Kryptologie

Johannes Köbler

Institut für Informatik Humboldt-Universität zu Berlin

WS 2022/23

Zur Erinnerung:

- Sei $(G, \circ, 1)$ eine Gruppe und sei $\alpha \in G$
- Weiter bezeichne $[\alpha] = \{\alpha^i | i = 0, \dots, n-1\}$ die von α in G erzeugte Untergruppe, wobei $n = \operatorname{ord}_G(\alpha) = \min\{e \geq 1 \mid \alpha^e = 1\}$ die Ordnung von α ist
- Dann heißt die eindeutig bestimmte Zahl $e \in \{0, \dots, n-1\}$ mit $\beta = \alpha^e$ diskreter Logarithmus $\log_{G,\alpha}(\beta)$ von β zur Basis α in G

Das diskrete Logarithmusproblem (DLP):

Gegeben: (Beschreibung einer) Gruppe G, ein Element $\alpha \in G$ und die Ordnung $n = \operatorname{ord}_G(\alpha)$ von α in G sowie ein Element $\beta \in [\alpha]$ Gesucht: Der diskrete Logarithmus $e = \log_{\alpha}(\beta)$ von β zur Basis α

Berechnung des diskreten Logarithmus

- In vielen Gruppen ist die Funktion $e \mapsto \alpha^e$ effizient mittels wiederholtem Quadrieren und Multiplizieren berechenbar
- Bei geeigneter Wahl von G und α ist jedoch kein effizienter Algorithmus zur Berechnung der Umkehrfunktion, also von $\beta \mapsto \log_{\alpha}(\beta)$ bekannt, d.h. $e \mapsto \alpha^e$ ist ein Kandidat für eine Einwegfunktion

Beispiel

- ullet Sei $G=\mathbb{Z}_p^*$, p prim, und sei lpha ein Erzeuger von \mathbb{Z}_p^*
- ullet Dann ist $[lpha]=\mathbb{Z}_p^*$ und lpha hat die Ordnung n=p-1
- Ist p hinreichend groß und enthält p-1 mindestens einen großen Primfaktor, so sind keine effizienten Algorithmen zur Berechnung von $\log_{\alpha}(\beta)$ in \mathbb{Z}_p^* bekannt

Naive Berechnung des diskreten Logarithmus

 $1 \gamma := 1$

4 $\gamma := \alpha \gamma$

- 2 **for** i := 0 **to** n 1 **do**
- if $\gamma = \beta$ then output(i)
- Dieser Algorithmus läuft in Zeit $\mathcal{O}(n)$ und benötigt nur logarithmischen Speicherplatz (wobei wir annehmen, dass elementare Gruppenoperationen in konstanter Zeit ausführbar sind)
- ullet Falls wir im Vorfeld eine Tabelle mit den Logarithmen aller möglichen Werte für eta erstellen, können wir danach für jedes eta den diskreten Logarithmus durch Table-Lookup in konstanter Zeit bestimmen

DLP-Berechnung mittels Precomputation

Precomputation: Speichere die Exponenten $e=0,\dots,n-1$ unter der Adresse α^e in einer Tabelle T

Computation: Gib bei Eingabe β den Wert $T[\beta]$ aus

Die Precomputation erfordert Zeit $\mathcal{O}(n)$ und Platz $\mathcal{O}(n \log n)$

Der Algorithmus von Shanks

- Der folgende Algorithmus von Shanks (auch baby-step giant-step Alg. genannt) berechnet ebenfalls im Vorfeld eine Tabelle von DLP-Werten
- ullet Allerdings nur für die Potenzen $lpha^{jm}$, $j=0,\ldots,m-1$ und $m=\lceil \sqrt{n}
 ceil$
- Dadurch erhöht sich zwar die Laufzeit zur Bestimmung des diskreten Logarithmus für β von O(1) auf $O(\sqrt{n})$
- ullet Dafür wird der Speicherplatz von $\mathcal{O}(n\log n)$ auf $\mathcal{O}(\sqrt{n}\log n)$ reduziert

Algorithmus Shanks $(G, n, \alpha, \beta, m = \lceil \sqrt{n} \rceil)$

Precomputation: Sortiere die Paare (α^{im},i) , $0 \le i \le m-1$, nach der ersten Komponente in eine Tabelle T1

Computation: Sortiere die Paare $(\beta \alpha^{-j}, j)$, $0 \le j \le m-1$, nach der ersten Komponente in eine Tabelle T2 und ermittle durch parallele sequentielle Suche Paare (γ, i) in T1 und (γ, j) in T2 mit der gleichen ersten Komponente

output
$$im + j$$
 // es gilt $\beta \alpha^{-j} = \gamma = \alpha^{im}$