto-
morphism of G if

{u,v} ∈ E⇔{π(u),π(v)} ∈ E,∀u,v ∈V.

Definition 5. [3] A graph G = (V,E) is vertex-transitive if for any two distinct vertices
of V there is an automorphism mapping one to the other.

Fig. 2. Sketch of the situation assumed in Theorem 3.

Definition 6. Let X (t)
u be the random variable representing the node visited in timestep

t by a random walk induced by the diffusion matrix M starting in u in timestep 0 and let
τu be defined as τu := min{t ≥ 0 : X (t)

u = s} for any u ∈V . Then, the (expected) hitting
time H is defined as H[u,s] := E [τu].

FOS/C loads are related to hitting times by the following lemma:

Lemma 7. [16] In the FOS/C steady state described by the load vector w in Lw = d
it holds for two nodes u,v ∈ V not necessarily distinct from a source s ∈ V : [w(∞)]su−
[w(∞)]sv =

1
α
([w]su− [w]sv) = δ (H[v,s]−H[u,s]).

The following lemma is crucial for the proof of the main theorem:

Lemma 8. For all unweighted vertex-transitive graphs G = (V,E) and all u,v ∈ V it
holds that [w]uu = [w]vv.

Proof. As noted by Alon and Spencer4, we have [Mt]v,v = [Mt]u,u for all u,v ∈ V and
all t ≥ 0 of an unweighted vertex-transitive graph G. Since [w]uv = limt→∞([Mtw(0)]uv +
nδ (∑t−1

l=0[M
l]v,u)− tδ) [16] and [Mtw(0)]uv converges towards the balanced distribution

irrespective of u and v, we get

[w]uu− [w]vv = nδ

(
lim
t→∞

∑
t
l=0 Ml

u,u−Ml
v,v

)
= 0

ut

Proof Remainder for Theorem 3
Proof. The proof that π1 is always connected is done in the same way. Assume the
converse and let A and B be two disconnected components of π1 with a node separator
T ⊆ π2 such that z1 ∈ B. For a vertex a ∈ A we have H[a,z1] ≤ H[a,z2] and for every
vertex x ∈ T it holds that H[x,z1]> H[x,z2]. Consequently,

H[a,z2] = ∑
x∈T

Pr [Fa(x)] ·
(
E [τa(x) |Fa(x)]+H[x,z2]

)
< ∑

x∈T
Pr [Fa(x)] ·

(
E [τa(x) |Fa(x)]+H[x,z1]

)
= H[a,z1], which contradicts our assumption H[a,z1]≤ H[a,z2]. ut

4 N. Alon and J. H. Spencer, The Probabilistic Method, J. Wiley & Sons (2000), p. 151.

	Beyond Good Shapes: Diffusion-based Graph Partitioning is Relaxed Cut Optimization
	Henning Meyerhenke

