Suche in Graphen

Beispiele:

- -Routenplanung
- -Fahrplanauskunft
- -Suche nach einem Beweis
- -Suche nach Gewinnstrategie
- -Planung

Modell für Problemlösen:

- · Gegeben:
 - -Graph G = [V,E]
 - –"Anfangszustand" z₀∈V
 - –Menge von "Zielzuständen" $Z_f \subseteq V$
- · Probleme:
 - -Existiert ein Weg von z_0 zu einem $z_f \in Z_f$
 - -Konstruiere einen Weg von z_0 zu einem $z_f \in Z$
 - -Konstruiere optimalen Weg von z_0 zu einem $z_f \in Z_f$ (bzgl. eines gegebenen Optimalitätskriteriums)

PI2 Sommer-Semester 2005

Hans-Dieter Burkhard

.

Planung: Modellierung als Graph

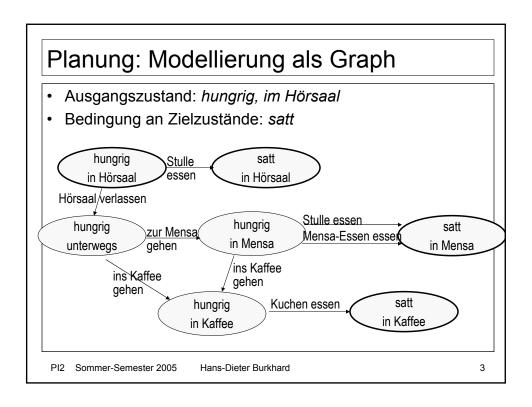
Mögliche Aktionen: $A = \{a_1,...,a_n\}$ Zustände (Knoten im Graphen):

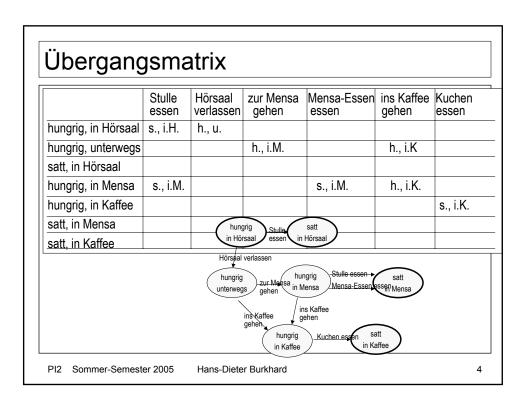
V = durch Aktionen entstehende Situationen

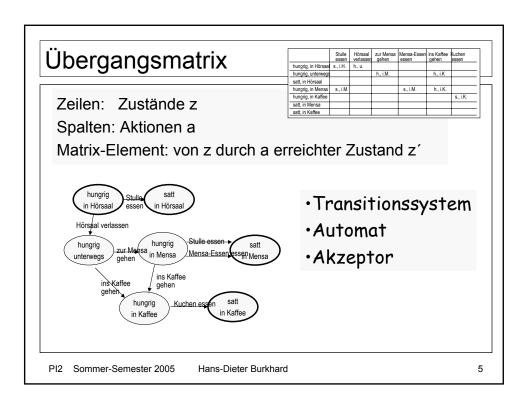
Ausgangsituation: Anfangszustand z₀

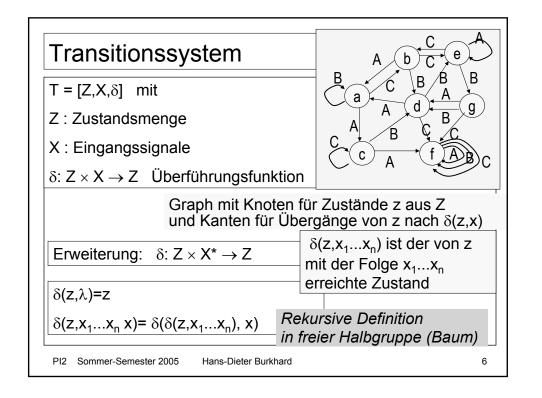
Situationen, in denen Planungsziel erreicht ist: Zielzustände Z_f

Zustandsübergänge (Kanten im Graphen):

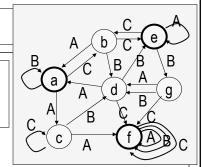

E = Übergänge zwischen Situationen durch Aktionen


= { $[v,v',a] \mid v,v' \in V \ a \in A \land v \ wird \ durch \ a \ in \ v' \ überführt }$


G ist ein Kanten-beschrifteter Graph mit Mehrfachkanten


$$G = [V, E, f, A, \beta]$$

mit
$$f([v,v',a]) = [v,v'], \beta([v,v',a]) = a$$



Akzeptor

 $T = [Z,X,\delta] \quad mit$ "Anfangszustand" $z_0 \in Z$ Menge von "Zielzuständen" $Z_f \subseteq Z$

Akzeptierte Sprache:

$$L(T, z_0, Z_f) = \{ x_1...x_n \mid \delta(z_0, x_1...x_n) \in Z_f \} \subseteq X^*$$

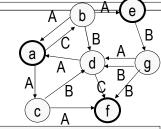
L ist regulär,

genau dann, wenn T = [Z,X, δ], $z_0 \in Z$, $Z_f \subseteq Z$ existieren mit X,Z endlich und L = L(T, z_0 , Z_f) .

PI2 Sommer-Semester 2005

Hans-Dieter Burkhard

7


Nicht-deterministisches Transitionssystem

T = [Z,X,f] mit

Z: Zustandsmenge

X: Eingangssignale

 $f: Z \times X \rightarrow 2^Z$ Überführungsfunktion

Erweiterung: f: $2^Z \times X^* \rightarrow 2^Z$

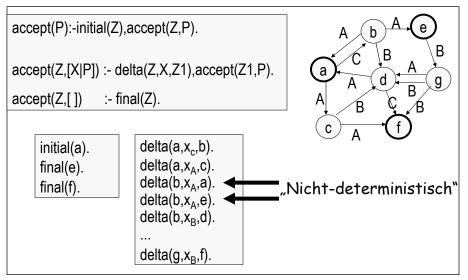
 $f(M,\lambda)=M$

 $f(M,x_1...x_n x) = f(f(M,x_1...x_n), x)$

 $f(z,x_1...x_n)$ sind die von z mit der Folge $x_1...x_n$ erreichten Zustände

Akzeptierte Sprache:

regulär, falls X,Z endlich


 $L(T, z_0, Z_f) = \{ x_1...x_n \mid f(z_0, x_1...x_n) \cap Z_f \neq \emptyset \}$

PI2 Sommer-Semester 2005

Hans-Dieter Burkhard

8

Komplexität (Anzahl der Zustände/Knoten)

Hans-Dieter Burkhard

8-er Puzzle: 9! Zustände

PI2 Sommer-Semester 2005

- davon 9!/2 = 181.440 erreichbar
- 15-er Puzzle: 16! Zustände
 - davon 16!/2 erreichbar
- ungarischer Würfel: 12 · 4,3 · 10¹⁹ Zustände
 - 1/12 davon erreichbar: 4,3 · 1019
- Türme von Hanoi: 3ⁿ Zustände für n Scheiben
 - lösbar in (2ⁿ) 1 Zügen
- Dame: ca 10⁴⁰ Spiele durchschnittlicher Länge
- Schach: ca 10¹²⁰ Spiele durchschnittlicher Länge
- Go: 3³⁶¹ Stellungen

PI2 Sommer-Semester 2005

Hans-Dieter Burkhard

10

Suchverfahren in Graphen

Graph: G = [Z,E] mit

- Anfangszustand z_0 ∈ Z
- Zielzuständen Z_f⊆V

Probleme:

- Speicher reicht nicht für vollständigen Zustandsraum
- Aufwand für Erkennen von Wiederholungen

Lösungsmethode:

"Expansion des Zustandsraumes":

Schrittweise Konstruktion und Untersuchung von Zuständen

"konstruieren – testen – vergessen"

PI2 Sommer-Semester 2005

Hans-Dieter Burkhard

11

Expansionsstrategien

Richtung

- Vorwärts, beginnend mit z₀ (forward chaining, data driven, bottom up)
- Rückwärts, beginnend mit Z_f (backward chaining, goal driven, top down)
- Bidirektional

Ausdehnung

- · Tiefe zuerst
- Breite zuerst

Zusatzinformation

- blinde Suche
- heuristische Suche

PI2 Sommer-Semester 2005

Hans-Dieter Burkhard

12