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Abstract. Load balancing is an important prerequisite to efficiently execute dynamic computations on parallel
computers. In this context, this project has focussed on two topics: balancing dynamically generated work load
cost efficiently in a network and partitioning graphs to equally distribute connected tasks on the processing
nodes while reducing the communication overhead. We summarize new insights and results in these areas.

1 Introduction

The efficient usage of parallel computing resources plays a key role for many large scale appli-
cations. These applications usually consist of a huge number of smaller calculations which are
related via data dependencies. In order to minimize the overall computation time, an efficient
parallelization requires these tasks to be distributed equally among all processing nodes. Many
applications generate work load dynamically which abolishes any existing equal distribution.
Hence, the load must be rebalanced during the runtime of the program. The redistribution should
keep the costs induced by the task migration as low as possible. Since placing calculations that
depend on each other on different processing nodes results in communication, this should be
avoided as far as possible due to the involved costs in terms of latency and bandwidth.

Rebalancing the work load distribution consists of two subproblems: Computing a balancing
flow, i. e. determining how much load needs to be migrated over the communication links, and
the choice of the tasks to be placed or migrated onto the processing nodes. To study these two
problems, the work in this project is based on different models [14, 10].

The first model assumes that all calculations can be performed independently from each
other, meaning that either no data dependencies between the tasks exist or that their commu-
nication costs are negligable. When determining a rearrangement of the calculations, the atten-
tion lies on minimizing the number of migrating tasks, or, from the network’s point of view, in
stressing the communication links as little as possible. We assume that tasks can be split arbi-
trarily. This problem is referred to asdynamic load balancing. Besides the methods presented
here, several alternative approaches to solve it have been investigated and implemented in the
Daisy/VDS library within the subproject A2.

While dynamic load balancing focusses on the communication volume occuring during the
balancing process, the second model addresses the communication occuring inside the dis-
tributed application. The calculations and their dependencies can be modeled by a graph, and
the objective is to split this graph into equally sized parts such that the number of edges between
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Fig. 1.After refining the mesh, the computational load is unbalanced (left). A balancing flow is computed (middle) and elements
are migrated accordingly (right).

different partitions – and hence the induced communication volume – is minimal. This problem
is referred to asgraph-partitioningproblem and is known to be NP-complete [28].

An interesting important observation is that the algrebraic representation of a graph reflects
many of its properties and allows to adopt algrebraic methods. For a graphG = (V,E) with
vertex-edge incidence matrixA, which contains in each column corresponding to edgee= (u,v)
the entries−1 and+1 in the rowsu andv, and 0 elsewhere, the Laplacian matrixL ∈Z|V|×|V| of
G is defined asL = AAT. Several different methods and their analysis are based on the condition
of this matrix.

The goal of this project is to provide theoretical background addressing the dynamic load
balancing and the graph partitioning problem. Based on this profound knowledge, improved
methods to solve these tasks are developed, implemented and finally applied in practical appli-
cations.

One application showing the importance of an efficient load balancing scheme is theparallel

adaptive finite element simulation. The involved meshes consisting of several million elements
representing the discretized geometric space are split into parts and distributed evenly among all
processors. Each processor starts computing independently on its part until the next global com-
munication step is required. Depending on the application, the mesh is refined and coarsened
in some areas during the computation which causes an imbalance between the processor loads
and therefore delays the overall computation. For example, exact simulations of turbulences in
fluid dynamics depend on such refinements. In these situations, the computational load must be
rebalanced as sketched in figure 1. During this project, the parallel adaptive simulation environ-
ment PadFEM has been created. The load balancing and graph partitioning algorithms based on
our theoretical research have been integrated and evaluated in this simulation framework.

2 Dynamic Load Balancing

Formally, the load balancing problem is defined as follows. Given a graphG = (V,E) repre-
senting the network withn = |V| processing nodes where each nodevi contains work loadwi ,
the goal is to move load across the linksej ∈ E such that finally the weight of each node is



(approximately) equal to

w =
n

∑
i=1

wi/n.

If the global imbalance vectorw−w is known, it is possible to find a solution to this prob-
lem by solving a linear system of equations [36]. But assuming a more restrictive environment
allowing processors of the parallel network only to access information of their direct neigh-
bors, load information has to be exchanged locally in iterations until a balancing flow has been
computed.

Two subclasses of local iterative load balancing algorithms are thediffusionschemes [9, 4]
and thedimension exchangeschemes [9, 67]. These two classes reflect different communication
abilities of the network. Diffusion algorithms assume that a processor can send and receive
messages to/from all of its neighbors simultaneously, while the dimension exchange approach
is more restrictive and only allows a processor to communicate with one of its neighbors in each
iteration. Thealternating directioniterative scheme [18] represents a mixture of the diffusion
and dimension exchange methods. It reduces the number of iteration steps needed for networks
constructed by Cartesian products of graphs. The drawback of this scheme is that the resulting
flow may have load migration loops tending to infinity.

2.1 The General Diffusion Scheme

The general or first order diffusion scheme (FOS) [9] is derived from Jacobi-Iterations and
performs only local operations, i. e. data is only read from neighboring nodes. In each iterationk,
it performs the calculations

xk−1
e=(i, j) = αe(wk−1

i −wk−1
j )

f k
e = f k−1

e +xk−1
e

wk
i = wk−1

i − ∑
e=(i,∗)∈E

xk−1
e ,

with w0 being the initial work load distribution,xk
e the amount of load exchanged via edgee in

iterationk and f k
e the computed flow. The parametersαe have to be properly chosen. In matrix

notation, this scheme can be written aswk = Mwk, whereM = I −αL is the diffusion matrix.
An important result is that the First Order Diffusion Scheme converges towards a distin-

guished balancing flow as stated by the following theorem [11].

Theorem 1. Given a connected graph and an initial work load distribution, the First Order

Diffusion scheme converges towards the|| · ||2-minimal balancing flow.

2.2 Optimal Parameters

The convergence of the First Order Diffusion Scheme depends on the parametersαe. A simple
choice is to set allαe = (1+maxdeg(V))−1, but for many important graph classes better values
are known [22]. In general, the convergence of the iterative diffusion scheme is related to the
condition number of the graph’s Laplacian matrixL . The knowledge of its spectrum even allows



to determine the optimalαe values [12, 18]. In this case, onlym iteration steps are necessary
wherem is the number of different eigenvalues ofL .

This knowledge can e. g. be applied to reduce the communication in bus like interconnec-
tions. This network type allows each processor to communicate with every other, but only one
transfer can be executed at a time. To reduce the bus allocations, a virtual topology is introduced
which restricts the processors’ communication to a few peers only. In order to speed up the load
balancing process, topologies with litte different eigenvalues are of interest [19].

2.3 Overrelaxation and Generalization

Similar to the overrelaxation known from the Jacobi-Iterations, this method can also be ap-
plied to the First Order Diffusion Scheme. This results in theSecond Order Diffusion Scheme

(SOS) [29] of the form

w1 = Mw0,wk = βMwk−1 +(1−β )wk−2, k = 2,3, . . .

The fastest convergence is achieved forβ = 2/(1+
√

1−µ2
2), whereµ2 is the second smallest

eigenvalue of the diffusion matrixM . The Chebyshev method [12] differs from SOS only by
the fact thatβ depends onk according to

β1 = 1, β2 =
2

2−µ2
2

, βk =
4

4−µ2
2βk−1

, k = 3,4, . . .

Summarized, apolynomial basedload balancing scheme is any scheme for which the work
loadwk in stepk can be expressed in the formwk = pk(M)w0 wherepk∈Πk. Here,Πk denotes
the set of all polynomialsp of degree deg(p)≤ k satisfying the constraintp(1) = 1. Theorem 1
concerning the convergence can be generalized as follows.

Theorem 2. Given a connected graph and an initial work load distribution, all diffusion schemes

converge towards the|| · ||2-minimal balancing flow.

This property has been shown for polynomial based load balancing schemes [12]. The con-
vergence rate of a polynomial based scheme depends on how fast theerror ek = wk−w express-
ing the difference between the loadwk after iterationk and the corresponding average loadw

converges to zero. Ifα andβ are chosen optimally, SOS converges faster than FOS by almost a
quadratic factor, while the Chebyshev method performs asymptotically identical to SOS.

2.4 Inhomogeneous Networks

To incorporate heterogeneous computing capacities of the processing nodes and nonuniform
communication costs in the network, the diffusion schemes can be generalized. In such an
environment, computations perform faster if the load is balanced proportionally to the nodes’
computing speedsi :

wi := ∑n
i=1wi

∑n
i=1si

si .



Diffusion in networks with communication links of different capacities are analyzed in [12,
63]. It is shown that the existing balancing schemes can be modified, such that roughly speaking
faster communication links get a higher load migration volume than slower ones. These two
generalizations can be combined [21].

2.5 Dynamic Networks

The First Order Diffusion Scheme can also be applied to balance load in dynamic networks
where communication links fail from time to time or are present depending on the distance of
moving nodes [23]. Its convergence depends on the average value of the quotient of the second
smallest eigenvalue of the Laplacian matrix and the maximum vertex degree of the networks
occurring during the iterations.

2.6 Unsplittable Work Load

In contrast to the above implementations, work load in real-world applications usually cannot
be divided arbitrarily often, but only to some extent. The unit-size token model [29] assumes
a smallest load entity, theunit-size token, and work load is always represented by a collection
of this smallest entity. At some state, diffusion schemes are not able to balance the load further
due to the computed fractional flows. However, randomized algorithms [20, 24] can be applied
to reduce the remaining overload quickly.

3 Graph Partitioning

In its simplest form, the graph partitioning problem can be defined as follows. Given a graph
G = (V,E), the vertices of the graph have to be divided into two equally sized setsV1 andV2,
such that the number of edges connecting vertices from different sets is minimal. This number
is referred to asbisection width.

The bisection problem can be generalized in several ways. Introducing weights, one looks
for solutions where in each part the sum of the respective vertex weights is almost equal and
the sum of weights of cut edges is minimal. Furthermore, one could ask to divide the graph
into more than two equally sized partsV1, . . . ,Vk, which leads to thek-partitioning problem. Of
course, once a bisection algorithm is present, it can be applied to partition a graph into more
than two parts by recursive invocation, but in general the direct way can find better solutions [62,
49].

3.1 Bounds on the Bisection Width

Several analytical bounds on the graph bisection width are known. There exists an algorithm
which calculates a cut-size that differs from the bisection width by not more than a factor of
O(

√
|V| · log(|V|)) [26]. This first sub-linear factor has been improved toO(log2(|V|)) [25].

It is known that the graph bisection problem is still NP-complete for graphs of regular
degree [6]. Analytical results on these graphs show that almost every larged-regular graph
G = (V,E) has a bisection width of at leastcd · |V| wherecd → d

4 asd→ ∞ [8, 5].



These bounds can be improved for small values ofd. Almost every large 3-regular graph
has a bisection width of at least19.9|V| ≈ 0.101|V| [41, 42]. On the other hand, all sufficiently
large 3-regular graphs possess a bisection width of at most1

6|V| [47]. Almost all large 4-regular
graphs have a bisection width of at least11

50|V| = 0.22|V| [5], while the bisection width of
sufficiently large 4-regular graphs is at most2

5|V|.
Some approaches calculate lower bounds on the graph bisection width. These bounds can

be used to evaluate the quality of the existing upper bounds as well as to speed up Branch &
Bound strategies determining the bisection width of moderately-sized graphs.

One lower bound of the bisection width based on a routing scheme for all pairs of ver-
tices [43]. A small congestion of the routing scheme leads to a high lower bound. Lower bounds
on the bisection width can also be derived from algebraic graph theory by relating the bisec-
tion problem to an eigenvalue problem. It is well known that the bisection width of a graph
G = (V,E) is at leastλ2|V|/4 with λ2 being the second smallest eigenvalue of the Laplacian
matrix ofG. This spectral bound is tight for some graphs [2].

Furthermore, the structure of an optimal bisection can be used to derive improved spectral
lower bounds on certain graph classes [2]. For some classes ofd-regular graphs one can prove an
improved lower bound on the bisection width of roughly(d/(d−2)) · (λ2|V|/4). Furthermore,
one can prove a lower bound of(10+ λ 2

2 −7λ2)/(8+ 3λ 3
2 −17λ 2

2 + 10λ2) · (λ2|V|/2) for the
bisection width of all sufficiently large 3-regular graphs and a lower bound of(5− λ2)/(7−
(λ2− 1)2) · (λ2|V|/2) for the bisection width of all sufficiently large 4-regular graphs. These
lower bounds are higher than the classical bound ofλ2|V|/4 for sufficiently large graphs and
are applicable to Ramanujan graphs [7, 50]. Any sufficiently large 3-regular Ramanujan graph
has a bisection width of at least 0.082|V| while sufficiently large 4-regular Ramanujan graphs
have a bisection width of at least 0.176|V|. These values are the best lower bounds for explicitly
constructible 3- and 4-regular graphs [47].

These approximation factors are of high theoretical interest, but they are far from acceptable
for real applications. Furthermore, the algorithms behind these approximation factors are very
complicated and are not suitable to design fast and efficient graph partitioning algorithms.

3.2 Global Heuristics

The first graph partitioning heuristics operate directly on the input-graph. Apart from simple
greedy algorithms, a few more elaborated approaches have been developed. A popular one is the
spectral bisection which works on the Laplacian matrixL of the graph. The bisection is based
on its second-smallest eigenvalueλ2. The medianm of all components of the corresponding
eigenvectore (Fiedler Vector) is determined and the vertices of the graph are distributed as
V1 = {v∈V : ev < m} andV1 = {v∈V : ev > m} [52]. This approach can be extended to more
than 2 partitions [32].

In some applications vertices are provided with geometric data. Hence, this additional infor-
mation can be used to partition the graph. In this field, partitions based on space-filling curves
have become popular. Space-filling curves are geometric representations of bijective mappings
M : {1, . . . ,Nm} → {1, . . . ,N}m. The curveM traverses allNm cells in them-dimensional grid



of sizeN. They have been introduced by Peano and Hilbert in the late 19th century [34, 56]. Par-
titions based on connected space-filling curves are “quasi optimal” for regular grids and special
types of adaptively refined grids [68]. The cut-size is bounded byC · (|V|/P)(d−1)/d, where|V|
denotes the number of vertices,P the number of partitions, andd the dimension of the graph.
The constantC depends on the curve type. The space-filling curve approach is very fast, but it
is also known that ignoring the adjacency information of the graph can result in a poor solution
quality, especially in case of unstructured graphs [57].

3.3 Local Improvement Strategies

Due to the not always satisfying solution quality of global heuristics, strategies that improve
an existing partitioning have been developed. This is achieved by local rearrangements that
exchange vertices or sets of vertices between the partitions.

Kernighan-Lin The Kernighan-Lin (KL) heuristic [40] is one of the earliest graph partitioning
heuristics and has been developed to optimize placements of electronic circuits. The original
algorithm by Kernighan and Lin is based on the exchange of vertex pairs. The method has
been modified [27] such that only single vertices are moved. Furthermore, efficientbucketdata
structures enable a linear run-time per pass. Although this heuristic is popular, no bounds on the
resulting partition quality are known.

Helpful-Sets The Helpful-Set concept reduces the edge-cut by exchanging sets of vertices
between the partitions. The helpfulness of a vertex set is defined by the cut-size reduction that
occurs when moving it to another partition. As long as anh-helpful setSwith a positiveh exists,
it is migrated, and an equally sized balancing setS̄from the enlarged part with helpfulness larger
than−h is moved back to restore the partition sizes.

An important observation is that as long as the edge-cut is above a certain value, a helpful
set and a balancing set do exist. Utilizing this knowlegde provides constructive bounds for the
solution quality as stated in the following theorem [35, 46].

Theorem 3. Let G= (V,E) be a d-regular graph with even d, d≥ 4 and|V| ≥ n0(d). Then, the

bisection widthbw(G) of G is bounded by

bw(G)≤ d−2
4

|V|+1.

Improved results are known for 3 and 4-regular graphs as listed in Section 3.1.
The Helpful-Set heuristic [13, 48, 49] is the algorithmic result of the above theorem and

includes several generalizations like the handling of graphs with arbitrary vertex degrees and
graphs with vertex and edge weights. It has been succesfully implemented in the graph parti-
tioning library PARTY [53].

3.4 The Multilevel Scheme

The breakthrough in this field is the introduction of the multilevel scheme [33, 61]. Instead of
immediately computing a partitioning for the large input graph, vertices are contracted and a



smaller instance with a similar structure is generated. On this instance, the partitioning problem
is solved applying a global heuristic. Due to the reduced size it is easier to find sufficiently good
solutions. Afterwards, vertices of the original graph are assigned to partitions according to their
representatives in the smaller instance. The obtained solution is then further enhanced by a local
refinement heuristic.

Instead of applying a global heuristic on the smaller instance, the described process can
be repeated recursively, until in the lowest level only a very small graph remains. Hence, a
very basic global heuristic can be applied and can even be omitted if the number of remaining
vertices equals the requested number of partitions.

The described multilevel algorithm consists of three important tasks: A matching algorithm
deciding which vertices are combined in the next level, a global partitioning algorithm applied in
the lowest level, and a local refinement algorithm improving the quality of a given partitioning.

3.5 Graph Coarsening

To create a hierachy of smaller graphs with a similar structure, matchings play an important
role. A matching algorithm for multilevel partitioning is supposed to be very fast and to have
a high matching cardinality and matching weight. Because of the time constraints, the calcula-
tion of a maxumim cardinality matching or even a maximum weighted matching would be too
time consuming. Therefore, fast algorithms calculating maximal matchings are applied. A very
simple algorithm is based on a greedy strategy always adding the next heavier free edge to the
matching [1]. A number of alternative approaches have been proposed [33, 38, 39, 44], but do
not provide any quality guarantee.

The first linear time approximation algorithm [54, 48] ensures to find a maximum weighted
matching with at least half the weight of the optimal solution.

Theorem 4. Let G= (V,E) be a graph with vertices V and weighted undirected edges E. The

Locally-Heaviest algorithm computes a matching of G with an edge weight of at least1
2 of the

edge weight of a maximum weighted matching in linear time O(|E|).

The decovery of this algorithm initiated in a number of improvements [17, 16]. All of them
follow the same strategy: Starting with an initial empty matching, the vertices of the graph are
visited in a specific order. For each visited vertexv, it is checked ifv is free, i. e. can still be
matched, and ifv is adjacent to at least one unmatched vertex. Ifv is free and all neighbors are
already matched,v remains free. Otherwise, ifv is unmatched and at least one free neighbor
exists, the edges to free neighbors are rated and an edge with highest rating is added to the
matching.

3.6 Libraries

The efficiency of a graph partitioning methods strongly depends on its specific implementa-
tion. There exist several software libraries which provide a large range of different approaches.
Examples are CHACO [31], METIS [37], JOSTLE [64], and SCOTCH [51]. The goal of the



libraries is both to provide efficient implementations and to offer a flexible and universal graph
partitioning interface to applications.

In this project, the PARTY graph partitioning library has been developed [55, 53, 49]. In
contrast to other implementations, it is based on theoretical results yielded during this period.
Therefore, it provides quality guarantees for the single steps involved in the calculation.

Although there exists a large number of sequential libraries, only a few parallel implemen-
tations are available. This is due to the complexity involved in parallel programming. Further-
more, the applied heuristics like KL are basically of sequential nature, hence modifications are
required, which sometimes introduce new limitations. The most popular distributed libraries are
the parallel versions of METIS [37] and JOSTLE [64, 66, 65]. These tools essentially apply the
same techniques as their sequential counterparts, are quite fast and deliver solutions that are
acceptable for most applications.

4 Further Challenges

The existing graph partitioning heuristics provide good solutions and are very fast. However,
although great progress has been made in this area, many questions remain [30]. While the
global cut-size is the classical metric that most graph partitioners optimize, it is not necessarily
the metric that models the real costs of an application. In FEM computations for example, the
true communication volume can significantly differ from the number of cut-edges. In this case,
the number of vertices situated at partition boundaries reflects the information to be exchanged
much more accurately. Furthermore, aspects like latency between the processing nodes due to
the structure of the communication network are totally ignored. Another questionable point is
the applied norm. In synchronized computations, the slowest processor specifies the overall
speed, hence the maximum norm would be appropriate, while the usually applied cut-size is a
summation norm.

Dynamically changing applications often require a work load distribution that guarantees
both, a low overhead caused by the load migration and little communication during the calcu-
lation. This results in a multi-objective optimization, comprising the dynamic load balancing as
well as the graph partitiong problem. It can be modeled via a graph. An unbalanced partitionπt

has to be transformed into a balanced distributionπt+1 while obeying the two constraints.
Currently, most of the mentioned implementations first determine how much load to migrate

and then restrict the exchange steps of the local refinement process according to this number.
Better solutions can be obtained by integrating the migration costs directly into the improve-
ment procedure itself [3, 60]. An alternative approach focuses on the partition shapes [15] and
iteratively decreases their aspect ratios. The involved learning steps can be modified by intro-
ducing diffusive operations. This results in an algorithm that determines the migrating vertices
depending on|| · ||2-minimal balancing flows [58, 59, 45]. Although not containing any explicit
objectives, this approach finds good solutions not only concerning the edge-cut but also the
number of partition boundary vertices.

Although first ideas exist to address the multi-objective optimization problem, much more
research is required in this field to better understand the interaction between the different con-



straints. Combining this with the need of more appropriate metrics and norms like the maximum
number of boundary vertices per partition, an interesting and important challenge remains to be
solved in the future.
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