
Ulf Leser, Humboldt-Universität zu Berlin

OLAP Queries on
Big Data Processing Systems

Ulf Leser: Data Warehousing and Data Mining 2

Big Data

2+
billion

people
on the

Web by
end

2011

30 billion RFID
tags today

 (1.3B in 2005)

4.6
billion
camera
phones

world
wide

100s of
millions
of GPS

enabled
devices

sold
annually

76 million smart
meters in 2009…

 200M by 2014

12+ TBs
of tweet data

every day

25+ TBs of
log data every

day

?
TB

s
of

da

ta
 e

ve
ry

 d
ay

© K. Kannan, IBM Research Labs, 2013

• What to do when data sets get really big?
Web crawling,
click-stream analysis,
astronomy sky surveys,
cellphone calls,
credit card transactions,
sensor readouts,
…

Ulf Leser: Data Warehousing and Data Mining 3

• Map/Reduce and Hadoop
• Big Data Processing Systems
• Example: HIVE

Ulf Leser: Data Warehousing and Data Mining 4

Two Options

• Buy supercomputers

– Very fast networks, 10000+ cores, high-quality hardware
– Very expensive, outdated quickly, cooling is an issue

• Buy lots of commodity hardware
– Normal networks (10GB), multiple cores in 1000+ machines, cheap

hardware with none-trivial probability of failures
– Comparably cheap, renewal possible, less cooling issues
– Difficult to program: Achieving high throughput on distributed

machines with regular failures

Ulf Leser: Data Warehousing and Data Mining 5

The Advent of MapReduce

• Dean, J., & Ghemawat, S. (2008). MapReduce: simplified
data processing on large clusters. CACM, 51(1)
– First paper in 2004; 23000+ citations today

• Main ideas
– Focus on typical data analysis requirements (~OLAP)

• No synchronization, no transactions, no multi-user, no time-critical
operations, … all the things which are difficult in distributed systems

– Accept failing machine and single-point-of-failures
• 1000+ cheap workers which may fail,
• One more robust coordinator node which should not fail

– Separate data analysis and file management
• Use a distributed file system for data exchange

– Wrap everything in MAP or REDUCE second-order-functions

Ulf Leser: Data Warehousing and Data Mining 6

Infrastructure

• Types of distributed analysis have many task in common
– Manage cluster: IP, capacity, port number, credentials, …
– Start / stop / monitor tasks on worker nodes
– Restart nodes in case of failure
– Manage files and provide access to data (in a fail-safe manner)
– Login, logging, administrative interfaces
– Scheduling: Which task should start when on which node?
– All these are provided by the MapReduce infrastructure

• Open source: Hadoop

• Things that are not common
– Perform the analysis (the first-order functions)
– Build local environment to run first-order functions (libs, …)
– These must be provided by the developer (and nothing else)

Ulf Leser: Data Warehousing and Data Mining 7

Map / Reduce

• Second-order function g: Function with two parameters
– Set D of data elements
– Function f
– General semantics: Apply f to all elements of D independently

• Like a loop through D, but with assertion that computation
for an element d is independent of all other elements of D

• Map: f(d) must produce 0-n pairs <k,d’>
– d may be filtered or produce multiple outputs
– k is a (non-unique) key, d’ some payload derived from d

• Reduce: Group-by k and apply f on each group
– f must be an aggregation function

Ulf Leser: Data Warehousing and Data Mining 8

Example: Simple GROUP-BY Query

• Input set D: All tuples from S
• MAP(D, WHERE)

– Read each tuple, check WHERE condition, write nothing if condition
is not met and <year_id, amount*price> otherwise

• REDUCE(…, SUM)
– Read all <k,d‘> output by MAP, group by year_id, call SUM for each

group, and output <year_id, sum>

SELECT year_id, sum(amount*price)
FROM sales S
WHERE shop_ID = 10 AND price>10
GROUP BY year_id;

Ulf Leser: Data Warehousing and Data Mining 9

Distributed Processing

• Trick: We can very easily parallelize MAPs and REDUCEs
– All tuples in MAP are treated independent – partition D equally

between all available nodes
– All groups in REDUCE can be treated independently – partition all

groups equally between all nodes

• Works perfectly – centers with 10000+ nodes are known

D

D1

D2

Dn

…

MAP

MAP

MAP

…

Large
sort

REDUCE

REDUCE

REDUCE

…
D‘

G1

G2

Gm

…

Ulf Leser: Data Warehousing and Data Mining 10

Distributed Processing

• Trick: We can very easily parallelize MAPs and REDUCEs
– All tuples in MAP are treated independent – partition D equally

between all available nodes
– All groups in REDUCE can be treated independently – partition all

groups equally between all nodes

• Works perfectly – centers with 10000+ nodes are known

D

D1

D2

Dn

…

MAP

MAP

MAP

…

Large
sort

REDUCE

REDUCE

REDUCE

…
D‘

G1

G2

Gm

…

Ulf Leser: Data Warehousing and Data Mining 11

Systems Aspects

• Partitioning (splitting) can be done by system or custom
– System: Only if records are distinguishable

• Functions for MAP and REDUCE are provided by developer
• Load-balancing

– Produce many more partitions than nodes
• Struggler: A partition taking much longer than others (e.g. non-linear

runtime in size of d)

– MAP: Simple, assume linear runtime in number of records
– REDUCE: Tricky – # of groups is unknown, groups have dif. sizes

• Assignment of partitions/groups to node is performed by a
central instance – Master node (scheduler)

D

D1

D2

Dn

…

MAP

MAP

MAP

…

Large
sort

REDUCE

REDUCE

REDUCE

…
D‘

G1

G2

Gm

…

Ulf Leser: Data Warehousing and Data Mining 12

Hadoop and HDFS

• System by Google was
never made public

• Hadoop: Yahoo / open
source implementation of
the MapReduce idea
– Apache Top-Level project

• HDFS: Hadoop Distributed
File System

• Hadoop 2 (Yarn): Arbitrary
tasks & execution orders

• Hadoop 3: Erasure coding
in HDFS Source: http://blog.raremile.com/

Ulf Leser: Data Warehousing and Data Mining 13

HDFS

• Batch processing: Tasks read/write data into/from HDFS
• HDFS Architecture

– Files are split into chunks
• e.g. 64MB

– Chunks are replicated on
multiple nodes (e.g. 3 times)

– Client request chunk-Ids
from name node

• Trying to find „close“ chunks

– Clients read directly (and possibly in parallel) from data nodes
– If a data node crashes – replica survive

• Disadvantage: No POSIX interface
– Clients must use special HDFS-API

Source: https://data-flair.training

Ulf Leser: Data Warehousing and Data Mining 14

Failure Tolerance and Scheduling in Hadoop

• Fault tolerance
– Master node tracks worker nodes
– Worker nodes taking „too“ long (hangs): Task is replicated
– Worker node not responding (crash): Task is replicated
– If master node crashes – system is dead

• But (intermediate) data survives in HDFS

• Scheduling
– Simple round-robin scheduling
– Master node has queue of ready-to-run tasks
– Worker nodes ask for tasks and report when finished
– Ideally, tasks are assigned to workers having a local copy of the to-

be-processed data
– Reduce may only start after all Maps are ready

• Inflexible! Key could already be used for splitting

Ulf Leser: Data Warehousing and Data Mining 15

Limitations (compared to a RDBMS)

• MAP and REDUCE have only one input – what about JOIN
and UNION (solved)?

• No indexing – always all the input is scanned (not solved)
• Slow data exchange – always IO+network (solved)
• No optimization of operator order (partly solved)

– Which map should be executed first if there are multiple?

• Need to write JAVA instead of SQL (bug or feature?)
• Integration in existing systems? (solved – SQL on Hadoop)
• Data cannot be modified (not solved)
• Data is stored in verbose formats – expensive parsing

(solvable)
• …

Ulf Leser: Data Warehousing and Data Mining 16

But

• Commercial parallel DBMS are extremely expensive
• Commercial parallel DBMS do not scale

– Consistent writes are quite difficult in distributed systems
– Need to support distributed transactions, synchronized data access,

replication strategies, failover modes, …

• There don’t exist any open source parallel databases or
data processing systems

Ulf Leser: Data Warehousing and Data Mining 17

Classical Example: Word Count

• MapReduce is not SQL
• Word count: Given a very large collection of documents,

report the frequency of each distinct word
– Important step for indexing in information retrieval

• Idea
– MAP: Take a document d as input, break into words, count

frequencies, write <word, freq-word> for each distinct word
– SHUFFLE: Sort all pairs

by key <word>
– REDUCE: Sum-up all

<freq-word> per
word

Source: https://dzone.com/

Ulf Leser: Data Warehousing and Data Mining 18

• Map/Reduce and Hadoop
• Big Data Processing Systems
• Example: HIVE

Ulf Leser: Data Warehousing and Data Mining 19

Hadoop for Structured Queries

• MapReduce fits perfectly to selections and group-bys
• MapReduce assumes data-parallel problems

– An operation may be performed on single tuples without
considering other tuples

– “Embarrassingly parallel”

• Not all relational operators are data parallel
– Only those that can be pipelined
– Pipeline-breaker: order-by
– Difficult to handle: Union, Join

Ulf Leser: Data Warehousing and Data Mining 20

Joins in MapReduce

• Many suggestions
• Example: Map-side join (assume input s1 is small)

– MAP: Preload s1 at once; read partition of s2 and compute join
– SHUFFLE, REDUCE: nothing
– Problem: Each MAP task needs enough memory to hold s1

• Example: Re-partition join (on join attribute k)
– MAP: Read tuples <k,d> from source s and output <k,s,d>

• s: 1 or 2 for the two input relations

– SHUFFLE: Sort by <k>
– REDUCE: Load all tuples with same key k, check if join-partner

exists, and output <k,d1,d2>
– Problem: First steps read/write all data three times

Ulf Leser: Data Warehousing and Data Mining 21

Big Data Processing Systems

• Several commercial and research systems building on
MapReduce ideas but offering additional functionality

• Two classes
– Focus on structured data and query-like analysis – white box data

model, few known operators, reordering possible
– Focus on unstructured data and arbitrary analysis – black box data

and black-box operator model, no reordering
• (Scientific) workflow systems

Ulf Leser: Data Warehousing and Data Mining 22

Example: Spark

• Main catch
– Exchanging data through files is slow / unnecessary with todays

memories
– But if data is kept in memory, no intermediate data remains in case of

a crashing node – need to restart entire job

• RDD: Resilient distributed datasets
– Partitioned datasets become

first-class objects
– RDD are immutable: A step

produces a new RDD
– RDDs are kept in main memory

and exchanged through sockets
– System stores trace of RDD

generation at partition level
– If a node crashes, only its current partitions need to be recreated

(and the history tells us how)

Ulf Leser: Data Warehousing and Data Mining 23

Example: Stratosphere / Flink

• Main catch: Only having Map and Reduce is too restricted
• More second-order functions: Map, reduce, group, co-

group, union, join
• Focus on relational processing, but also support and

optimization for UDFs
• Streaming: Data parallel parts of a query are executed

tuple-by-tuple with exchange though sockets
– Query can run on infinite input (stream of tuples)
– Can produce instant answers despite changing inputs (to some

degree)

Ulf Leser: Data Warehousing and Data Mining 24

Hadoop Ecosystem (small)

Source: https://www.mindtory.com/

Ulf Leser: Data Warehousing and Data Mining 25

Hadoop Ecosystem (large)

Source: https://mydataexperiments.com/

Ulf Leser: Data Warehousing and Data Mining 26

• Map/Reduce and Hadoop
• Big Data Processing Systems
• Example: HIVE

Ulf Leser: Data Warehousing and Data Mining 27

Exemplary System: HIVE

• DWH system build on top of Hadoop (Facebook)

– Many successors: Cloudera, HortonWorks, Pentaho, …
– Today a popular Apache project

• Quite comprehensive (read-only) SQL support
• Focus: Optimization of batch-oriented MapReduce jobs

– No index support

• Storage: All in files / directories in HDFS
• “At Facebook, a Hive warehouse contains tens of

thousands of tables, stores over 700TB and is used for
reporting and ad-hoc analyses by 200 Fb users.” (2017)

Ulf Leser: Data Warehousing and Data Mining 28

Motivation

• Fast data growth – from 15TB to 700TB in a few years
• Existing RDBMS became slower and slower and had no

way to scale out to new hardware
• Only ingesting click-stream data was slower than its

production
• Hadoop’s API MapReduce is too low level – need for

declarative data access

Ulf Leser: Data Warehousing and Data Mining 29

Storage

• Table = directory
• Partitions = subdirectories

– Horizontal partitioning with range or equality partitioning
– Used for partition pruning in scans

• Buckets = files
– Hash or range partitioning
– Used for bucket pruning during scans

• User can provide custom parsers to read special row

formats

Ulf Leser: Data Warehousing and Data Mining 30

HiveQL

• Full set of primitive data types (float, string, int, …)
• Nested collection types: Struct, sets, bags
• Subset of SQL: Select, join, aggregate, union-all, nested

queries
– No Theta-Joins

• Support for UDFs, embedded MapReduce scripts, and
metadata queries

• No single-tuple insert, no delete, no update
• Table creation: Interpreting an existing file as a table

– But SQL may create new tables = new files

Ulf Leser: Data Warehousing and Data Mining 31

Example – Word Count in Hive

FROM (
 MAP doctext USING 'python wc_mapper.py'
 AS (word, cnt)
 FROM docs
 CLUSTER BY word
) a
REDUCE word, cnt USING 'python wc_reduce.py';

Input table (with
attribute doctext)

First-order UDFs Output from MAP phase

Sort-order for directing output-tuples

Ulf Leser: Data Warehousing and Data Mining 32

Limited Optimization

• Only rule-based (where should statistics come from?)
– Predicate Push-Down, column pruning, partition pruning

• Joins: Broadcast smaller table to mapper for larger table
– Map-side join

• Pre-aggregation (COMBINE phase)
• Users may provide hints
• Scheduling is completely delegated to Hadoop

Ulf Leser: Data Warehousing and Data Mining 33

Example
Data exchange between
phases through HDFS

Ulf Leser: Data Warehousing and Data Mining 34

Other Systems

• HadoopDB
• Presto (Teradata)
• Cloudera Impala
• Spark SQL
• Apache Drill
• AsterixDB

Ulf Leser: Data Warehousing and Data Mining 35

References

• Dean, J. and Ghemawat, S. (2008). "MapReduce: Simplified Data
Processing on Large Clusters " Communications of the ACM 51(1).

• Thusoo, A., Sarma, J., Jain, N., S, Z., Chakka, P., Z, N., Antony, S., L,
H. and Murthy, R. (2010). "Hive - a petabyte scale data warehouse
using Hadoop". Int. Conf. on Data Engineering, Long Beach, CA

• Alexandrov, A., Bergmann, R., Ewen, S., Freytag , J.-C., Hueske, F.,
Heise, A., Kao, O., Leich, M., Leser, U., Markl, V., et al. (2014). "The
Stratosphere Platform for Big Data Analytics." VLDB Journal 23(6):
939-964.

• Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M.,
Franklin, M. J., Shenker, S. and Stoica, I. (2012). "Resilient distributed
datasets: a fault-tolerant abstraction for in-memory cluster
computing". USENIX conference on Networked Systems Design and
Implementation. San Jose, USA.

Ulf Leser: Data Warehousing and Data Mining 36

Self Assessment

• Describe the semantics of MAP and REDUCE functions
• Compare HDFS to a remote data access with NFS. What

are pros / cons?
• What is the COMBINE phase of a mapreduce pipeline?
• Design a mapreduce program for the following problem:

Given a set of market basket contents, find all pairs of
items sold together more often than k times

• What is a single-point-of-failure? Where does Hadoop have
spofs?

	Foliennummer 1
	Big Data
	Foliennummer 3
	Two Options
	The Advent of MapReduce
	Infrastructure
	Map / Reduce
	Example: Simple GROUP-BY Query
	Distributed Processing
	Distributed Processing
	Systems Aspects
	Hadoop and HDFS
	HDFS
	Failure Tolerance and Scheduling in Hadoop
	Limitations (compared to a RDBMS)
	But
	Classical Example: Word Count
	Foliennummer 18
	Hadoop for Structured Queries
	Joins in MapReduce
	Big Data Processing Systems
	Example: Spark
	Example: Stratosphere / Flink
	Hadoop Ecosystem (small)
	Hadoop Ecosystem (large)
	Foliennummer 26
	Exemplary System: HIVE
	Motivation
	Storage
	HiveQL
	Example – Word Count in Hive
	Limited Optimization
	Example
	Other Systems
	References
	Self Assessment

