OLAP Queries on
Big Data Processing Systems

UIf Leser, Humboldt-Universitat zu Berlin

Big Data

e What to do when data sets get really big?
Web crawling,

click-stream analysis, - 46
illion RFID billion
astronomy sky surveys, . Jegs oday camers
of tweet data world
cellphone calls, every day e
credit card transactions,
sensor readouts, 100s of
millions
> &= of GPS
5o g enabled
As / devi
@ g ~cold
o % annually
MOAA = 25+ TBs of 2+
GQogle s ¢ log data every e billion
f:- ota |g y day - r ‘ ’ ‘ “|I Illlllu'k . people
@ ¥ g 9D ‘ =111 on the
C2Google . = Web by
b‘:ff Gox Jg[[.f Ar Q;‘ S 7r§ert-2:ll:r?202r;art i
Youl(T[1) 200M by 2014 20t

© K. Kannan, IBM Research Labs, 2013

UIf Leser: Data Warehousing and Data Mining 2

e Map/Reduce and Hadoop
e Big Data Processing Systems
e Example: HIVE

UIf Leser: Data Warehousing and Data Mining

Two

Options

e Buy supercomputers
— Very fast networks, 10000+ cores, high-quality hardware
— Very expensive, outdated quickly, cooling is an issue

e Buy lots of commodity hardware

UIf Leser:

Normal networks (10GB), multiple cores in 1000+ machines, cheap
hardware with none-trivial probability of failures

Comparably cheap, renewal possible, less cooling issues

Difficult to program: Achieving high throughput on distributed
machines with regular failures

Data Warehousing and Data Mining

The Advent of MapReduce

e Dean, J., & Ghemawat, S. (2008). MapReduce: simplified
data processing on large clusters. CACM, 51(1)
— First paper in 2004; 23000+ citations today

e Main ideas

— Focus on typical data analysis requirements (—OLAP)

e No synchronization, no transactions, no multi-user, no time-critical
operations, ... all the things which are difficult in distributed systems

— Accept failing machine and single-point-of-failures

e 1000+ cheap workers which may fail,

» One more robust coordinator node which should not fail
— Separate data analysis and file management

e Use a distributed file system for data exchange

— Wrap everything in MAP or REDUCE second-order-functions

UIf Leser: Data Warehousing and Data Mining

Infrastructure

e Types of distributed analysis have many task in common
— Manage cluster: IP, capacity, port number, credentials, ...
— Start / stop / monitor tasks on worker nodes
— Restart nodes in case of failure
— Manage files and provide access to data (in a fail-safe manner)
— Login, logging, administrative interfaces
— Scheduling: Which task should start when on which node?
— All these are provided by the MapReduce infrastructure
e Open source: Hadoop
e Things that are not common
— Perform the analysis (the first-order functions)
— Build local environment to run first-order functions (libs, ...)
— These must be provided by the developer (and nothing else)

UIf Leser: Data Warehousing and Data Mining

Map / Reduce

e Second-order function g: Function with two parameters
— Set D of data elements
— Function f
— General semantics: Apply f to all elements of D independently

e Like a loop through D, but with assertion that computation
for an element d is independent of all other elements of D
e Map: f(d) must produce 0-n pairs <k,d’>
— d may be filtered or produce multiple outputs
— kis a (non-unique) key, d’ some payload derived from d

e Reduce: Group-by k and apply f on each group

— f must be an aggregation function

UIf Leser: Data Warehousing and Data Mining

Example: Simple GROUP-BY Query

SELECT year_id, sum(amount*price)
FROM sales S
WHERE shop ID = 10 AND price>10
GROUP BY vyear 1id;

e |nput set D: All tuples from S
e MAP(D, WHERE)

— Read each tuple, check WHERE condition, write nothing if condition
IS not met and <year_id, amount*price> otherwise

e REDUCE(..., SUM)

— Read all <k,d'> output by MAP, group by year id, call SUM for each
group, and output <year _id, sum>

UIf Leser: Data Warehousing and Data Mining

Distributed Processing

e Trick: We can very easily parallelize MAPs and REDUCEs

— All tuples in MAP are treated independent — partition D equally
between all available nodes

— All groups in REDUCE can be treated independently — partition all
groups equally between all nodes

e Works perfectly — centers with 10000+ nodes are known

D, » MAP
& REDUCE

D, » MAP ﬁ
LA G REDUCE

sort

G, REDUCE

» MAP

UIf Leser: Data Warehousing and Data Mining

Distributed Processing

e Trick: We can very easily parallelize MAPs and REDUCEs

— All tuples in MAP are treated independent — partition D equally
between all available nodes

— All groups in REDUCE can be treated independently — partition all
groups equally between all nodes

e Works perfectly — centers with 10000+ nodes are known

D, >

G, F-.
D, Tl
‘ Large ﬁ G, Frear

UIf Leser: Data Warehousing and Data Mining

I

Systems Aspects /j e 2 o

Large

D D b
sort
\f G, [* Fem :
Dn

oy

e Partitioning (splitting) can be done by system or custom
— System: Only if records are distinguishable

e Functions for MAP and REDUCE are provided by developer

e Load-balancing

— Produce many more partitions than nodes

e Struggler: A partition taking much longer than others (e.g. non-linear
runtime in size of d)

— MAP: Simple, assume linear runtime in number of records
— REDUCE: Tricky — # of groups is unknown, groups have dif. sizes

e Assignment of partitions/groups to node is performed by a
central instance — Master node (scheduler)

UIf Leser: Data Warehousing and Data Mining 11

Hadoop and HDFS

e System by Google was
e never made public

Job(jarfile)

Client

[obTacker | e Hadoop: Yahoo / open
source implementation of
the MapReduce idea

— Apache Top-Level project

Slave‘lr\lode Slave Node . :
e HDFS: Hadoop Distributed
) I S
File System

e Hadoop 2 (Yarn): Arbitrary
tasks & execution orders

Data replicated across nodes ® Hadoop 3: Erasu re COdIng
Source: http.//blog.raremile.com/ | N H D FS

UIf Leser: Data Warehousing and Data Mining

HDFS

e Batch processing: Tasks read/write data into/from HDFS

e HDFS Architecture
— Files are split into chunks

HDFS Architecture

Namenode gahictadein (bame, oplose.__k

e e£.g. 64MB Metadataops P
— Chunks are replicated on faead Datanodes N
multiple nodes (e.g. 3 times) E m_?ep_mﬂ_ﬂ
— Client request chunk-Ids $ =
from name node @ @
o Trying to find ,close“ chunks Source: https.//data-flair. training

— Clients read directly (and possibly in parallel) from data nodes
— If a data node crashes — replica survive

e Disadvantage: No POSIX interface
— Clients must use special HDFS-API

UIf Leser: Data Warehousing and Data Mining

Failure Tolerance and Scheduling in Hadoop

e Fault tolerance
— Master node tracks worker nodes
— Worker nodes taking ,,too* long (hangs): Task is replicated
— Worker node not responding (crash): Task is replicated

— If master node crashes — system is dead
e But (intermediate) data survives in HDFS

e Scheduling
— Simple round-robin scheduling
— Master node has queue of ready-to-run tasks
— Worker nodes ask for tasks and report when finished

— ldeally, tasks are assigned to workers having a local copy of the to-
be-processed data

— Reduce may only start after all Maps are ready
e Inflexible! Key could already be used for splitting

Limitations (compared to a RDBMS)

e MAP and REDUCE have only one input — what about JOIN
and UNION (solved)?

e No indexing — always all the input is scanned (not solved)
e Slow data exchange — always 10+network (solved)

e No optimization of operator order (partly solved)
— Which map should be executed first if there are multiple?

e Need to write JAVA instead of SQL (bug or feature?)
e [ntegration In existing systems? (solved — SQL on Hadoop)
e Data cannot be modified (not solved)

e Data Is stored in verbose formats — expensive parsing
(solvable)

UIf Leser: Data Warehousing and Data Mining

But

e Commercial parallel DBMS are extremely expensive

e Commercial parallel DBMS do not scale
— Consistent writes are quite difficult in distributed systems
— Need to support distributed transactions, synchronized data access,
replication strategies, failover modes, ...
e There don’t exist any open source parallel databases or
data processing systems

UIf Leser: Data Warehousing and Data Mining

Classical Example: Word Count

e MapReduce is not SQL

e Word count: Given a very large collection of documents,
report the frequency of each distinct word
— Important step for indexing in information retrieval

e |dea

— MAP: Take a document d as input, break into words, count
frequencies, write <word, freqg-word> for each distinct word

— SHUFFLE: Sort all pairs

by key <word> s 2
U
Input z::; Output
- REDUCE- Sum_up a” Bus Car Train Teoin® : EA; 1 CAR 2
AR 1
<.I: d> Bus Car Train Train 1 e E:: :
req -WO r pe r Train Plane Car Plane 1 | TRAIN 2
Bus Bus Plane Carl 4 TRAIN 1 TRAIN 2 PLANE 2
word {(5us Bus iane | e)
Bus 2 d
Pl 1 PLANE 1
- | Qi {_puane 2 |

Source: https.//dzone.com/

UIf Leser: Data Warehousing and Data Mining

e Map/Reduce and Hadoop
e Big Data Processing Systems
e Example: HIVE

UIf Leser: Data Warehousing and Data Mining

Hadoop for Structured Queries

« MapReduce fits perfectly to selections and group-bys

e MapReduce assumes data-parallel problems

— An operation may be performed on single tuples without
considering other tuples

— “Embarrassingly parallel”
e Not all relational operators are data parallel
— Only those that can be pipelined

— Pipeline-breaker: order-by
— Difficult to handle: Union, Join

UIf Leser: Data Warehousing and Data Mining

Joins in MapReduce

e Many suggestions
e Example: Map-side join (assume input s, Is small)
— MAP: Preload s, at once; read partition of s, and compute join
— SHUFFLE, REDUCE: nothing
— Problem: Each MAP task needs enough memory to hold s,
e Example: Re-partition join (on join attribute k)
— MAP: Read tuples <k,d> from source s and output <k,s,d>
e s: 1 or 2 for the two input relations

— SHUFFLE: Sort by <k>

— REDUCE: Load all tuples with same key k, check if join-partner
exists, and output <k,d1,d2>

— Problem: First steps read/write all data three times

UIf Leser: Data Warehousing and Data Mining

Big Data Processing Systems

e Several commercial and research systems building on
MapReduce ideas but offering additional functionality

e Two classes

— Focus on structured data and query-like analysis — white box data
model, few known operators, reordering possible

— Focus on unstructured data and arbitrary analysis — black box data
and black-box operator model, no reordering

e (Scientific) workflow systems

UIf Leser: Data Warehousing and Data Mining

Example: Spark J\Z
e Main catch SprK

— Exchanging data through files is slow / unnecessary with todays
memories

— But if data is kept in memory, no intermediate data remains in case of
a crashing node — need to restart entire job

e RDD: Resilient distributed datasets

_ Rartltloned dfatasets become part: Wl port- | port- 1] pat- 1] pert- [pert
first-class objects 2 d o c . d
— RDD are immutable: A step = bl o b b = il b
produces a new RDD pert- [l part- W pert- [pert W port- [pert:
. . 2 2 2 2 2 2
— RDDs are kept in main memory
part- | | part- o part- o part- i~ part- | | part-
and exchanged through sockets |3 3 3 3 3 3
_ SyStem stores trace of RDD RDDO | | RDDf1 RDD2 RDD3 | [RDD4 | | HDFS
genera’[ion at partition level map filter reduceBykey map saveAsTextFile

— If a node crashes, only its current partitions need to be recreated
(and the history tells us how)

Example: Stratosphere 7/ Flink

e Main catch: Only having Map and Reduce is too restricted

e More second-order functions: Map, reduce, group, co-
group, union, join

e Focus on relational processing, but also support and
optimization for UDFs

e Streaming: Data parallel parts of a query are executed
tuple-by-tuple with exchange though sockets
— Query can run on infinite input (stream of tuples)

— Can produce instant answers despite changing inputs (to some
degree)

UIf Leser: Data Warehousing and Data Mining

Hadoop Ecosystem (small)

[. Hadoop Ecosystem

MongoDB

Cassandra

Source: https.//www.mindtory.com/

UIf Leser: Data Warehousing and Data Mining 24

Hadoop Ecosystem (large)

T T

S nt

Apache Thrift
Apache Sentry

Uinkedin Norbert Apache Knox Gateway

ache Ranger

Zookeeper

(1)
"
Apache Pig Apache Hama Pachyderm MapReduce

(1
"
Apache Kafka 1 AMPLAB SIMR Datasalt Pangool Apache Beam

1"
T
i Apache Spark Facebook Corona Apache Tez
Netflix Sura i
T

Apache Storm

Kangar
:: Apache MapReduce Apache Apex Damballa Parkour TinkerPop
Apache Chukwa W
i

Apache Samza

Wide Column Document

Cloudera Morphline Apache Lifiene Redis
RethinkDB Linkedin Voldemort
e s
Apache NiFi Apache Accumulo CouchDB OpenTSDB
Apache Kudu s —
Apache ManifoldCF VoltDB
Apache Parquet SAP HA
Distributed File System

Source: https.//mydataexperiments.com/

UIf Leser: Data Warehousing and Data Mining

e Map/Reduce and Hadoop
e Big Data Processing Systems
e Example: HIVE

UIf Leser: Data Warehousing and Data Mining

Exemplary System: HIVE

e DWH system build on top of Hadoop (Facebook)
— Many successors: Cloudera, HortonWorks, Pentaho, ...
— Today a popular Apache project

e Quite comprehensive (read-only) SQL support

e Focus: Optimization of batch-oriented MapReduce jobs
— No index support

e Storage: All in files / directories in HDFS

e “At Facebook, a Hive warehouse contains tens of
thousands of tables, stores over 700TB and is used for
reporting and ad-hoc analyses by 200 Fb users.” (2017)

UIf Leser: Data Warehousing and Data Mining

Motivation

e Fast data growth — from 15TB to 700TB in a few years

e Existing RDBMS became slower and slower and had no
way to scale out to new hardware

e Only ingesting click-stream data was slower than its
production

e Hadoop’s APl MapReduce is too low level — need for
declarative data access

UIf Leser: Data Warehousing and Data Mining

Storage

e Table = directory

e Partitions = subdirectories
— Horizontal partitioning with range or equality partitioning
— Used for partition pruning in scans

e Buckets = files

— Hash or range partitioning
— Used for bucket pruning during scans

e User can provide custom parsers to read special row
formats

UIf Leser: Data Warehousing and Data Mining

HiveQL

e Full set of primitive data types (float, string, int, ...)
e Nested collection types: Struct, sets, bags

e Subset of SQL: Select, join, aggregate, union-all, nested
gueries
— No Theta-Joins

e Support for UDFs, embedded MapReduce scripts, and
metadata queries

e No single-tuple insert, no delete, no update

e Table creation: Interpreting an existing file as a table
— But SQL may create new tables = new files

UIf Leser: Data Warehousing and Data Mining 30

Example — Word Count in Hive

Output from MAP phase First-order UDFs

ey ¢ /!

MA octext USING "python (wc _mapper.py”
AS* (word, cnt)

FROM docs <— Input table (with
CLUSTER BY word l attribute doctext)

) a
REDUCE w7l, cnt USING "python wc_reduce.py”;

Sort-order for directing output-tuples

UIf Leser: Data Warehousing and Data Mining

Limited Optimization

e Only rule-based (where should statistics come from?)
— Predicate Push-Down, column pruning, partition pruning

e Joins: Broadcast smaller table to mapper for larger table
— Map-side join

e Pre-aggregation (COMBINE phase)

e Users may provide hints

e Scheduling is completely delegated to Hadoop

UIf Leser: Data Warehousing and Data Mining

" FileSinkOperator
takle: school_sumrmary

. FileSinkOperator
i _ [@:sting, 1: bigint] { J

table: gender_summary

[0 int, 1: bigint]
: £ | 4
Example R
Data exchange between T - oemmemEm
hases through HDFS o e o]
& |
{ | i
FROM (SELECT a.status, b.school, b.gender RecuceSinkOparstor ' [educesinoperaer |
FROM status updates a JOIN profiles b [W‘”ﬂ;“'t"g‘”" IS bgin) "
ON (a.userid = b.userid nbh{;ﬁ;nnupermm‘ i ‘lea[;talnommtnr v
AND a.ds="2009-03-20")) subql o sting. 1/ ogi) | { (', 1 i ‘
RS ST z ________________ .
INSERT OVERWRITE TABLE gender summary | | ,
PARTITION(ds="2009-03-20") bt J ot i
| [0:string, 1: bigint] [0: int, 1: bigirt]
SELECT subql.gender, COUNT(1) 3 4
GROUP BY subq-permder < %m“’[‘”“‘"’mﬁw ag;‘:%: “j’%ﬁm
jo: peieih [0:ini, 1 higint]

——

INSERT OVERWRITE TABLE school summary i
PARTITION(ds= |

SELECT subql.school, CO

GROUP BY subql=e

SelectOperator
EEPrassions: [m[1]_. ml[4]_. col]S]]
[Q: slring, 1: string, 2: ini]
A

JoinOperator]
precicate: call0.0] = col[1.0]
(0210, T 519, 2 ting, 3, 4: s, 5:

i ReduceSinkOperator ‘ ReduceSinkOperator

| panition cals: call0] partition cals: eal[0]
[0: inL, 7: gtring, 2: siring]

[0: inl, 1: StAng. 2: i)

|

]

I

_] 1 1

1 Map FilterOperator TahlpScanOperator

' predicae: col[ds]=2008-05-20" fable: prafies

! [0 ir, 7z string, 2: swing] [userid int, sehool string, gendsr int]
: t

I

TableScanOperator
table: status_updates

UIf Leser: Data Warehousing and Data Mining ! [userid i, status string, ds string]

Other Systems

e HadoopDB

e Presto (Teradata)
e Cloudera Impala
e Spark SQL

e Apache Drill

e AsterixDB

UIf Leser: Data Warehousing and Data Mining

References

e Dean, J. and Ghemawat, S. (2008). "MapReduce: Simplified Data
Processing on Large Clusters " Communications of the ACM 51(1).

e Thusoo, A., Sarma, J., Jain, N., S, Z., Chakka, P., Z, N., Antony, S., L,
H. and Murthy, R. (2010). "Hive - a petabyte scale data warehouse
using Hadoop". Int. Conf. on Data Engineering, Long Beach, CA

e Alexandrov, A., Bergmann, R., Ewen, S., Freytag , J.-C., Hueske, F.,
Heise, A., Kao, O., Leich, M., Leser, U., Markl, V., et al. (2014). "The
Stratosphere Platform for Big Data Analytics.” VLDB Journal 23(6):
939-964.

e Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M.,
Franklin, M. J., Shenker, S. and Stoica, 1. (2012). "Resilient distributed
datasets: a fault-tolerant abstraction for in-memory cluster
computing”. USENIX conference on Networked Systems Design and
Implementation. San Jose, USA.

UIf Leser: Data Warehousing and Data Mining

Self Assessment

e Describe the semantics of MAP and REDUCE functions

e Compare HDFS to a remote data access with NFS. What
are pros / cons?

e What is the COMBINE phase of a mapreduce pipeline?

e Design a mapreduce program for the following problem:
Given a set of market basket contents, find all pairs of
items sold together more often than k times

 What is a single-point-of-failure? Where does Hadoop have
spofs?

UIf Leser: Data Warehousing and Data Mining 36

	Foliennummer 1
	Big Data
	Foliennummer 3
	Two Options
	The Advent of MapReduce
	Infrastructure
	Map / Reduce
	Example: Simple GROUP-BY Query
	Distributed Processing
	Distributed Processing
	Systems Aspects
	Hadoop and HDFS
	HDFS
	Failure Tolerance and Scheduling in Hadoop
	Limitations (compared to a RDBMS)
	But
	Classical Example: Word Count
	Foliennummer 18
	Hadoop for Structured Queries
	Joins in MapReduce
	Big Data Processing Systems
	Example: Spark
	Example: Stratosphere / Flink
	Hadoop Ecosystem (small)
	Hadoop Ecosystem (large)
	Foliennummer 26
	Exemplary System: HIVE
	Motivation
	Storage
	HiveQL
	Example – Word Count in Hive
	Limited Optimization
	Example
	Other Systems
	References
	Self Assessment

