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• What to do when data sets get really big? 
Web crawling,  
click-stream analysis,  
astronomy sky surveys,  
cellphone calls,  
credit card transactions,  
sensor readouts,  
… 
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• Map/Reduce and Hadoop 
• Big Data Processing Systems 
• Example: HIVE 
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Two Options 

 
• Buy supercomputers 

– Very fast networks, 10000+ cores, high-quality hardware 
– Very expensive, outdated quickly, cooling is an issue 

• Buy lots of commodity hardware 
– Normal networks (10GB), multiple cores in 1000+ machines, cheap 

hardware with none-trivial probability of failures 
– Comparably cheap, renewal possible, less cooling issues 
– Difficult to program: Achieving high throughput on distributed 

machines with regular failures 
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The Advent of MapReduce 

• Dean, J., & Ghemawat, S. (2008). MapReduce: simplified 
data processing on large clusters. CACM, 51(1) 
– First paper in 2004; 23000+ citations today 

• Main ideas 
– Focus on typical data analysis requirements (~OLAP) 

• No synchronization, no transactions, no multi-user, no time-critical 
operations, … all the things which are difficult in distributed systems 

– Accept failing machine and single-point-of-failures 
• 1000+ cheap workers which may fail,  
• One more robust coordinator node which should not fail 

– Separate data analysis and file management 
• Use a distributed file system for data exchange 

– Wrap everything in MAP or REDUCE second-order-functions 
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Infrastructure 

• Types of distributed analysis have many task in common 
– Manage cluster: IP, capacity, port number, credentials, … 
– Start / stop / monitor tasks on worker nodes 
– Restart nodes in case of failure 
– Manage files and provide access to data (in a fail-safe manner) 
– Login, logging, administrative interfaces 
– Scheduling: Which task should start when on which node? 
– All these are provided by the MapReduce infrastructure 

• Open source: Hadoop 

• Things that are not common  
– Perform the analysis (the first-order functions) 
– Build local environment to run first-order functions (libs, …) 
– These must be provided by the developer (and nothing else) 
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Map / Reduce 

• Second-order function g: Function with two parameters  
– Set D of data elements 
– Function f 
– General semantics: Apply f to all elements of D independently 

• Like a loop through D, but with assertion that computation 
for an element d is independent of all other elements of D  

• Map: f(d) must produce 0-n pairs <k,d’> 
– d may be filtered or produce multiple outputs 
– k is a (non-unique) key, d’ some payload derived from d 

• Reduce: Group-by k and apply f on each group 
– f must be an aggregation function 
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Example: Simple GROUP-BY Query 

• Input set D: All tuples from S 
• MAP(D, WHERE) 

– Read each tuple, check WHERE condition, write nothing if condition 
is not met and <year_id, amount*price> otherwise 

• REDUCE( …, SUM) 
– Read all <k,d‘> output by MAP, group by year_id, call SUM for each 

group, and output <year_id, sum> 

SELECT  year_id, sum(amount*price) 
FROM    sales S 
WHERE  shop_ID = 10 AND price>10 
GROUP BY  year_id; 
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Distributed Processing 

• Trick: We can very easily parallelize MAPs and REDUCEs 
– All tuples in MAP are treated independent – partition D equally 

between all available nodes 
– All groups in REDUCE can be  treated independently – partition all 

groups equally between all nodes 

• Works perfectly – centers with 10000+ nodes are known 
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Systems Aspects 

• Partitioning (splitting) can be done by system or custom 
– System: Only if records are distinguishable 

• Functions for MAP and REDUCE are provided by developer 
• Load-balancing  

– Produce many more partitions than nodes 
• Struggler: A partition taking much longer than others (e.g. non-linear 

runtime in size of d) 

– MAP: Simple, assume linear runtime in number of records 
– REDUCE: Tricky – # of groups is unknown, groups have dif. sizes 

• Assignment of partitions/groups to node is performed by a 
central instance – Master node (scheduler) 
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Hadoop and HDFS 

• System by Google was 
never made public 

• Hadoop: Yahoo / open 
source implementation of 
the MapReduce idea 
– Apache Top-Level project 

• HDFS: Hadoop Distributed 
File System 

• Hadoop 2 (Yarn): Arbitrary 
tasks & execution orders  

• Hadoop 3: Erasure coding 
in HDFS Source: http://blog.raremile.com/ 
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HDFS 

• Batch processing: Tasks read/write data into/from HDFS 
• HDFS Architecture 

– Files are split into chunks  
• e.g. 64MB 

– Chunks are replicated on  
multiple nodes (e.g. 3 times) 

– Client request chunk-Ids  
from name node 

• Trying to find „close“ chunks 

– Clients read directly (and possibly in parallel) from data nodes 
– If a data node crashes – replica survive 

• Disadvantage: No POSIX interface 
– Clients must use special HDFS-API 

 

Source: https://data-flair.training 
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Failure Tolerance and Scheduling in Hadoop 

• Fault tolerance 
– Master node tracks worker nodes 
– Worker nodes taking „too“ long (hangs): Task is replicated 
– Worker node not responding (crash): Task is replicated 
– If master node crashes – system is dead 

• But (intermediate) data survives in HDFS 

• Scheduling 
– Simple round-robin scheduling 
– Master node has queue of ready-to-run tasks 
– Worker nodes ask for tasks and report when finished 
– Ideally, tasks are assigned to workers having a local copy of the to-

be-processed data 
– Reduce may only start after all Maps are ready 

• Inflexible! Key could already be used for splitting 
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Limitations (compared to a RDBMS) 

• MAP and REDUCE have only one input – what about JOIN 
and UNION (solved)? 

• No indexing – always all the input is scanned (not solved) 
• Slow data exchange – always IO+network (solved) 
• No optimization of operator order (partly solved) 

– Which map should be executed first if there are multiple? 

• Need to write JAVA instead of SQL (bug or feature?) 
• Integration in existing systems? (solved – SQL on Hadoop) 
• Data cannot be modified (not solved) 
• Data is stored in verbose formats – expensive parsing 

(solvable) 
• … 
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But 

 
 

• Commercial parallel DBMS are extremely expensive  
• Commercial parallel DBMS do not scale 

– Consistent writes are quite difficult in distributed systems 
– Need to support distributed transactions, synchronized data access, 

replication strategies, failover modes, … 

• There don’t exist any open source parallel databases or 
data processing systems  
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Classical Example: Word Count 

• MapReduce is not SQL 
• Word count: Given a very large collection of documents, 

report the frequency of each distinct word 
– Important step for indexing in information retrieval 

• Idea 
– MAP: Take a document d as input, break into words, count 

frequencies, write <word, freq-word> for each distinct word 
– SHUFFLE: Sort all pairs  

by key <word> 
– REDUCE: Sum-up all  

<freq-word> per  
word 

Source: https://dzone.com/ 
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• Map/Reduce and Hadoop 
• Big Data Processing Systems 
• Example: HIVE 
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Hadoop for Structured Queries 

 
• MapReduce fits perfectly to selections and group-bys 
• MapReduce assumes data-parallel problems 

– An operation may be performed on single tuples without 
considering other tuples 

– “Embarrassingly parallel” 

• Not all relational operators are data parallel 
– Only those that can be pipelined 
– Pipeline-breaker: order-by 
– Difficult to handle: Union, Join 
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Joins in MapReduce 

• Many suggestions 
• Example: Map-side join (assume input s1 is small) 

– MAP: Preload s1 at once; read partition of s2 and compute join 
– SHUFFLE, REDUCE: nothing 
– Problem: Each MAP task needs enough memory to hold s1 

• Example: Re-partition join (on join attribute k) 
– MAP: Read tuples <k,d> from source s and output <k,s,d> 

• s: 1 or 2 for the two input relations 

– SHUFFLE: Sort by <k> 
– REDUCE: Load all tuples with same key k, check if join-partner 

exists, and output <k,d1,d2> 
– Problem: First steps read/write all data three times 
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Big Data Processing Systems 

 
 

• Several commercial and research systems building on 
MapReduce ideas but offering additional functionality 

• Two classes 
– Focus on structured data and query-like analysis – white box data 

model, few known operators, reordering possible 
– Focus on unstructured data and arbitrary analysis – black box data 

and black-box operator model, no reordering 
• (Scientific) workflow systems 
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Example: Spark 

• Main catch 
– Exchanging data through files is slow / unnecessary with todays 

memories 
– But if data is kept in memory, no intermediate data remains in case of 

a crashing node – need to restart entire job 

• RDD: Resilient distributed datasets 
– Partitioned datasets become 

first-class objects 
– RDD are immutable: A step  

produces a new RDD 
– RDDs are kept in main memory  

and exchanged through sockets 
– System stores trace of RDD  

generation at partition level  
– If a node crashes, only its current partitions need to be recreated 

(and the history tells us how) 
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Example: Stratosphere / Flink 

 
• Main catch: Only having Map and Reduce is too restricted 
• More second-order functions: Map, reduce, group, co-

group, union, join 
• Focus on relational processing, but also support and 

optimization for UDFs 
• Streaming: Data parallel parts of a query are executed 

tuple-by-tuple with exchange though sockets 
– Query can run on infinite input (stream of tuples) 
– Can produce instant answers despite changing inputs (to some 

degree) 
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Hadoop Ecosystem (small) 

Source: https://www.mindtory.com/ 
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Hadoop Ecosystem (large) 

Source: https://mydataexperiments.com/ 
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• Map/Reduce and Hadoop 
• Big Data Processing Systems 
• Example: HIVE 
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Exemplary System: HIVE 

 
• DWH system build on top of Hadoop (Facebook) 

– Many successors: Cloudera, HortonWorks, Pentaho, … 
– Today a popular Apache project 

• Quite comprehensive (read-only) SQL support 
• Focus: Optimization of batch-oriented MapReduce jobs 

– No index support 

• Storage: All in files / directories in HDFS 
• “At Facebook, a Hive warehouse contains tens of 

thousands of tables, stores over 700TB and is used for 
reporting and ad-hoc analyses by 200 Fb users.” (2017) 
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Motivation 

 
 

• Fast data growth – from 15TB to 700TB in a few years 
• Existing RDBMS became slower and slower and had no 

way to scale out to new hardware 
• Only ingesting click-stream data was slower than its 

production 
• Hadoop’s API MapReduce is too low level – need for 

declarative data access 
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Storage 

 
• Table = directory 
• Partitions = subdirectories 

– Horizontal partitioning with range or equality partitioning 
– Used for partition pruning in scans 

• Buckets = files  
– Hash or range partitioning 
– Used for bucket pruning during scans 

 
• User can provide custom parsers to read special row 

formats 
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HiveQL 

 
• Full set of primitive data types (float, string, int, …) 
• Nested collection types: Struct, sets, bags 
• Subset of SQL: Select, join, aggregate, union-all, nested 

queries 
– No Theta-Joins 

• Support for UDFs, embedded MapReduce scripts, and 
metadata queries 

• No single-tuple insert, no delete, no update 
• Table creation: Interpreting an existing file as a table 

– But SQL may create new tables = new files 
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Example – Word Count in Hive 

FROM ( 
  MAP doctext USING 'python  wc_mapper.py'  
      AS (word, cnt) 
  FROM docs 
  CLUSTER BY word 
) a 
REDUCE word, cnt USING 'python wc_reduce.py'; 

Input table (with 
attribute doctext) 

First-order UDFs Output from MAP phase 

Sort-order for directing output-tuples 
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Limited Optimization 

 
 

• Only rule-based (where should statistics come from?) 
– Predicate Push-Down, column pruning, partition pruning 

• Joins: Broadcast smaller table to mapper for larger table 
– Map-side join 

• Pre-aggregation (COMBINE phase) 
• Users may provide hints  
• Scheduling is completely delegated to Hadoop 
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Example 
Data exchange between 
phases through HDFS 
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Other Systems 

 
 

• HadoopDB 
• Presto (Teradata) 
• Cloudera Impala 
• Spark SQL 
• Apache Drill 
• AsterixDB 
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Self Assessment 

 
• Describe the semantics of MAP and REDUCE functions 
• Compare HDFS to a remote data access with NFS. What 

are pros / cons? 
• What is the COMBINE phase of a mapreduce pipeline? 
• Design a mapreduce program for the following problem: 

Given a set of market basket contents, find all pairs of 
items sold together more often than k times 

• What is a single-point-of-failure? Where does Hadoop have 
spofs? 
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