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Abstract. This paper presents an approach for intelligent tutoring in the field of 
legal argumentation. In this approach, students study transcripts of US Supreme 
Court oral argument and create a graphical representation of argument flow as 
tests offered by attorneys being challenged by hypotheticals posed by Justices. 
The proposed system, which is based on the collaborative modeling framework 
Cool Modes, is capable of detecting three types of weaknesses in arguments; 
when it does, it presents the student with a self explanation prompt. This kind of 
feedback seems more appropriate than the “strong connective feedback” typi-
cally offered by model-tracing or constraint-based tutors. Structural and context 
weaknesses in arguments are handled by graph grammars, and the critical prob-
lem of detecting and dealing with content weaknesses in student contributions is 
addressed through a collaborative filtering approach, thereby avoiding the criti-
cal problem of natural language processing in legal argumentation. An early 
version of the system was pilot tested with two students. 

1   Introduction 

The field of law is an established and interesting application area for AI. (e.g. Aleven, 
2003; Ashley 1990; Bench-Capon et al., 1998; Walton 2002). Argument is central to 
the practice of law, and therefore training in the skills of argument and advocacy are 
essential parts of legal education. Although there is a variety of law-related intelligent 
tutoring systems (e.g. Munjewerff and Breuker 2001), there are still only few intelli-
gent tutoring systems specifically designed for assisting students in the construction 
of legal arguments. Exceptions include CATO (Aleven 2003) and ArguMed (Verheij 
2003). CATO takes an example-based approach to teach students to make arguments 
based on past cases; ArguMed focuses more on structural aspects and provides assis-
tants that support users in creating visual representations for defeasible arguments.   

To some extent, the small number of tutoring systems for legal argumentation can 
be explained by that fact that the underlying domain is ill-structured. Legal argumen-
tation is a kind of natural language discourse that focuses on interpreting the meaning 
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of general legal concepts in light of specific facts. In contrast to well-structured do-
mains like mathematics, for most tasks in legal argumentation there is no unambigu-
ously defined “correct” solution which could be used as a basis for an ITS. 

The ITS approach described in this paper aims at supporting students in studying 
examples of legal argumentation drawn from US Supreme Court transcripts of oral 
arguments. The goal is to help students understand the dialectic in which advocates 
propose and modify tests (i.e. decision rules) for a case and the Justices pose hypo-
thetical fact situations to assess the merits of the proposed tests. The texts involved in 
this task are rather unstructured and involve a wide range of (legal and world) knowl-
edge. Thus, they are not well accessible for an ITS without applying natural language 
processing (NLP) techniques, which would be very error-prone in the interpretive 
field of legal argumentation.  

In the next sections, we first discuss the importance of tests and hypotheticals for 
understanding legal arguments, and propose a structured representation format to-
gether with a corresponding visualization. We then describe a novel approach for 
intelligent tutoring based on these argument structures, in which the system is capable 
of detecting several types of weaknesses (not restricted to purely structural ones) in 
the student’s conceptions of legal arguments, while retaining a partially textual repre-
sentation format but without involving NLP. The paper concludes with a description 
of studies planned with the ITS. 

2   Diagrams to Visualize Court Argument as Hypothesis Testing 

In US Supreme Court oral arguments, contending attorneys each formulate a hypothe-
sis about how the problem should be decided with respect to a set of issues. They may 
propose a test and identify key points of the facts at hand on which the issue should 
turn. The Justices test those hypotheses by posing hypothetical scenarios. These sce-
narios are designed to challenge the hypotheses’ consistency with past decisions and 
with the purposes and principles underlying the relevant legal rules. These oral  
arguments provide interesting material for legal educators. They are concentrated 
examples of many conceptual and reasoning tasks that occur in Socratic law school 
classrooms. As discussed in Rissland (1989) and Ashley (1990), the oral arguments 
illustrate important processes of concept formation and testing in the legal domain. As 
such, studying the transcripts of these arguments and the contained process of test and 
hypothetical proposition and modification is a valuable task for beginning law stu-
dents. Yet, this task is quite difficult for them due to the complexity of the argument.  

One idea to overcome these problems is to augment the textual documents with 
structured graphical representations that express the argument structure explicitly, 
thereby providing data usable by an underlying intelligent support system. In general, 
the use of graphical representations to support argumentation is not a new approach. 
Suthers and Hundhausen (2003) have shown that using graph structures can support 
group argumentation processes (e.g., argument graphs invite relating parts to each 
other), and Van Gelder (2002) shows that reasoning with graphical representations 
can indeed be effective in strengthening critical thinking skills (measured by pre/post 
gains compared to traditional teaching methods). In the legal domain, Carr (2003) has 
used Toulmin schemas (Toulmin 1958) for collaborative legal argumentation, and the 



 Toward Legal Argument Instruction with Graph Grammars 229 

Araucaria system (Reed and Rowe 2004) employs visual premise/conclusion struc-
tures. ArguMed (Verheij 2003) provides intelligent feedback through an argumenta-
tion “assistant” that analyzes structural relations between contributions in diagrams. 
Out of the three, only Carr (2003) conducted an empirical evaluation, but does not 
report whether his system caused learning gains. In summary, though a lot of promis-
ing general approaches for graphically supporting argumentation exist, current litera-
ture does not show much evidence for the educational effectiveness in the domain of 
legal argumentation. 

In contrast to the approaches and systems referred to before, we recommend a 
novel special-purpose argument representation geared toward a particular kind of 
argumentation process in which a normative rule (or “test”) is proposed, tested, and 
“debugged,” primarily by means of hypotheticals. The main ontological categories in 
our argument representation are, simply, tests and hypotheticals. The representation 
can be used to track how attorneys modify their proposed tests to handle the hypo-
thetical cases presented by the justices. It does not have the wide applicability of a 
general representation (such as Toulmin schemas), but its more specific ontological 
categories may help students interpreting argumentation processes, e.g. by focusing 
their attention on the relevant information. Similar to the approach adapted in Arauca-
ria (Reed and Rowe 2004), we allow the student to explicitly relate argument struc-
tures to the textual transcript of the oral argument using simple markup techniques. 
There is evidence that students indeed make use of such markup functions if the sys-
tem makes it easy to do so (Farzan and Brusilovsky 2005).  

3   Three Mechanisms for Intelligent Support 

Figure 1 shows a screenshot of the prototype system we implemented using the Cool 
Modes framework (Pinkwart 2005). The left side of the figure contains the transcript 
of the oral argument in a case called Lynch vs. Donnelly, 465 U.S. 668 (1983). At the 
bottom left, there is a palette with the elements (tests, hypotheticals, current fact situa-
tion) and relations (test modification, distinction of hypothetical, hypothetical leading 
to test change, general relation) that the student can use to construct via drag and drop 
mechanisms a graphical representation of the argumentation in the transcript.  
The workspace on the right side of the figure contains the argument representation. 
Figure 1 shows the result of a third year student’s system usage within an exploratory 
study. The diagram records a variety of hypothetical cases presented by the Justices 
(five in total) and also contains the attorney’s responses to these hypotheticals, in 
which he distinguished them from the facts at hand or by formulating tests that should 
cover the hypothetical and the problem.  

As argued, rules which are guaranteed to detect errors in the student’s argument 
graphs are virtually impossible, as there are no “ideal solutions” in the ill-structured 
domain of legal argumentation. However, the student’s conception of the argument 
may have weaknesses (in the sense of potential problems) that can be classified into 
several types. Using the authentic student solution of the exploratory study as an 
example, the next subsections describe these different types of weaknesses, their  
detection within argument graphs, and how the intelligent tutoring system we have 
implemented responds to these detected “weak spots”.  
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Fig. 1. Example of a graphical argument model 

3.1   Structural Weaknesses 

First, the argument representation created by a student can have structural weak-
nesses. Examples of weaknesses of this type are isolated elements in the argument 
graph, empty text fields, or the absence of any test element in the workspace. Figure 1 
illustrates two more advanced structural weaknesses: only two out of the five hy-
potheticals are explicitly related to a test, the other three are not. Since attorney’s 
often respond to hypotheticals by posing a new test, or a modification of an existing 
test, it may be that the student has overlooked (or misunderstood) a formulation of a 
test that appears in the transcript. In addition, the location marked (1) in the figure 
shows that the student distinguished two hypotheticals from each other. Attorneys and 
judges might well do this in an argument, but typically a hypothetical should also be 
related to the current facts in some way, e.g. through distinction. Since the student did 
not add links to the diagram to represent these relations, this part of the graph is a 
good candidate for system feedback to the student. Section 3.4 discusses how our ITS 
comments on these weaknesses, taking into account the remaining uncertainty that is 
based on weaknesses being just indications of possible errors.  
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Since structural weaknesses are related to the abstract structure of the argument 
only, they can be detected by logical formalisms that ignore both the content of the 
diagram text boxes and the markups of the transcript. Approaches for intelligent tutor-
ing based on graphical argument structures are not new – early work in this field has 
been done by Paolucci, Suthers and Weiner (1996), who made use of syntax rules and 
an expert knowledge base to check argument graphs. Our proposed approach avoids 
“expert solutions” and model tracing, and relies on a graph grammar (Rekers and 
Schürr 1998) to analyze argument structures. The grammar consists of a set of termi-
nal symbols T, a set of nonterminals N, a start symbol S, and a set of production rules. 
Both terminal and nonterminal symbols can have attributes, and a production rule is a 
tuple (L,R) of graphs over T∪N, which can be applied to a graph G that contains a 
subgraph ML which matches L. The result of the rule application is a graph G’ = G ∪ 
R \ ML. Thus, a rule application replaces the subgraph that matches the left side of the 
rule with the graph in the right side. 

We use the grammar to check the diagrams created by students for properties that 
represent structural argument weaknesses. Compared to other formalisms for “attrib-
ute value checking” which underlie many constraint-based tutors, the grammar based 
approach we propose is much better adapted to the graph structures we employ. A 
further advantage of the formalism is its declarative character: rules can easily be 
specified (cf. examples below) and applied in the system as parameters of the generic 
parsing algorithm. This avoids the need of programming a complex graph algorithm 
for each single property of the diagram that one wants to check. 

The grammar contains two types of rules: first, “construction oriented” rules model 
the process of building argument graphs. The following rule illustrates this and covers 
the situation that a “test” element is added to an empty workspace (in this case, the 
test gets assigned the value “unchanged” for the “version” attribute): 

 
L = < {S},Ø >  
R = < {TEST},Ø > 
TEST.version = “unchanged” 

 
In addition, “feedback oriented” rules directly express a specific weakness and thus 

enable the system to produce well-defined feedback. The following is an example of 
such a “feedback oriented” production rule, which can detect the structural weakness 
of “hypothetical distinction without relation to the facts” that was discussed in rela-
tion to Figure 1: 

 
L = < {HYPO1,HYPO2,W},{Distinguish_from(HYPO1,HYPO2)} > 
R = < {HYPO1,HYPO2},{Distinguish_from(HYPO1,HYPO2)} > 
HYPO2.connection = “false” 
W.type = “isolated_hypo_distinguished_from_hypo” 
W.locations = {HYPO1,HYPO2} 
 

The right side of the rule matches the student solution of Figure 1 by identifying 
HYPO1 with the “religious mass on federal property” hypothetical and HYPO2 with 
the “crèche on federal property” element (note that the “connection” attribute of 
HYPO2 is used to express its lack of relation to the facts). The nonterminal node W in 
the left side of the rule represents the detected weakness.  
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3.2   Context Weaknesses 

The second weakness type can be characterized as context weaknesses. These essen-
tially deal with the relation between the argument graph and the transcript. Even if an 
argument diagram has no structural weaknesses, the relation between the elements in 
the diagram to the source material (i.e., the transcript) as expressed through the mark-
ups can reveal problems. Examples of context weaknesses are a lack of evidence for 
the tests/hypotheticals in the diagram (missing nodes or links), important passages of 
the transcript that are referenced in the diagram but with (apparently) the wrong ele-
ment type (e.g., a test being marked up as a hypothetical), or seemingly irrelevant 
parts of the transcript being marked up. Figure 1 illustrates two of these weaknesses. 
In (2a), the transcript lines “What if they had three wise men and a star in one exhibit, 
say? Would that be enough?” contain a hypothetical posed by a judge, but the stu-
dent’s solution does not refer to it in any way. Also, the hypothetical (2b) is not linked 
to the transcript (visible through the hand symbol in the right corner of the element). 

The same graph grammar formalism that is used to detect structural weaknesses 
(described above) is also applicable for detecting context weaknesses, which obvi-
ously is an advantage on the technical level. We make use of node and edge attributes 
in the grammar rules to represent constraints on the links that are created between the 
transcript and the elements in the graph. A context rule for the most important context 
weakness (missing link to important part of transcript), can be specified as follows: 

  
L = < {S},Ø > 
R = < {HYPO},Ø > 
HYPO.link = 211 

 
This rule is comparable to the start rule in the “structural weaknesses” part, differ-

ing only in that it requires specific elements to be present in the argument graph. This 
rule requires a student to mark up line 211 of the transcript and link it to a hypotheti-
cal. Similar rules can be formulated to explicitly declare “irrelevant” parts of the tran-
script that should not be marked up. 

Taken together, structural and context rules allow a teacher to specify in detail a 
particular test/hypothetical structure linked to well-defined parts of the transcript. 
However, we are not advocating an approach in which the student’s graph is com-
pared against an expert solution. Due to the ill-structuredness of the legal domain, it is 
not possible to define a small set of “correct” solutions. Instead, we use the graph 
grammar formalism to partially specify solutions (e.g., only the two most important 
test versions and six central hypotheticals are required to be marked up by students).  

3.3   Content Weaknesses 

Finally, the content of the textual elements created by the student can be inappropri-
ate, even if the overall argument structure is good and related to the transcript in a 
reasonable way. Students may well have difficulties in understanding, e.g., the es-
sence of a proposed test, as evidenced by a poor paraphrase in the corresponding test 
node they add to the graph. Obviously, this type of weakness is hardest to check, 
since it involves interpretation of legal argument in textual form. In addition, due to 
the ill-structured domain, student answers will not be simply either right or wrong, but 
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instead have a certain quality in terms of a number of criteria. For instance, location 
(3) in Figure 1 contains the student’s description of the test proposed in the argument. 
For a general reader (and also for an ITS), it is hard to tell if this is an adequate sum-
mary of the test or not. The graph structure and peers working on the same task  
can help.  

Our two-step approach to address the problem is NLP-free and involves a tech-
nique known as “collaborative filtering” (Konstan and Riedl 2002) – we make the 
assumption that a larger group of students works on the same task, either individually 
or in small groups. In our variant of the collaborative filtering method, students are 
asked to rate samples of other’s work relative to their own work. The system then 
combines the ratings into an overall score and thus “filters” for quality. More specifi-
cally, for selected parts of the transcript (i.e., parts where a test is mentioned), after a 
student has created a corresponding element in the graph, he is first presented with a 
small number of alternative answers (given by peers) and asked to select all those he 
considers similar to his own answer. Then, the student gets a second selection of 
answers (some known to be good, some known to be of poor quality, some given by 
peers) and is asked to select all those he considers at least as good as his own. The 
system then uses a combination of similarity and recommendation ratings to compute 
a heuristics of the quality of student answers.  

A base rating bx of an answer given by student x can be calculated based on the 
recommendations given by x. If the student had n answers to choose from, and the 
ones he selected as being at least as good as his own had a quality measure q1, …, qk 
(0 for very bad, 1 for very good, see below for the calculation of quality measures for 
peer answers), while those he did not recommend had quality measures qk+1, …, qn, 
then bx can be calculated as 
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Figure 2 shows a window presented to the student for the base rating calculation. 
In the figure, three answers can be selected as “at least as good as his own” by the 
student. If the three available answers have quality ratings of 1, 0.8, and 0.3 (i.e., two 
good ones and two bad ones), and the first two have been selected like the figure 
shows, then the base rating for the student’s answer is bx = 0.33*(1+0.8+0.7) = 0.825. 
Considering the good quality of the test description provided by the student, this base 
rating is acceptable as an initial value. 

The base rating bx measures in how far a student can recognize good answers and 
thus serves as a heuristic of his own answer’s quality, but does not rate the answer the 
student has actually typed in himself. In our approach, the base rating is therefore 
supplemented by two other ratings which measure the quality of what the student has 
actually typed in. First, the similarity estimations given by the students are used. If 
students with good own ratings rate another solution as similar, this raises the rating 
of the peer solution (the peer rating will also be reduced based on similarity with poor 
solutions). Second, the recommendations that a student’s answer receives by his peers 
are used, with recommendations by good students having a higher impact. The overall 
quality qx of a student answer is then calculated as the weighted average of bx and  
the other two measures. The weights of the peer-dependent ratings are based on the 
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number of selection options that peers had. This takes into account the importance of 
peer’s opinions while at the same time eliminating the cold start problem (how to 
handle the first users of the system, before peer ratings are available?) through the 
inclusion of relations to known correct/incorrect solutions, which feed into bx.  

 

 
 

Fig. 2. Similarity rating dialog 

3.4   Tutor Feedback 

The previous sections described how different kinds of weaknesses can be detected in 
the student’s argument graphs. Having detected a weakness, the question is how the 
system should react to it. Our notion of weakness includes the possibility of “false 
alarms”: a student’s solution can be of high quality and still cause a tutor intervention. 
This seems inevitable in an ill-structured domain, where correctness is hard to define 
even for human domain experts, for example: Does the fact that the student distin-
guishes two hypotheticals (see location 1 in Figure 1) without relating the hypotheti-
cals to the current fact situation indicate that the student did not understand the role of 
hypotheticals in the argument, or was this just a wrong use of graphical elements? 

Since these questions cannot be answered in a general way by an ITS, it does not 
make sense for an ITS to use most of the detected weaknesses as a basis for telling 
users directly that they were wrong in their answer. However, following the idea of 
weaknesses as the presumably weak parts of student’s work, it makes sense to use 
them as tailored and personalized self-explanation prompts by inviting the student to 
re-think and explain these parts of his work. Self-explanation has been shown to be 
effective in many domains, including ill-structured ones (Schworm and Renkl 2002). 
Table 1 shows some of the weaknesses that were identified within this article together 
with related short versions of self-explanation prompts.  
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Table 1. Examples of self-explanation prompts 

Weakness Description Type Self-explanation prompt (short version) 
Isolated hypothetical 
distinguished from hypo-
thetical 

structural In your solution, the hypotheticals H1 and H2 are 
distinguished from each other. Yet, hypothetical 
H2 is not related to any test or the current fact 
situation. Please explain why you did so, either in 
free text or by modifying the diagram. 

Important part of tran-
script not marked 

context Please look at this part of the transcript (scroll to 
line L) and explain its role within the argument. 

Low quality rating of 
contribution 

content Please reexamine what you marked here (scroll to 
line L) and explain it again. 

4   Conclusions and Outlook 

The approach as presented in this paper is designed to support first-year law students 
in learning legal argumentation skills by having them create graphical models of ar-
gument transcripts, and presenting them feedback on the weaknesses in their models. 
The ITS used to generate this feedback is based on two formalisms, which enable a 
heuristic check of student answers for different types of weaknesses: a graph grammar 
formalism and a collaborative filtering technique. It does not make use of NLP, which 
can be considered an advantage in the highly interpretive and ill-structured domain of 
legal argumentation, but nevertheless is able to give content-related feedback. Fur-
thermore, the approach requires only very minimal system-side knowledge about 
specific legal cases, which facilitates using the system with a new transcript.  

The pilot studies we conducted essentially confirmed the suitability of the onto-
logical categories and the graphical representation format. Based on these, further 
research will try to find empirical evidence for the effectiveness of the presented tu-
toring approach, both compared to control groups that make use of the diagram tool 
without feedback, and also to groups that work traditionally. In particular, we are 
interested in “fine tuning” the selection of feedback prompts and the collaborative 
filtering mechanism in terms of which peer answers are best to present to a student.  
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