Approximate Graph Isomorphism*

V. Arvind!, Johannes Kébler?, Sebastian Kuhnert?, Yadu Vasudev!

! The Institute of Mathematical Sciences, Chennai, India
{arvind, yadu}@imsc.res.in
2 Institut fiirr Informatik, Humboldt-Universitét zu Berlin, Germany
{koebler,kuhnert}@informatik.hu-berlin.de

Abstract. We study optimization versions of Graph Isomorphism. Given
two graphs G1, G2, we are interested in finding a bijection 7 from V(G1)
to V(G2) that maximizes the number of matches (edges mapped to
edges or non-edges mapped to non-edges). We give an n®1°™ time
approximation scheme that for any constant factor a < 1, computes an
a-approximation. We prove this by combining the P08 time additive
error approximation algorithm of Arora et al. [Math. Program., 92, 2002]
with a simple averaging algorithm. We also consider the corresponding
minimization problem (of mismatches) and prove that it is NP-hard to
a-approximate for any constant factor «. Further, we show that it is
also NP-hard to approximate the maximum number of edges mapped to
edges beyond a factor of 0.94.

We also explore these optimization problems for bounded color class
graphs which is a well studied tractable special case of Graph Isomor-
phism. Surprisingly, the bounded color class case turns out to be harder
than the uncolored case in the approximate setting.

1 Introduction

The graph isomorphism problem (Gl for short) is a well-studied computational
problem: Formally, given two graphs G; and G2 on n vertices, decide if there
exists a bijection 7: V(G1) — V(G3) such that (u,v) € Ey iff (w(u), w(v)) € Ea.
It remains one of the few problems that are unlikely to be NP-complete and for
which no polynomial time algorithm is known.

Though the fastest known graph isomorphism algorithm for general graphs
has running time 20(vnlogn) [6], polynomial-time algorithms are known for
many interesting subclasses, e.g. bounded degree graphs [19], bounded genus
graphs [21], and bounded eigenvalue multiplicity graphs [5].

Motivation and Related Work. In this paper we study a natural optimiza-
tion problem corresponding to the graph isomorphism problem where the ob-
jective is to compute a bijection that maximizes the number of edges getting

* This work was supported by Alexander von Humboldt Foundation in its research
group linkage program. The third author was supported by DFG grant KO 1053/7-1.

mapped to edges and non-edges getting mapped to non-edges. The main moti-
vation for this study is to explore if approximate isomorphisms can be computed
efficiently, given that the best known algorithm for computing exact isomor-
phisms has running time 20(vV71987) The starting point of our investigation is a
well-known article of Arora, Frieze and Kaplan [2] in which they study approx-
imation algorithms for a quadratic assignment problem based on randomized
rounding. Among the various problems they study, they also observe that ap-
proximate graph isomorphisms between n vertex graphs can be computed up
to additive error en? in time n°(°8"/=*) We show that this algorithm can be
modified to obtain a multiplicative error approximation scheme for the problem.
However, when we consider other variants of approximate graph isomorphism,
they turn out to be much harder algorithmically.

To the best of our knowledge, the only previous theoretical study of approx-
imate graph isomorphism is this work of Arora, Frieze and Kaplan [2]. However,
the problem of approximate isomorphism and more general notions of graph
similarity and graph matching has been studied for several years by the pattern
matching community; see e.g. the survey article [8]. That line of research is not
really theoretical. It is based on heuristics that are experimentally studied with-
out rigorous proofs of approximation guarantees. Similarly, the general problem
of graph edit distance [I0] also encompasses approximate graph isomorphism.
Both graph matchings and graph edit distance give rise to a variety of natural
computational problems that are well studied.

Optimization versions of graph isomorphism. Let G; = (Vi,E;) and
G2 = (Va, E3) be two input graphs on the same number n of vertices. We consider
the following optimization problems:

— Max-EGl: Given G;,Gq, find a bijection 7: Vi — V5 that maximizes the
number of matched edges, i.c., me(m) = ||[{(u,v) € E1 | (7(u), 7 (v)) € Eo}.

— Max-PGl: Given G, G2, find a bijection 7: V3 — V5 that maximizes matched
vertex pairs, i.e., mp(m) = me(w) + ||[{(u,v) ¢ E1 | (7(u),7n(v)) ¢ Ea}|.

— Min-EGI: Given G1,Gs, find a bijection 7: Vi — V5 that minimizes mis-
matched edges, i.e., me(m) = [|{(u,v) € E1 | (w(u),7(v)) ¢ Ea}|.

— Min-PGl: Given G1,G3, find a bijection 7: Vi — V5 that minimizes mis-
matched pairs, i.e., mp(m) = me(r) + |[{(u,v) & FE1 | (7(u),7(v)) € Ea}.

As mentioned above, Max-PGl was studied before in [2]. Max-EGI can also be
viewed as an optimization variant of subgraph isomorphism.

Clearly, mp(m) + mp(r) = (3) and me(r) + me(r) = ||E1||. Thus solving
one of the maximization problems with additive error is equivalent to solving
the corresponding minimization problem with the same additive error. However,
the minimization problems behave differently for multiplicative factor approxi-
mations, so we study them separately.

Bounded color class graph isomorphism. A natural restriction of Gl is to
vertex-colored graphs (Gy,Gs) where V(G1) = C; U Cy U ... U Cp, and

V(Ge)=C{ U Cy Y ... U, and C;, C! contain the vertices of G; and G,
respectively, that are colored i. The problem is to compute a color-preserving
isomorphism 7 between G and G, i.e., an isomorphism 7 such that for any ver-
tex u, w and 7(u) have the same color. The bounded color-class version Gly, of Gl
consists of instances such that ||C;|| = ||Cl|| < k for all 4. For Gly, randomized [4]
and deterministic [9] polynomial time algorithms are known.

It is, therefore, natural to study the optimization problems defined above in
the setting of vertex-colored graphs where the objective function is optimized
over all color-preserving bijections 7: Vi — V5. We denote these problems as
Max-PGly, Max-EGl, Min-PGl;, and Min-EGly, where k is a bound on the number
of vertices having the same color.

Overview of the results. We first recall the notion of an a-approximation
algorithm for an optimization problem. We call an algorithm A for a maximiza-
tion problem an a-approximation algorithm, where o < 1, if given an instance 7
of the problem with an optimum OPT(Z), A outputs a solution with value A(Z)
such that A(Z) > aOPT(Z). Similarly, for a minimization problem, we say B
is a S-approximation algorithm for § > 1, if for any instance Z of the prob-
lem with an optimum OPT(Z), B outputs a solution with value B(Z) such that
B(Z) < BOPT(Z).

Theorem 1. For any constant o < 1, there is an «-approrimation algorithm
O(logn/(1—a)*)

for Max-PGl running in time n .

We obtain the a-approximation algorithm for Max-PGl by combining the
nP0ogn) time additive error algorithm of [2] with a simple averaging algorithm.

Next we consider the Max-EGI problem. Langberg et al. [I7] proved that
there is no polynomial-time (1/24¢)-approximation algorithm for the Maximum
Graph Homomorphism problem for any constant € > 0 assuming that a certain
refutation problem has average-case hardness (for the definition and details of
this assumption we refer the reader to [17]). We give a factor-preserving reduction
from the Maximum Graph Homomorphism problem to Max-EGI thus obtaining
the following result.

Theorem 2. There is no (% + ¢)-approzimation algorithm for Max-EGI for any
constant € > 0 under the same average-case hardness assumption of [17].

We observe that unlike in the case of Gly, where polynomial time algorithms
are known [49)20], in the optimization setting, these problems are computa-
tionally harder. We prove the following theorem by giving a factor-preserving
reduction from Max-2Lin-2 (e.g. see [16]) to Max-PGl;, and Max-EGly.

Theorem 3. For any k > 2, Max-PGl, and Max-EGl, are NP-hard to approxi-
mate beyond a factor of 0.94.

Since, assuming the Unique Games Conjecture (UGC for short) of Khot [15],
it is NP-hard to approximate Max-2Lin-2 beyond a factor of 0.878 [16], the same

bound holds under UGC for Max-PGl; and Max-EGIlj; by the same reduction. Since
Max-PGl; and Max-EGly, are easily seen to be instances of generalized 2CSP, they
have constant factor approximation algorithms, for a constant factor depending
on k. In fact, it turns out that Max-EGly and Max-PGls are tightly classified by
Max-2Lin-2 with almost matching upper and lower bounds (details are given in
Section . However, we do not know of similar gap-preserving reductions from
general unique games (with alphabet size more than 2) to Max-PGl; or Max-EGly
for larger values of k.

The following results show that the complexity of Min-PGl and Min-EGI is
significantly different from Max-PGl and Max-EGI.

Theorem 4. There is no polynomial time approzimation algorithm for Min-PGl
with any multiplicative approximation guarantee unless Gl € P.

Theorem 5. Min-PGI does not have a PTAS unless P = NP.

Theorem 6. There is no polynomial time approximation algorithm for Min-EGI
with any multiplicative approximation guarantee unless P = NP.

Finally, we turn our attention to the minimization problems Min-PGl; and
Min-EGl; on bounded color-class graphs. We prove that Min-PGly, is as hard as
the minimization version of Max-2Lin-2, known in literature as the Min-Uncut
problem, and that Min-EGIl, is inapproximable for any constant factor unless
P = NP by reducing the Nearest Codeword Problem (NCP) to it.

Outline of the paper. Our results on maximization problems are in Section
while Section [3]contains our results on the corresponding minimization problems.
Section [f] concludes with some open problems.

2 Maximizing the number of matches

We first observe that computing optimal solutions to Max-PGl is NP-hard via a
reduction from Clique.

Lemma 7. Computing optimal solutions to Max-PGl instances is NP-hard.

Proof. Let (G, k) be an instance of the Clique problem. Define the graphs G; = G
and Gy = K;, UK, _y, ie., a k-clique and n — k isolated vertices. Let Topt D€
a bijection that achieves the optimum value for this Max-PGl instance. Then G
has a k-clique if and only if mp(mop) = (3) — | Ec| + (5). O

Next we give a general method for combining an additive error approxima-
tion algorithm for Max-PGl with a simple averaging approximation algorithm to
design an a-approximation algorithm for Max-PGl for any constant o < 1.

Lemma 8. Suppose A is an algorithm such that for any e > 0, given a Max-PGl
instance in form of two n-vertexr graphs G1 = (Vi,E1) and Go = (Va, Es),
computes a bijection w: Vi — Va such that mp(r) > OPT —en? in time T(n,¢).
Then there is an algorithm that computes for each o < 1 an «-approrimate
solution for any Max-PGl instance (G1,Gs2) in time O(T(n, (1 — a)?/9) +n?).

Proof. Without loss of generality we can assume Vi = V4 = [n]. We denote the
number of edges in G; by t; and the number of non-edges by ;. Notice that the
optimum for Max-PGl satisfies OPT < ¢1 +#5. Let m: [n] — [n] be a permutation
chosen uniformly at random. Then, an easy calculation shows that the expected
number s of matched pairs is

tity + tits (g) — 1y o <<Tl)) - 2t 1ts
5= = t+ — —ty) =ty 4y — T2
&) G T)T TR
It is not hard to see that one can deterministically compute a permutation o
such that mp(o) > s; we defer this detail to the end of the proof. We now
show how this algorithm can be combined with the additive error approximation
algorithm A for Max-PGl to obtain an a-approximation algorithm for Max-PGl.
The combined algorithm distinguishes two cases based on the number of edges
and non-edges in GG; and Ga, respectively.
Case 1 (min{t1, %} < (1 — @)(%)/2): In this case we compute a permutation o
with mp(o) > s. Since

tlfg = max{tl,fg} min{tl,fg} S (tl —+ %2) (]. — Oé) (;L) /2,
it follows that
s=1 —I—EQ — 2t1t2/<g) > (tl +f2) > aOPT.

Case 2 (min{t;,%2} > (1 — a)(5)/2): In this case we use algorithm A with
e = (1 — a)?/9 to obtain a permutation m with mp(w) > OPT — en?. Since
th+to+1t +1t2 = 2(2), either t; + o < (g) ort; + 1t < (g”) Without loss of
generality assume t1 + 1ty < (g) (otherwise we interchange G and G), implying
that either t; < (3)/2 or £ < (3) /2. Further, since the expected value of mp(r)
when 7 is picked at random is t + to — 2t1t2/ (Z), it follows that for sufficiently
large n,

~ (n\ - _ (n min{ty,t2} 1—a/n en?
OPT >t — 1 Fy — 1 > > ,
= ”/(2>+2 12/(2)- > 4 <2)_1—a

Hence, mp(w) > OPT — en? > aOPT.

It remains to show how a permutation which achieves at least the expected
number s of matched pairs can be computed deterministically. Suppose that
o: [i] = [n] is a partial permutation. Let 7: [n] — [n] be a random permutation
that extends o, i.e., 7(j) = o(j) for j € [i]. Let s(0) denote the expected number
of matched pairs over random permutations 7 that extend o. It is easy to see
that we can compute s(o) in polynomial time. We do this by counting the pairs
in three parts: (a) pairs with both end points in [¢], (b) pairs with both end
points in [n] \ [{], and (c¢) pairs with one end point in [7] and the other in [n] \ [¢].
Matched pairs of type (a) depend only on o and can be counted straightaway.

The expected number of matched pairs of type (b) is computed exactly as s above
(since 7 restricted on [n]\ [¢] is random). The expected number of matched pairs
of type (c) is given by 3., nj"”(”Hn_z;ff)(n_z_n”(”), where n; is the number
of neighbors of j in the graph G contained in [n] \ [i] and n,;) is the number
of neighbors of ¢(j) in the graph G5 contained in [n]\ {c(!) | [€ [¢]}. The entire
computation of s(o) takes O(n?) time.

Now, for k € [n]\ {o(l) | I € [i]}, let o) [i + 1] — [n] denote the extension
of o by setting o(i + 1) = k. Since a random extension 7 of o can map ¢ + 1
uniformly to any k € [n]\ {c(l) | | € [i]} it follows that

5(0) = —— 3 s(ow),

n—1
k

where the summation is over all k € [n]\ {c(l) | [€ [i]}.

Furthermore, each s(oy) is efficiently computable, as explained above. Reusing
partial computations, we can find k such that s(ox) > s(o) in time O(n?).
Continuing thus, when we fix the permutation on all of [n] we obtain a o
with mp(o) > s in O(n?) time. O

Note that any polynomial time additive e-error algorithm for Max-PGl, i.e., an
algorithm running in time nP°Y(1/¢) with an additive error < en?, gives a polyno-
mial time o-approximation algorithm for Max-PGI running in time nPo¥(1/(1=))

To complete the proof of Theorem|[T] we formulate Max-PGl as an instance of a
quadratic optimization problem called the Quadratic Assignment Problem (QAP
for short) as was done in [2] and use an additive error approximation algorithm
for the Quadratic Assignment Problem due to Arora, Frieze and Kaplan [2].

Given {c¢ijri }1<i 5,k 1<n, the Quadratic Assignment Problem is to find an nxn
permutation matrix x = (z;;) that maximizes val(z) = Zi,j,k,l Cijkl®ijThi. An
instance of Max-PGl consisting of graphs Gy = ([n], E1) and G5 = ([n], E2) can
be naturally expressed as a QAP instance by setting

{1 if (i,k) € Ey and (j,1) € Es or (i,k) ¢ Ey and (j,1) ¢ B,
Cijkl = .
0 otherwise.

This ensures that val(z) = mp(r,) for all permutation matrices x with corre-
sponding permutation 7, ; in particular, the optimum solutions of the Max-PGl
and QAP instances achieve the same value.

There is no polynomial time a-approximation algorithm for QAP for any
a < 1 unless P = NP [2]. Arora, Frieze and Kaplan in [2] give a general quasi-
polynomial time algorithm for QAP with an additive error. Formally, they prove
the following theorem.

Theorem 9 ([2]). There is an algorithm that, given an instance of QAP where
each of the cijr is bounded in absolute value by a constant c and given an ¢, finds
an assignment to x;; such that val(x) > val(z*)—en? where x* is the assignment

which attains the optimum. The algorithm runs in time nO(c*logn/e?)

Thus for the Max-PGl problem, using Theorem [J] we can find a permuta-
tion 7 such that mp(r) > OPT — en? in time n©(°8"/<*) Combining this with
Lemma [8], we get an a-approximation algorithm for Max-PGIl running in time
nOUogn/(1=e)") anq this completes the proof of Theorem

In contrast to the quasi-polynomial time approximation scheme for Max-PGl,
we now show that Max-EGI is likely to be (% + £)-hard to approximate. To this
end, define the Maximum Graph Homomorphism problem (MGH) first studied
n [I7]. Given two graphs G; = (V1,Ey) and G2 = (Va, E2), MGH asks for a
mapping ¢: Vi — Vi such that ||{(u,v) € E1 | (¢(u), ¢(v)) € Eo}| is maximized.
Langberg et al. [I7] proved that MGH is hard to approximate beyond a factor
of 1/2+¢ under a certain average case assumption. To prove Theorem we give
a factor-preserving reduction from MGH to Max-EGlI.

Lemma 10. There is a polynomial time algorithm that for a given MGH in-
stance I, constructs a Max-EGI instance ' with OPT(Z) = OPT(Z').

Proof. Given an MGH instance Z = (G1, G3), we construct the Max-EGI instance
7' = (G}, GY) as follows. The graphs G} and G both have vertex set V4 x V5.
For each edge (u1,v1) in the graph G, we put a single edge between the vertices
(u1,we) and (v1,ws) in E}, where ws is an arbitrary but fixed vertex in V4, and
for each edge (ug,v2) in the graph Ga, we put all ||V]||? edges between V; x {ua}
and V7 x {ve} in Ej. Tt suffices to prove the following claim.

Claim. There is a mapping ¢: V4 — V3 such that ||{(u,v) € E1 | (¢(u), ¢(v)) €
EQ}H = k if and only if there is a permutation 7: V; x Vo — V; x V5 such that
{(u,v) € EY | (w(u),7(v)) € By} = k.

Given the mapping ¢, we construct the permutation m as follows: For each
u; € Vi, m maps the vertex (uj,ws) of G} to the vertex (u1,¢(u1)) in Gb.
The remaining [|[V1|| - [|Va|| — [|V1|| vertices of G are mapped arbitrarily.

Then each edge (u1,v1) € Fy is satisfied by ¢ if and only if the corresponding
edge between (uq,ws) and (vy,ws) in EY is satisfied by . This follows from the
fact that (¢(u1),d(v1)) € Eo if and only there is an edge between (u1,¢(u1))
and (v1, ¢(v1)) in Ej.

Similarly, given a permutation 7 between G} and G5, we can obtain a
mapping ¢: V3 — V5 achieving the same number of matched edges by letting
¢(u1) = ve, where vs is the second component of the vertex m(uy, ws). O

Unlike in the case of Max-PGl, we observe that there cannot be constant factor
approximation algorithms for Max-PGl;, for all constants. This is in interesting
contrast to the fact that Gl for graphs with bounded color-class size is in P. We
now prove the hardness of approximating Max-PGl; and Max-EGIl, for any k£ > 2.

We prove the hardness by exhibiting a factor-preserving reduction from
Max-2Lin-2, which is hard to approximate above a guarantee of 0.94 unless
P =NP [13]. Given a set E C {z; + z; = b | i,j € [n],b € {0,1}} of m equa-
tions over Fy, the problem Max-2Lin-2 is to find an assignment to the variables
Z1,...,T, that maximizes the number of equations satisfied.

The following lemma proves the factor-preserving reduction from Max-2Lin-2
to Max-PGly. The proof for Max-EGIy, is similar.

Lemma 11. For any k > 2, there is a polynomial time algorithm that for
a given Max-2Lin-2 instance T constructs a Max-PGloy instance ' such that

OPT(Z') = (2k)2OPT(Z).

Proof sketch. Let E C {z;+x; =b|1i,j € [n],b € {0,1}} be the equations of Z.
As a first step, if there is a pair of equations z; + x; = 1 and «; + z; = 0 in E,
remove both these equations and add a new equation y; +y; = 1 on two new
variables y; and y;. Let E’ be the new set of equations obtained. Notice that
OPT(E) = OPT(E’). We now describe the construction of the instance Z' of
Max-PGlag. For each variable x;, put two sets of vertices V;? and V;! with k ver-
tices each of color i. Let x; + x.,, = b be an equation in E’. In the graph Gy, add
a complete bipartite graph between VlO and V.0 and another complete bipartite
graph between Vl1 and V1. Similarly, add the complete bipartite graph between
V9 and V!, and between V;! and V,1®" in Gy. If there is no equation in E’ con-
necting the variables z; and z.,,, add a complete bipartite graph between the
color classes [and m in G; and the empty graph between [and m in Ga. Simi-
larly, make all color classes cliques in G; and independent sets in Ga. The idea is
that assigning x; — 0 corresponds to mapping ViO and Vi1 to themselves, respec-
tively, while assigning z; + 1 corresponds to mapping V,” to V;! and vice versa.
Because of space constraints, we omit the proof that this construction works; it
can be found in [3]. O

This construction still works if we replace mp(7) with me(r), as for all equa-
tions x; + x; = b in E, exactly half of the possible edges between color classes
1 and j are present. It follows that there is a factor-preserving reduction from
Max-2Lin-2 to Max-EGlyy.

Lemma 12. For any k > 2, there is a polynomial time algorithm that for
a given Max-2Lin-2 instance I constructs a Max-EGloy instance I’ such that
OPT(Z') = 2k?0OPT(Z).

Since there is no a-approximation algorithm for Max-2Lin-2 for o > 0.94
unless P = NP [13], Lemmas and complete the proof of Theorem [3| that
there is no a-approximation algorithm for Max-PGl;, and Max-EGIy, for a > 0.94
unless P = NP.

It is easy to see that for each constant k > 0, both Max-PGl; and Max-EGIy,
are subproblems of the generalized Max-2CSP(q), where ¢ depends on k. Thus,
both Max-PGl; and Max-EGI; have constant factor approximation algorithms
by virtue of the semidefinite programming based approximation algorithm for
Max-2CSP(q) [12]. The following lemma shows the reduction of Max-EGls to
Max-2CSP(2). The reduction from Max-PGl; and Max-EGl; to Max-2CSP(q) is

similar.

Lemma 13. There is a polynomial time algorithm that for two given vertex-
colored graphs G1 and G4 where each color class has size at most 2, outputs a
Max-2CSP(2) instance F = {f1,..., fm} where m = ||[E(G1)| and f;: {0,1}* —
{0,1} such that there is a color-preserving bijection m: V(G1) — V(Ga) with
me(mw) = k, if and only if there is an assignment which satisfies k constraints
n F.

Proof. For each color class C;, we assign a variable z;. For an edge e from C; to C;
in Gy, construct the function f.: {0,1}* — {0,1} over the variables z; and x;
as follows. Any Boolean assignment to the variables can be looked upon as a
permutation: If x; — 0, then we have the identity permutation on C;, otherwise
the permutation swaps the vertices of C;. The value f. on that particular as-
signment is 1 if the permutation that it corresponds to sends the edge e to an
edge in G2. Hence there is an assignment that satisfies k constraints if and only
if there is a permutation 7 with me(7) = k. O

As the problem of Max-2CSP(2) has an approximation algorithm with a guar-
antee of 0.874 [I8], this implies an approximation algorithm for Max-EGly with
the same guarantee and since Max-2Lin-2 is hard to approximate beyond 0.878
under UGC [I6], we have almost matching upper and lower bounds for Max-EGls
under UGC.

3 Minimizing the number of mismatches

We first consider the problems Min-PGIl and Min-EGI, where the objective is to
minimize the number of mismatched pairs and edges, respectively.

Theorem There is no polynomial time approximation algorithm for Min-PGl
with any multiplicative approximation guarantee unless Gl € P.

Proof. Assume that there is a polynomial time a-approximation algorithm A
for Min-PGI. If the two input graphs G; and G2 are isomorphic, then there
is a bijection 7: V3 — V4 such that mp(w) = 0, and if G; and G2 are not
isomorphic, then mp(m) > 0 for all 7. Thus, it immediately follows that G; and
G+ are isomorphic, if and only if A outputs a bijection o: V(G1) — V(G2) with
mp(c) =0 (i.e., an isomorphism). O

In order to show that it is unlikely that Min-PGI has a polynomial time ap-
proximation scheme, we give a gap-preserving reduction from the Vertex-disjoint
Triangle Packing problem (VTP) defined as follows: Given a graph G find the
maximum number of vertex-disjoint triangles that can be packed into G. We
look at the corresponding gap version of the VTP problem.

Gap-VTP, g: Given a graph G and « > 3,
1. Answer YES, if at least an/3 triangles can be packed into G.
2. Answer NO, if at most Sn/3 triangles can be packed into G.

It is known that VTP does not have an algorithm which when given a graph
and parameter « as input, computes a vertex-disjoint triangle packing of size at
least «OPT in time O(nP°Y(1/(1=2)) ynless P = NP [7]. It is also known that
for a fixed value of 8 < 1, Gap-VTP; g is NP-hard on graphs where each vertex
is either degree 4 or 6 [11122], and a small gadget shows that this also holds for
6-uniform graphs.

Lemma 14. Given a Gap-VTP,, g instance Z (a 6-uniform graph on n vertices),
in polynomial time we can find a Min-PGI instance Z' such that

OPT(I) > % = OPT(Z') < 2n(2 — a)

Bn

OPT(Z) < 5 = OPT(Z') = n

(4=)

The proof of this lemma is omitted here because of space constraints; it
can be found in [3]. This reduction together with the hardness of VTP proves
Theorem [5} Next we prove Theorem [6}

Theorem 6] There is no polynomial time approzimation algorithm for Min-EGI
with any multiplicative approximation guarantee unless P = NP.

Proof. The theorem follows from the following reduction from the Clique prob-
lem. Given an instance (G, k) of Clique, we construct the instance of Min-EGI as
follows. Gy consists of a k-clique and n — k independent vertices, and G := G.
(G, k) € Clique if and only if there exists a 7 such that in the Min-EGI problem
me(m) = 0. Hence any polynomial time approximation algorithm with a multi-
plicative guarantee for Min-EGI gives a polynomial time algorithm for Clique. O

The input for the Min-Uncut problem is a set E C {z; +x; = 1|4,j € [n]}
of m equations. The objective is to minimize the number of equations that
must be removed from the set E so that there is an assignment to the variables
that satisfy all the equations. This problem is known to be MaxSNP-hard [14],
and assuming the Unique Games Conjecture, hard to approximate within any
constant factor [I5]. The following lemma shows that Min-PGly, is as hard as the
Min-Uncut problem.

Lemma 15. Let Z be an instance of Min-Uncut and let k be a positive integer.

There is a polynomial time algorithm that constructs an instance ' of Min-PGlgy
such that OPT(Z") = (2k)20OPT(Z).

The proof of this lemma is similar to the proof of Lemma [I1] Given a set
E C{x;+x;=1]1i,j € [n]} of equations over F, we construct an instance Z’
of Min-PGly; exactly as described in the proof of Lemma If the minimum
number of equations that have to be deleted from E to make the rest satisfiable
is at most ¢, then there is an assignment such that at most ¢ equations in E are
not satisfied. This implies that there is a permutation 7 such that the only edges
that are mapped to non-edges and vice-versa are from at most ¢ pairs of color
classes.

Finally we show that Min-EGl, is hard to approximate.

Theorem 16. For any constant o > 1, there is no a-approrimation algorithm
for Min-EGly unless P = NP.

An instance of NCP consists of a subspace S of Fy given as a set of basis
vectors B = {s1,...,s;} and a vector v € F}. The objective is to find a vector

10

u € § which minimizes the hamming weight wt(u + v), i.e., the number of bits
where u and v differ. It is NP-hard to approximate NCP within any constant
factor [I]. The following lemma gives a reduction that transfers this hardness
to Min-EGly.

Lemma 17. There is a polynomial time algorithm that for a given NCP in-
stance I, constructs a Min-EGly instance ' with OPT(Z') = OPT(Z).

The idea of the proof is to construct two graphs G; and G5 such that any
vector from the given subspace S that is equal to v in all but k positions, can
be converted into a color-preserving bijection from V(G1) to V(G2) that maps
all but k edges to edges, and vice versa. A detailed proof is given in [3].

4 Conclusion

Although Gl expressed as an optimization problem was mentioned in [2], as far
as we know this is the first time that the complexity of the other three variants
of this optimization problem has been studied. Considering the upper and lower
complexity bounds that we have proved in this paper, the following questions
seem particularly interesting.

In Theorem [l| we describe an a-approximation algorithm for Max-PGl that
runs in quasi-polynomial time. Does Max-PGl also have a polynomial time ap-
proximation scheme? Theorem [2] shows that it is unlikely that Max-EGI has an
(% + g)-approximation algorithm. Does Max-EGI have a constant factor approx-
imation algorithm? We can use the Quadratic Assignment Problem to get an
additive error algorithm for it which runs in quasi-polynomial time but we do
not know whether this algorithm can be used to get a constant factor approx-
imation algorithm for Max-EGI| (as was possible for Max-PGl). In the case of
vertex-colored graphs, even though we can rule out the existence of a PTAS
for Max-PGl; and Max-EGIy, it remains open whether these problems have effi-
cient approximation algorithms providing a good constant factor approximation
guarantee.

Acknowledgement. We thank the anonymous referees for their suggestions to
improve the article.

References

1. Sanjeev Arora, Laszlé Babai, Jacques Stern, and Z. Sweedyk. The hardness of
approximate optima in lattices, codes, and systems of linear equations. J. Comput.
Syst. Sci, 54(2):317-331, 1997.

2. Sanjeev Arora, Alan M. Frieze, and Haim Kaplan. A new rounding procedure for
the assignment problem with applications to dense graph arrangement problems.
Math. Program., 92(1):1-36, 2002.

3. V. Arvind, Johannes Kébler, Sebastian Kuhnert, and Yadu Vasudev. Approximate
graph isomorphism. ECCC, TR12-078, 2012. http://eccc.hpi-web.de/report/
2012/078/.

11

http://eccc.hpi-web.de/report/2012/078/
http://eccc.hpi-web.de/report/2012/078/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Lészlé Babai. Monte-Carlo algorithms in graph isomorphism testing. Technical
Report 79-10, Univ. de Montréal, Dép. de mathématiques et de statistique, 1979.
Lészlé Babai, D. Yu. Grigoryev, and David M. Mount. Isomorphism of graphs
with bounded eigenvalue multiplicity. In STOC, pages 310-324, 1982.

Léasz16 Babai and Eugene M. Luks. Canonical labeling of graphs. In STOC, pages
171-183, 1983.

Alberto Caprara and Romeo Rizzi. Packing triangles in bounded degree graphs.
Inf. Process. Lett., 84(4):175-180, November 2002.

Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty years
of graph matching in pattern recognition. IJPRAI 18(3):265-298, 2004.

Merrick L. Furst, John E. Hopcroft, and Eugene M. Luks. Polynomial-time algo-
rithms for permutation groups. In FOCS, pages 3641, 1980.

Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. A survey of graph edit
distance. Pattern Anal. Appl., 13(1):113-129, 2010.

Venkatesan Guruswami and Piotr Indyk. Embeddings and non-approximability of
geometric problems. In SODA, pages 537-538, 2003.

Venkatesan Guruswami and Prasad Raghavendra. Constraint satisfaction over a
non-boolean domain: Approximation algorithms and unique-games hardness. In
APPROX-RANDOM, pages 77-90, 2008.

Johan Hastad. Some optimal inapproximability results. J. ACM, 48(4):798-859,
2001.

Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David P. Williamson. The
approximability of constraint satisfaction problems. STAM J. Comput., 30(6):1863—
1920, 2000.

Subhash Khot. On the power of unique 2-prover 1-round games. In STOC, pages
767775, 2002.

Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal
inapproximability results for max-cut and other 2-variable csps? In FOCS, pages
146-154, 2004.

Michael Langberg, Yuval Rabani, and Chaitanya Swamy. Approximation algo-
rithms for graph homomorphism problems. In APPROX-RANDOM, pages 176—
187, 2006.

Michael Lewin, Dror Livnat, and Uri Zwick. Improved rounding techniques for the
max 2-sat and max di-cut problems. In IPCO, pages 67-82, 2002.

Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in
polynomial time. J. Comput. Syst. Sci., 25(1):42-65, 1982.

Eugene M. Luks. Parallel algorithms for permutation groups and graph isomor-
phism. In FOCS, pages 292-302, 1986.

Gary L. Miller. Isomorphism of k-contractible graphs. a generalization of bounded
valence and bounded genus. Information and Control, 56(1/2):1-20, 1983.

Erez Petrank. The hardness of approximation: Gap location. Computational Com-
plexity, 4:133-157, 1994.

12

	Approximate Graph Isomorphism

