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Content of this Lecture

e Language Models

e Markov Models

e Data sparsity

e Language Models for IR

e Most material from [MS99], Chapter 6
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Problem

e Given a prefix of a sentence: Predict the next word

— “At 5 o'clock, we usually drink ...”
e “tea” — quite likely
e “beer” — quite unlikely
e “a beer” — slightly more likely, but still
e “biscuits” — semantically wrong
e “the windows need cleaning” — syntactically wrong

e Similar to Shannon’s Game: Given a series of characters,
predict the next one (used in communication theory)

e Abstract formulation: Given a language L and the prefix
S[1..n] of a sequence S, SeL: Predict S[n+1]

e This is a ranking problem — no single solution

UIf Leser: Information Retrieval 3



Applications

e Speech/character recognition

— Given a transcribed prefix of a sentence — which word do we
expect next?

e Automatic translation
e Given a translated prefix of a sentence — what do we expect next?

e T9O: “... Information about common word combinations can
also be learned ...”

e General: Use probabilities of next word as a-priori
probability for interpreting the next signal
— Helps to disambiguate between different options
— Helps to make useful suggestions
— Helps to point to likely errors (observation # expectation)
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Language Models

e Classical approach: Grammars
— Regqular, context-free, ...

— Grammars can be learned from examples
e Not trivial, underdetermined, not covered here

— Usually, multiple continuations of a prefix are allowed

— (Deterministic) Grammars do not help in deciding which is the most
probable one

— Better: Probabilistic grammars
e Probabilistic automata: Transitions have a relative frequency
e Grammars based on grammatical categories typically not
fine grained enough: Many equally probable continuations
remain
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N-Grams over Words

e Popular and simple approach: N-gram models
— “Indeed, it is difficult to beat a trigram model on the purely linear
task of predicting the next word” [MS99]
e Definition
A (word) n-gram Is a sequence of n words.
e Usage
— Count frequencies of all n-grams in a corpus of the language

e Slide window of size n over text and keep counter for each n-gram
ever seen

— Given a sentence prefix, predict most probable continuation(s)
based on n-gram frequencies — how?
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N-Grams for Language Modeling

e Assume a sentence prefix with n-1 words <w,,...,w,_;>

e Look-up counts of all n-grams starting with <wg,...,w, ;>
— l.e., n-grams <wy,...,W,_,W,>

e Choose that w, whose n-gram is the most frequent one

e More formally
— Compute, for every possibly w,,

p(Wl""’ Wn)
P(Wy,. W, y)

p(w,) = p(W, | Wy,..., W, ;) =

— Choose w, which maximizes p(w,)
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Which n?

e |In language modeling, one usually chooses n=3-4

e That seems small, but most language effects are local

— But not all: “Dan swallowed the large, shiny, red ...” (Car? Pil?
Strawberry?)

e Also, we cannot obtain robust relative counts for larger n -
not enough training data
— Data sparsity problem
— In high dimensional problems, training data is always sparse
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History and Applications

e Andrej Andrejewitsch Markov (1856-1922)

— Russian Mathematician

— Developed Markov Models (or Markov Chains) as a method for
analyzing language

— Markov, A. A. (1913). "Beispiel statistischer Untersuchungen des
Textes ,Eugen Onegin‘, das den Zusammenhang von Ereignissen in
einer Kette veranschaulicht (Original in Russisch)." Bulletin de
['Academie Imperiale des Sciences de St.-Petersbourg. 153-162.

e Markov Models and Hidden Markov Models are popular in
— Language Modeling, Part-of-speech tagging
— Speech recognition
— Named entity recognition / information extraction

— Biological sequence analysis
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Markov Models

e Definition
Assume an alphabet X. A Markov Model of order 1 is a
sequential stochastic process with [X] states s, ..., s, with
— Every state emits exactly one symbol from X
— No two states emit the same symbol
— For a sequence <w,,w,,...=> Of states, the following holds
P(W,=S,[W,, 178510 Wip5=Sp0r-s W1=51) = P(W,=S,[W,,.1=5.1)
e Remarks
— &; =p(w,=s;|w,;=s;) are called transition probabilities
— In language modeling, X = vocabulary = all words of a language
— Computing good start probabilities is an issue we ignore

UIf Leser: Information Retrieval 11




Visualization

e Since every state emits exactly one word and vice versa,
we can merge states and words

e State transition graph
— Nodes are states (labeled with their emission)
— Arcs are transitions labeled with a non-zero probability

e Example

— *“l go home”,
“I go shopping”,
“I am shopping,
“I go abroad”, 0,75
“Go shopping”

shopping
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Probability of a Sequence of States (=a Sentence)

e Assume a Markov Model M of order 1 and a sequence S of
states with |S|=n

e With which probability was S generated by M, i.e., what is
the value of p(S|M)?

p(S M) =p(w, =S[L)* | | p(w; =S[i]|w;_, = S[i-1])

iI=2..n

= dy 513 * H Agri-spi] = Qo * H Ay

i=2..n i=2..n
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Example

shopping

* p("l go home”) = p(w;=,1"|wg)* p(w,=,g0%|w;=,1%) *
p(w;=,home"|w,=,g0o")
=1*0.75*% 0.25 = 0.1875
e Problem: Pairs we have not seen in training get prob. O
— Example: “I am abroad”
— With this small “corpus”, almost all transitions get p=0
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Stochastic Processes

e Consider language generation as a seguential stochastic
process

e At each stage, the process generates a new word
— Like a DFA, but transitions have probabilities

e Question: How big is the memory? How many previous
words does the process use to determine the next step?
— 0: Markov chain of order 0: No memory at all

— 1: Markov chain order 1: Next word only depends on prev. word
— 2: Markov chain order 2: Next word only depends on 2 prev. words

UIf Leser: Information Retrieval 15




Higher Order Markov Models

e Markov Models of order k

— The probability of being in state s after n steps depends on the k
predecessor states S, ;,...S,.x

PW,=Su/Wp.1=54.1, Wp2=Sp.21--» W1=51) = P(W,=S,/W,.1=5p.10 - Ws=Spi)
e We can trivially transform any order k model M (k>1) into
a Markov Model of order 1 (M’)

— M’ has |M]|k states (all combinations of states of length k)
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Predicting the Next State

e The problem of language modeling is a bit different

e \We do not want to reason about an entire sequence, but
only about the next state, given some previous states

e N-gram model = Markov Model order n-1

p(W,) = P(W, [ Wy, W, y)

— p(Wn |Wn—1)
_ p(w, W)
p(W, )
A - P(W, 1, W,)
0,25 0,50

This is the most frequent
bi-gram with prefix w,_;
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Problem

e We learn our transition probabilities from a limited sample
e Thus, we only estimate the true transition probabilities

e Introduces an error which we should try to remove
— Sample selection is important
— Problem is researched a lot in statistics

e Extreme: Transitions we do not see at all in the corpus
— Get a probability of 0
— Will never be predicted
— This does not mean that they are non-existing in the language

e Our model (yet) cannot adequately cope with data sparsity
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Importance of Data Sparsity

e How many n-grams do exist in principle?
— Assume a language of 20.000 words
— n=1: 20.000, n=2: 4E8, n=3: 8E12, n=4: 1.6E17/, ...

— Rough numbers: Natural languages have many more words, but
most combinations are not allowed

e |n natural language corpora, almost all n-grams with n>4
are very sparse

— Exponential growth cannot be balanced by “use larger corpora”
— Especially very specific n-grams are prone to be overlooked

e Trade-off

— Large n: More expressive model, but bad transition estimations
— Small n: Less expressive model, but better transition estimates
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Example

e Unigrams: Always the
most frequent word in
the corpus, does not
differentiate
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Solutions we will not Discuss in Detall

e Reduce the number of words using stemming
— Might help to go from n=3..4 to n=4...5
— Important grammatical clues are lost

e Use some form of “binning” of tokens into classes and
compute n-grams over token classes, not token
— All numbers -> one class
— All verbs -> one class (POS tags)
— All verbs related to “movement” -> one class
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Statistical Estimators

e We were a bit sloppy so far

e We want ): p(le--1Wn)

p(w,) = p(w, [w,...,w,_,
P(W,,..W, ;)

e But we only have count(w,,...,w,)
e So far, we always implicitly assumed

_count(w,,...,w,)
N

p(w,...,w )

— N: all observed n-grams
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MLE for N-gram Models

e This is called a Maximum Likelihood Estimator (MLE)

e MLE gives maximum likelihood to the training data
— Gives zero probability to all events not in the training data
— The probability mass is spent entirely on the training data
— Overfitting

e Need to smooth the estimates to account for the
limitations of the sample
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Smoothing I: Laplace’s Law

e Glve some probability mass to unseen events
e Oldest (and simplest) suggestion: “Adding one”

_count(w,,...,w,) +1

N+ B

— Where B is the number of possible n-grams, i.e., K"
e K: Vocabulary, all different words

— All n-grams get a probability#0

e But — moves too much mass to the unknown
— Estimates for seen n-grams are scaled down dramatically

— Estimates for unseen n-grams are small, but there are so many
e And many of them are truly impossible

— In a corpus of 40 M words with K~400T, 99.7% of the total
probability mass is spend in unseen events

pLAP(Wl""’Wn)
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Smoothing Il: Lidstone‘s Law

e Laplace not suitable if there are many events, but few seen
e Lidstone’s law gives less probability mass to unseen events

_count(w,,...,w,)+ 4
N+A*B

pLIP(Wl""’Wn)

— Small A: More mass is given to seen events
— Typical estimate is A=0.5
— Appropriate values can be learned (next slide)

e Still: Estimate of seen events is linear in the MLE estimate
— Not a good approximation of empirical distributions

e Other: Good-Turing Estimator, n-gram interpolations, ...
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Learning Appropriate Values for A

 We “simulate” seen and unseen events

e Divide corpus in two disjoint parts C, and C,

e Count frequencies of n-grams in C,

e Let c be the number of n-grams from C, not present in C,

e Set A=c/B

— The probability of an n-gram (in C,) to be considered as not
existing although in reality it does exist
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Option I11: Back-Off Models

e |If we cannot find a n-gram with count#0, use a (n-1)-gram
— Or an n-2 gram, ...

e Thus, in case there is no p(wy,...,w,)¥0, we “back off” to a
simpler model

W)= p(w,,...,W,) or pP(W,,..., W) or p(W,,...,W,) orK
POW, Wy g)  P(Woye Wy y) (W, W)

pW, | W, .

— Stop at the first (n-k)-gram with non-zero count

e Alternative: Always look at different n’s
— With different weights

. p(Wn—Z ! Wn—l’ Wn) p(Wn—l’ Wn)
p(Wn) - /11 p(Wn—Z ! Wn—l) ’ /12 p(Wn—l) . ﬂ3 p(Wn)
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New IR Model

e Recent trend in IR: Relevance based on language models

e l|dea: See a document as a “language”
— Learn a model M, of this “language” (document)

— Compute with which probability p(d|g) a given query has generated
the model (=document)

— Rank documents based on these probabilities

e Sounds weird, but leads to a simple and well justified
approach

e Very successful in recent evaluations
e Smoothing is crucial — docs are too small
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Approach

e As docs are small, only unigram models are sensible
e Model of a doc: Relative frequencies of all its words
e Compute
d)* p(d
o(d | q) = PLald)* p(d)
p(q)

— p(q) is equal for all d — irrelevant for ranking

— p(d) can be used to incorporate a-prior knowledge (e.g. prestige),
but often is set to uniform — irrelevant for ranking

e We replace d with its model and obtain

p(ald)=p(a|My) = plk, Ky Ky IM) =] [ Pk IMg) =]

keq keq |d |

~p(qld)*p(d)~p(ald)

tf, 4
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Discussion

e Very simple
e Principled approach to justify usage of tf values
e« More powerful for longer gqueries

e Problems

— Words in g not in d: Smoothing
— Where is idf gone?
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Smoothing a Language Model for IR

e For instance, if ked, set p(k|M,) = df./|D]| = p(k|Mp)

— Token that are in d are counted with tf values (and not discounted
with idf); tokens not in d are counted with df values

e More tunable parameters: Linear interpolation
p'(k[My)=A*p(k[My)+(1-2)* p(k|Mp)

— Combine relevance of k in document and relevance of k in corpus
— Large A: More weight to the document, less weight to background
— A may vary, for instance with query size

e We are back at something similar to TF*IDF, but with a
probabillistic interpretation, not a geometric one

UIf Leser: Information Retrieval 35




Self Assessment

 What is language modelling about?
e Define a Markov model

e How can you turn a Markov model of order 4 into one of
order 1?

e What is the data sparsity problem (in language modeling)?
e What is the disadvantage of Laplace smoothing?

e Explain how we can use language models for information
retrieval
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