

Datenbanksysteme II: Multidimensional Index Structures 2

Ulf Leser

Content of this Lecture

- Introduction
- Partitioned Hashing
- Grid Files
- kdb Trees
 - kd Tree
 - kdb Tree
- R Trees

kd Tree

Grid file disadvantages

- All hyperregions of the d-dimensional space are eventually split at the same scales (dimension/position)
- First cell that overflows determines split
- This choice is global and never undone

kd Trees

- Bentley: Multidimensional Binary Search Trees Used for Associative Searching. CACM, 1975.
- Multidimensional variation of binary search trees
- Hierarchical splitting of space into regions
- Regions in different subtrees may use different split positions
- Better adaptation to local clustering of data
- Note: kd Tree originally is a main memory data structure

General Idea

- Binary, rooted tree
- Inner nodes define splits (dimension / value)
- Dimensions may be mixed in same level
- Leaves: Values + TIDs
- Each leaf represents ddimensional convex hypercube with m border planes (m≤2d)
- No balancing
 - Bad WC search

Blocks and Points

- Keep everything in memory
 - Leaves are singular points
 - Does not exploit caching / seq. reads
- Tree in mem and blocks on disk
 - Splits are delayed until block overflows
- Store everything on disk
 - k-DB Tree: Later
- On modern hardware
 - Random mem access in inner tree
 - Larger leaves create smaller trees
 - Parallel search? SIMD? Tree layout?
 - BB-Tree: Later

The Brick Wall

- Every split can be chosen freely within borders defined by parents
- Splits are local

Local Adaptation

Search Operations

- Exact point search
 - **—** ?
- Partial match query
 - **—** ?
- Range query
 - **—** ?
- Nearest Neighborhood
 - **—** ?

Search Operations

- Exact point search (result size 1)
 - In each inner node, decide upon direction based on split condition
 - Search inside leaf
 - Complexity = height of tree = O(n) in worst case
- Partial match query
 - If dimension of condition in inner node is part of the query proceed as for exact match
 - Otherwise, follow all children (multiple search paths)
 - Worst case (no conditions) searchers entire tree
- Range query
 - Follow all children matching the range conditions (multiple paths)

Nearest Neighbor

- Search point
- Upon descending, build a priority queue of all directions not taken
 - Compute minimal distance between point and hyper-region not followed
 - Keep sorted by this minimal distance
- Once at a leaf, visit hyperregions in order of distance to query point
 - Jump to split point and follow closest path
 - Regions not visited are put into priority queue
 - Iterate until point found such that provably no closer point exists

Example

kd-Tree Insertion

- Search leaf block; if space available done
 - The original kd-Tree has no blocks we always split
- Otherwise, chose split (dimension + position) for this block
 - This is a local decision, valid for subtree of this node
 - Option 1: Use each dimension in turn and split region into two equally sized subspaces (expects uniform distribution)
 - Option 2: Consider current points in leaf and split in two sets of approximately equal size (expects temporally constant distribution)
 - But which dimension?
 - Considering all is expensive use heuristics
 - Usual problem: We don't know the future points
 - Wrong decisions in early splits may lead to tree degradation
 - As for Grid-Files, there is no guarantee on fill degree

Deletion

- Search leaf block and delete point
- If block becomes (almost) empty
 - If empty: Remove; else: Do nothing bad fill degree
 - Merge with neighbor leaf (if existing)
 - Two leaves and one parent node are replaces by one leaf
 - Not very clever if neighbor almost full
 - Balance with neighbor leaf (if existing)
 - Change split condition in parent such that children have equal size
 - Not very clever if neighbor almost empty
 - Consider larger neighborhood: Grant parents, grant-grant-par ...
- kd trees have no guaranteed balance (~ depth)
- There is no guaranteed fill degree

Static kd Trees

- Assume the set of points to be indexed is static and known
- We can build worst-case optimal kd Trees
 - Rotate through dimensions
 - Typically in order of variance wide spread dimensions first
 - Sort remaining points and choose median as split point
 - Guarantees tree depth of O(log(n)) for point queries
 - But clustering of points not considered bad similarity queries
 - Nearby points are not nearby in the tree
- Variant (for sim-search): K-means trees
 - Iterative k-means clustering of points
 - K: Tree width (fanout)
 - Faster similarity queries, tree depth not guaranteed

Content of this Lecture

- Introduction
- Partitioned Hashing
- Grid Files
- kdb Trees
 - kd Tree
 - kdb Tree
- R Trees

kd Trees on Secondary Storage – Naive Solution

- Store each inner node in one block
 - Inner blocks are essentially empty
 - Since tree is not balanced, worst case requires O(n) IO

Better: Fill Inner Blocks

- Option 1: Build k-ary kd-Trees
 - Let inner nodes split one dimension at many values
 - When leaf overflows, insert new split into parent
 - When leaf underflows, merge and remove split from parent
 - Still not balanced, no guaranteed fill degree
 - With skewed data

kdb trees

- Option 2: Map many inner nodes to a single blocks
 - Robinson: The K-D-B-Tree: A Search Structure for Large Multidimensional Dynamic Indexes. SIGMOD 1981.
 - Inner nodes have two children (mostly in the same block)
 - Each block holds many inner nodes
 - Inner blocks have many children
 - Roots of kd trees in other blocks
 - Can be balanced (later)
 - No guaranteed fill degree
- Operations
 - Searching: As with kd trees, but has guaranteed tree depth
 - Insertion/Deletion: Keep balance

Another View

Inner blocks define bounding boxes on subtrees

Another View

Inner blocks define bounding boxes on subtrees

Example – Composite Index

- d=3, n=1E9, block size 4096, |point|=9, |b-ptr|=10
 - We need ~2.2M leaf blocks
- Composite B+ index
 - Inner blocks store 108-215 pointers; assume optimal density
 - We need 3 levels
 - 2nd level has 215 blocks and 46.000 pointers
 - 3rd level has 46K blocks and 10M pointers, 2.2M are needed
 - With uniform distribution, 1st level will mostly split on 1st dimension, 2nd level on 2nd dimension ...
- Box query, 5% selectivity in each dimension
 - We read 5% of 2nd level blocks = 10 IO
 - For each, we read 5% of 3rd level blocks = 107 IO
 - For each, we read 5% of data blocks = 1150 IO
 - Altogether: ~1250 IO

Visualization

Example: Partial Box Query

- Box query on 2nd and 3rd dimensions only, asking for a 5% range in both dimensions
 - We need to scan all 215 2nd level blocks
 - Each 2nd level block contains the 5% range of 1st dimension
 - For each, we read 5% of 3rd level blocks = 2300 blocks
 - For each, we read 5% of data blocks = \sim 25K data blocks
 - Altogether: 26.000 IO
- Note: 0.05 selectivity in two dimensions means 0.0025 selectivity altogether = 125K points
 - Only 270 blocks if optimally packed

With Balanced kdb Tree

- Balanced kdb tree will have ~22 levels
 - ~455 points in one block (assume optimal packaging)
 - We need to address $1E9/455 \sim 2^{21}$ blocks
- Consider 128=2⁷ inner nodes in one kdb-block
 - Rough estimate; we need to store 1 dim indicator, 1 split value, and 2 ptr for each inner node, but most ptr are just offsets into the same block
- kdb tree structure
 - 1st level block holds 128 inner nodes = levels 1-7 of kd tree
 - There are 128 2nd level blocks holding levels 8-14 of kd tree
 - There are ~16000 3rd level blocks , each addressing 128 data blocks

Space Covered

- 1st block splits space in 128 regions
- 2nd level block split space in ~16K regions, each region covering 0,00625% of the entire space
- Query selectivity is $(0.05)^3 = 0,000125\%$ of points and of space (given uniform distribution)
- Thus, we very likely find all results in 1 region of the 1st level and in 1 region of the second level
 - In the worst case, we overlap in all dimensions 8 regions

Intuition

Box Query Continued

- Box query in all three coordinates, 5% selectivity in each dimension
 - We need to load the root block
 - Very likely, we need to look at only one 2nd level block
 - Very likely, we need to look at only one 3rd level block
 - Assume we need to load all therein addressed 128 data blocks
 - Altogether: 1+1+1+128 = 131 IO
 - That's almost optimal
 - But we made many favorable assumptions
 - kdb-Tree may reach almost optimal performance
 - Composite index had : ~1250 IO

Example - Partial Box Query with kdb Tree

- Box query on 2nd and 3rd dimensions only, asking for a 5% range in each dimension
 - In first block (7 levels), we have ~2 splits in each dimension
 - Two times 2 splits, one time three splits
 - Assume we miss the dimension with 3 splits
 - Hence, in ~4 of 7 splits we know where we need to go, in ~3 splits
 we need to follow both children
 - We need to check only 2³=8 second-level blocks
 - Again number gets higher when query range crosses split points
 - Same argument holds in 2nd level blocks = 8*8 data blocks
 - Same argument holds in 3nd level blocks = 8*8*8 data blocks
 - Altogether: 1+8+64+512 ~580 IO
 - Compare to 26.000 for composite index
 - But optimal would be only 270

Balancing upon Insertions

- Similar method as for B+ trees
 - Search appropriate leaf
 - If leaf overflows, split
 - Chose dimension and split value; re-distribute points into two blocks
 - Propagate to parent node
 - In parent node, a leaf must be replaced by an inner node
 - With two new blocks as children
 - This may make the parent overflow propagate up the tree
- Splitting an inner node
 - Chose a dimension and split value
 - Distribute nodes to two new blocks
 - Split might have to be propagated downwards
 - "Default" split may lead to very bad fill degree
 - Propagate new pointers to parent (and their children)
 - Might lead to reorganization of entire tree

Conclusion

- kdb trees pro
 - Conceptually nice
 - May achieve optimal search performance
- Kdb contra
 - No guaranteed fill degree
 - Many insertions/deletions lead to almost empty leaves
 - Keeping balance requires sporadic tree reorganizations
 - Runtime of single operations become unpredictable
- Nice idea, difficult to implement, rarely used in practice

Content of this Lecture

- Introduction
- Partitioned Hashing
- Grid Files
- kdb Trees
- R Trees
- Conclusions

R-Trees

- Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. SIGMOD 1984.
- Can store geometric objects (with area) as well as points
 - Arbitrary geometric objects are represented by their minimal bounding box (MBB)
- Each object is stored in exactly one region on each level
- Since objects may overlap, regions may overlap
- Only regions containing data objects are represented
 - Allows for fast stop when searching in empty regions
- Tree is kept balanced (like B tree)
- Guaranteed fill degree (like B tree)
- Many variations (see literature)

General Idea

- We group clusters of spatial objects into minimal bounding box (MBB)
- Each MBB is represented by just two corner points

General Idea

Motivation: Objects that are not points

- We need overlapping regions
 - For instance, if all MBBs overlap
 - No split possible which creates disjoints sets of objects
- Objects crossing a split

Stored in only one MBB (R-Tree)

• Search must examine both

No redundant data

Stored in both MBB (R+-Tree)

Search may choose any one

Redundant data

R Tree versus kd Tree

Concepts

- Inner nodes consist of a set of d-dimensional regions
 - Every region is a (convex) hypercube MBB
- Regions are hierarchically organized
- Each region of an inner node points to a subtree or a leaf
- The region border is the MBB of all objects in this subtree
 - Inner node: MBB of all child regions
 - Leaf blocks: All objects are contained in the respective region
- Regions in one level may overlap
- Regions of a level do not cover the space of its parent completely (as opposed to the KD-tree)

Concepts

- Guaranteed fill degree: The number of regions of a node (except for the root) is between m and M
 - M: the maximum number of entries in a node
 - M = [size(P) / size(E)] P: disk page, E: entry
 - m: set to some fraction of M
- The root node has at least 2 entries
- Balanced: Leaf nodes are at the same level

Searching

- All objects are contained within MBBs
- Thus, a query that does not intersect an MBB cannot intersect the contained objects
- Point query
 - At each inner node, find all regions containing the point
 - Multi-path: All those subtrees must be searched
- Range query: Find all objects (MBBs) overlapping with a given query range (MBB)
 - In each node, intersect query with all regions
 - More than one region might have non-empty overlap
 - All those subtrees must be searched

One State

Example: Searching

Inserting an Object

- Traverse the R-tree top-down, starting from the root
- In each node, find all candidate regions
 - Any region may overlap the object completely, partly, or not
 - Object may overlap none, one, or many regions partly or completely
 - At least one region with complete overlap
 - Choose one (smallest?) and descend
 - None with complete, but at least one with partial overlap
 - Choose one (largest overlap?) and descend
 - No overlapping region at all
 - Choose one (closest?) and descend
- Eventually, we reach a leaf
 - We insert object in only one leaf

Continuation

- If free space in leaf
 - Insert object and adapt MBB of leaf
 - Recursively adapt MBBs up the tree
 - This usually generates larger overlaps search degrades
- If no free space in leaf
 - Split block in two regions
 - Compute MBBs
 - Adapt parent node: One more child, changed MBBs
 - May affect MBB of higher regions and/or incur overflows at high regions – ascend recursively

Example (from Donald Kossmann)

Example: Insertion, Search Phase

Example: Insertion, Split Phase

Several splits are possible

Example: Insertion, Adaptation Phase

- MBBs of all parent nodes must be adapted
- Block split might induce node splits in higher levels of the tree (not here)

Where to Split

- Finding the best splitting strategy has seen ample research
- Option 1: Avoid overlaps
 - Compute split such that overlap is minimal (or even avoided)
 - Minimizes necessity to descend to different children during search
 - May create larger regions more futile searches in "empty" regions
- Option 2: Minimize space coverage
 - Compute split such that total volume of all MBBs is minimal
 - Increases changes to descend on multiple paths during search
 - But: Unsuccessful searches can stop earlier

Split Strategies

Rationale:

- Pick two objects as seeds
- Assign other objects to the closest seeds

Seed 1

Split Strategies

Rationale:

- Pick two objects as seeds
- Assign other objects to the closest seeds
- Closest: the total MBB volume minimally increases

Seed 1

Split Strategies

Complexity

- Consider a block with n objects
- There are $2^{n}/2=2^{n}-2$ possibilities to partition this block into two
- In multi-dimensional spaces, there is no simple sorting
- Use heuristics instead of optimal solution
- Original Strategies (Minimizing Overlap)
 - Linear: Pick two pairs with greatest normalized separation. Greedily associate each other object to the region whose space is increased the least
 - Quadratic: Pick two pairs such that the two regions minimally overlap and are maximally large. Greedily associate each other object to the region whose space is increased the least
 - Exponential: Check all bipartitions and chose the one with minimal overlap

Linear Split

- In each dimension, find two objects with greatest separation
- Normalize the separation by the total extent in that dimension
- Put the two entries E1 and E2 with the greatest normalized separation into different groups
- Greedily associate each other of the M-1 objects to the region whose space is increased the least

Quadratic Split

 Pick the two seed entries E1 and E2 that would waste most area, if put together, that is to maximize:

$$area(mbb(E1,E2) - area(E1) - area(e2)$$

- Complexity: $O((M+1)^2)$
- Greedily associate each other of the M-1 objects to the region whose space is increased the least

Deletions in the R Tree

- As usual: In case of underflow (<m% fill degree), the block is removed
- R Trees typically do not move objects to neighbor leafs
 - MBBs would have to be adopted
 - But relationship of MBBs may be quite arbitrary
 - May create very large overlaps, very large spaces covered
 - One could find optimal moves, but ...
- Trick: Delete by Reinsertion
 - Re-Insert every objects that remained in the underflown block
 - Guarantees of the insert strategies will hold
 - No particular delete strategy required focus on good insertions
 - But costly: A single delete may incur hundreds of inserts

R+ Tree

- Two effects leading to inefficiency during search
 - Overlapping MBBs lead to multiple search paths
 - A few large objects enforce large MBBs covering much dead space
- R+ Tree
 - Objects overlapping with two regions are stored in both (clipping)
 - MBBs in a node never overlap
- Much faster search, but
 - Search must perform duplicate removal as last steps
 - Insertion / deletion may have to walk multiple paths, incurring multiple adaptations
 - Worse space consumption due to redundancy,
 - Insertion may require down- and upward adaption
 - Like kdb Trees

Content of this Lecture

- Introduction
- Partitioned Hashing
- Grid Files
- kdb Trees
- R Trees
- Conclusions

Multidimensional Data Structures Wrap-Up

- Many more MDIS: X tree, VA-file, hb-tree, UB tree, ...
 - Store objects more than once; other than rectangular shapes; map coordinates into integers; ...
- All MDIS degrade with increasing number of dimensions (d>10) or very unusual skew
 - For neighborhood and range queries
 - Hierarchical MDIS degenerate to an expensive linear scan
- Trick: Find lower-dimensional representations with provable lower bounds on distance to prune space
 - Requires distance function-specific lower bounding techniques
- Alternative: Approximate MDIS (LSH, randomized kd Trees)
 - Find almost all neighbors, with/out given probability

Curse of Dimensionality – Consider a growing d

- Consider a typical rectangular partitioning method
- Some obvious problems
 - Points need more coordinates, less node capacity fan-out decreases
 - Decreasing fan out deeper trees
 - Just comparing two points becomes linearly more expensive
 - Intersecting two objects becomes more expensive
 - These operations are performed all the time when searching and inserting / deleting objects

Curse of Dimensionality – Consider a growing d

- Some less obvious mathematical facts
 - Weber, R., Scheck, H. and Blott, S. (1998). "A Quantitative Analysis and Performance Study for Similarity-Search Methods in High-Dimensional Spaces". VLDB
- If space is covered, #partitions grows exponentially
 - But usually there are not "exponentially many" points
 - Most partitions will be almost empty
- Average distances grows steadily
- Consider a 1-NN query
 - 1-NN queries search a hypersphere, but partitions are hypercubes
 - The larger d, the smaller the fraction of space a hypersphere of radius 0.5 fills within a hypercube of edge length 1
 - The larger d, the more partitions one has to search to find neighboring points – the space is empty, everything is far away