
M. Ikeda, K. Ashley, and T.-W. Chan (Eds.): ITS 2006, LNCS 4053, pp. 227 – 236, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Toward Legal Argument Instruction with Graph
Grammars and Collaborative Filtering Techniques

Niels Pinkwart1, Vincent Aleven1, Kevin Ashley2, and Collin Lynch3

1 Carnegie Mellon University, HCI Institute, 5000 Forbes Avenue,
Pittsburgh PA 15213, USA

{nielsp, aleven}@cs.cmu.edu
2 University of Pittsburgh, School of Law, 3900 Forbes Avenue,

Pittsburgh PA 15260, USA
ashley@pitt.edu

3 University of Pittsburgh, Intelligent Systems Program,
Pittsburgh, PA 15260, USA
collinl@cs.pitt.edu

Abstract. This paper presents an approach for intelligent tutoring in the field of
legal argumentation. In this approach, students study transcripts of US Supreme
Court oral argument and create a graphical representation of argument flow as
tests offered by attorneys being challenged by hypotheticals posed by Justices.
The proposed system, which is based on the collaborative modeling framework
Cool Modes, is capable of detecting three types of weaknesses in arguments;
when it does, it presents the student with a self explanation prompt. This kind of
feedback seems more appropriate than the “strong connective feedback” typi-
cally offered by model-tracing or constraint-based tutors. Structural and context
weaknesses in arguments are handled by graph grammars, and the critical prob-
lem of detecting and dealing with content weaknesses in student contributions is
addressed through a collaborative filtering approach, thereby avoiding the criti-
cal problem of natural language processing in legal argumentation. An early
version of the system was pilot tested with two students.

1 Introduction

The field of law is an established and interesting application area for AI. (e.g. Aleven,
2003; Ashley 1990; Bench-Capon et al., 1998; Walton 2002). Argument is central to
the practice of law, and therefore training in the skills of argument and advocacy are
essential parts of legal education. Although there is a variety of law-related intelligent
tutoring systems (e.g. Munjewerff and Breuker 2001), there are still only few intelli-
gent tutoring systems specifically designed for assisting students in the construction
of legal arguments. Exceptions include CATO (Aleven 2003) and ArguMed (Verheij
2003). CATO takes an example-based approach to teach students to make arguments
based on past cases; ArguMed focuses more on structural aspects and provides assis-
tants that support users in creating visual representations for defeasible arguments.

To some extent, the small number of tutoring systems for legal argumentation can
be explained by that fact that the underlying domain is ill-structured. Legal argumen-
tation is a kind of natural language discourse that focuses on interpreting the meaning

228 N. Pinkwart et al.

of general legal concepts in light of specific facts. In contrast to well-structured do-
mains like mathematics, for most tasks in legal argumentation there is no unambigu-
ously defined “correct” solution which could be used as a basis for an ITS.

The ITS approach described in this paper aims at supporting students in studying
examples of legal argumentation drawn from US Supreme Court transcripts of oral
arguments. The goal is to help students understand the dialectic in which advocates
propose and modify tests (i.e. decision rules) for a case and the Justices pose hypo-
thetical fact situations to assess the merits of the proposed tests. The texts involved in
this task are rather unstructured and involve a wide range of (legal and world) knowl-
edge. Thus, they are not well accessible for an ITS without applying natural language
processing (NLP) techniques, which would be very error-prone in the interpretive
field of legal argumentation.

In the next sections, we first discuss the importance of tests and hypotheticals for
understanding legal arguments, and propose a structured representation format to-
gether with a corresponding visualization. We then describe a novel approach for
intelligent tutoring based on these argument structures, in which the system is capable
of detecting several types of weaknesses (not restricted to purely structural ones) in
the student’s conceptions of legal arguments, while retaining a partially textual repre-
sentation format but without involving NLP. The paper concludes with a description
of studies planned with the ITS.

2 Diagrams to Visualize Court Argument as Hypothesis Testing

In US Supreme Court oral arguments, contending attorneys each formulate a hypothe-
sis about how the problem should be decided with respect to a set of issues. They may
propose a test and identify key points of the facts at hand on which the issue should
turn. The Justices test those hypotheses by posing hypothetical scenarios. These sce-
narios are designed to challenge the hypotheses’ consistency with past decisions and
with the purposes and principles underlying the relevant legal rules. These oral
arguments provide interesting material for legal educators. They are concentrated
examples of many conceptual and reasoning tasks that occur in Socratic law school
classrooms. As discussed in Rissland (1989) and Ashley (1990), the oral arguments
illustrate important processes of concept formation and testing in the legal domain. As
such, studying the transcripts of these arguments and the contained process of test and
hypothetical proposition and modification is a valuable task for beginning law stu-
dents. Yet, this task is quite difficult for them due to the complexity of the argument.

One idea to overcome these problems is to augment the textual documents with
structured graphical representations that express the argument structure explicitly,
thereby providing data usable by an underlying intelligent support system. In general,
the use of graphical representations to support argumentation is not a new approach.
Suthers and Hundhausen (2003) have shown that using graph structures can support
group argumentation processes (e.g., argument graphs invite relating parts to each
other), and Van Gelder (2002) shows that reasoning with graphical representations
can indeed be effective in strengthening critical thinking skills (measured by pre/post
gains compared to traditional teaching methods). In the legal domain, Carr (2003) has
used Toulmin schemas (Toulmin 1958) for collaborative legal argumentation, and the

 Toward Legal Argument Instruction with Graph Grammars 229

Araucaria system (Reed and Rowe 2004) employs visual premise/conclusion struc-
tures. ArguMed (Verheij 2003) provides intelligent feedback through an argumenta-
tion “assistant” that analyzes structural relations between contributions in diagrams.
Out of the three, only Carr (2003) conducted an empirical evaluation, but does not
report whether his system caused learning gains. In summary, though a lot of promis-
ing general approaches for graphically supporting argumentation exist, current litera-
ture does not show much evidence for the educational effectiveness in the domain of
legal argumentation.

In contrast to the approaches and systems referred to before, we recommend a
novel special-purpose argument representation geared toward a particular kind of
argumentation process in which a normative rule (or “test”) is proposed, tested, and
“debugged,” primarily by means of hypotheticals. The main ontological categories in
our argument representation are, simply, tests and hypotheticals. The representation
can be used to track how attorneys modify their proposed tests to handle the hypo-
thetical cases presented by the justices. It does not have the wide applicability of a
general representation (such as Toulmin schemas), but its more specific ontological
categories may help students interpreting argumentation processes, e.g. by focusing
their attention on the relevant information. Similar to the approach adapted in Arauca-
ria (Reed and Rowe 2004), we allow the student to explicitly relate argument struc-
tures to the textual transcript of the oral argument using simple markup techniques.
There is evidence that students indeed make use of such markup functions if the sys-
tem makes it easy to do so (Farzan and Brusilovsky 2005).

3 Three Mechanisms for Intelligent Support

Figure 1 shows a screenshot of the prototype system we implemented using the Cool
Modes framework (Pinkwart 2005). The left side of the figure contains the transcript
of the oral argument in a case called Lynch vs. Donnelly, 465 U.S. 668 (1983). At the
bottom left, there is a palette with the elements (tests, hypotheticals, current fact situa-
tion) and relations (test modification, distinction of hypothetical, hypothetical leading
to test change, general relation) that the student can use to construct via drag and drop
mechanisms a graphical representation of the argumentation in the transcript.
The workspace on the right side of the figure contains the argument representation.
Figure 1 shows the result of a third year student’s system usage within an exploratory
study. The diagram records a variety of hypothetical cases presented by the Justices
(five in total) and also contains the attorney’s responses to these hypotheticals, in
which he distinguished them from the facts at hand or by formulating tests that should
cover the hypothetical and the problem.

As argued, rules which are guaranteed to detect errors in the student’s argument
graphs are virtually impossible, as there are no “ideal solutions” in the ill-structured
domain of legal argumentation. However, the student’s conception of the argument
may have weaknesses (in the sense of potential problems) that can be classified into
several types. Using the authentic student solution of the exploratory study as an
example, the next subsections describe these different types of weaknesses, their
detection within argument graphs, and how the intelligent tutoring system we have
implemented responds to these detected “weak spots”.

230 N. Pinkwart et al.

Fig. 1. Example of a graphical argument model

3.1 Structural Weaknesses

First, the argument representation created by a student can have structural weak-
nesses. Examples of weaknesses of this type are isolated elements in the argument
graph, empty text fields, or the absence of any test element in the workspace. Figure 1
illustrates two more advanced structural weaknesses: only two out of the five hy-
potheticals are explicitly related to a test, the other three are not. Since attorney’s
often respond to hypotheticals by posing a new test, or a modification of an existing
test, it may be that the student has overlooked (or misunderstood) a formulation of a
test that appears in the transcript. In addition, the location marked (1) in the figure
shows that the student distinguished two hypotheticals from each other. Attorneys and
judges might well do this in an argument, but typically a hypothetical should also be
related to the current facts in some way, e.g. through distinction. Since the student did
not add links to the diagram to represent these relations, this part of the graph is a
good candidate for system feedback to the student. Section 3.4 discusses how our ITS
comments on these weaknesses, taking into account the remaining uncertainty that is
based on weaknesses being just indications of possible errors.

 Toward Legal Argument Instruction with Graph Grammars 231

Since structural weaknesses are related to the abstract structure of the argument
only, they can be detected by logical formalisms that ignore both the content of the
diagram text boxes and the markups of the transcript. Approaches for intelligent tutor-
ing based on graphical argument structures are not new – early work in this field has
been done by Paolucci, Suthers and Weiner (1996), who made use of syntax rules and
an expert knowledge base to check argument graphs. Our proposed approach avoids
“expert solutions” and model tracing, and relies on a graph grammar (Rekers and
Schürr 1998) to analyze argument structures. The grammar consists of a set of termi-
nal symbols T, a set of nonterminals N, a start symbol S, and a set of production rules.
Both terminal and nonterminal symbols can have attributes, and a production rule is a
tuple (L,R) of graphs over T∪N, which can be applied to a graph G that contains a
subgraph ML which matches L. The result of the rule application is a graph G’ = G ∪
R \ ML. Thus, a rule application replaces the subgraph that matches the left side of the
rule with the graph in the right side.

We use the grammar to check the diagrams created by students for properties that
represent structural argument weaknesses. Compared to other formalisms for “attrib-
ute value checking” which underlie many constraint-based tutors, the grammar based
approach we propose is much better adapted to the graph structures we employ. A
further advantage of the formalism is its declarative character: rules can easily be
specified (cf. examples below) and applied in the system as parameters of the generic
parsing algorithm. This avoids the need of programming a complex graph algorithm
for each single property of the diagram that one wants to check.

The grammar contains two types of rules: first, “construction oriented” rules model
the process of building argument graphs. The following rule illustrates this and covers
the situation that a “test” element is added to an empty workspace (in this case, the
test gets assigned the value “unchanged” for the “version” attribute):

L = < {S},Ø >
R = < {TEST},Ø >
TEST.version = “unchanged”

In addition, “feedback oriented” rules directly express a specific weakness and thus

enable the system to produce well-defined feedback. The following is an example of
such a “feedback oriented” production rule, which can detect the structural weakness
of “hypothetical distinction without relation to the facts” that was discussed in rela-
tion to Figure 1:

L = < {HYPO1,HYPO2,W},{Distinguish_from(HYPO1,HYPO2)} >
R = < {HYPO1,HYPO2},{Distinguish_from(HYPO1,HYPO2)} >
HYPO2.connection = “false”
W.type = “isolated_hypo_distinguished_from_hypo”
W.locations = {HYPO1,HYPO2}

The right side of the rule matches the student solution of Figure 1 by identifying
HYPO1 with the “religious mass on federal property” hypothetical and HYPO2 with
the “crèche on federal property” element (note that the “connection” attribute of
HYPO2 is used to express its lack of relation to the facts). The nonterminal node W in
the left side of the rule represents the detected weakness.

232 N. Pinkwart et al.

3.2 Context Weaknesses

The second weakness type can be characterized as context weaknesses. These essen-
tially deal with the relation between the argument graph and the transcript. Even if an
argument diagram has no structural weaknesses, the relation between the elements in
the diagram to the source material (i.e., the transcript) as expressed through the mark-
ups can reveal problems. Examples of context weaknesses are a lack of evidence for
the tests/hypotheticals in the diagram (missing nodes or links), important passages of
the transcript that are referenced in the diagram but with (apparently) the wrong ele-
ment type (e.g., a test being marked up as a hypothetical), or seemingly irrelevant
parts of the transcript being marked up. Figure 1 illustrates two of these weaknesses.
In (2a), the transcript lines “What if they had three wise men and a star in one exhibit,
say? Would that be enough?” contain a hypothetical posed by a judge, but the stu-
dent’s solution does not refer to it in any way. Also, the hypothetical (2b) is not linked
to the transcript (visible through the hand symbol in the right corner of the element).

The same graph grammar formalism that is used to detect structural weaknesses
(described above) is also applicable for detecting context weaknesses, which obvi-
ously is an advantage on the technical level. We make use of node and edge attributes
in the grammar rules to represent constraints on the links that are created between the
transcript and the elements in the graph. A context rule for the most important context
weakness (missing link to important part of transcript), can be specified as follows:

L = < {S},Ø >
R = < {HYPO},Ø >
HYPO.link = 211

This rule is comparable to the start rule in the “structural weaknesses” part, differ-

ing only in that it requires specific elements to be present in the argument graph. This
rule requires a student to mark up line 211 of the transcript and link it to a hypotheti-
cal. Similar rules can be formulated to explicitly declare “irrelevant” parts of the tran-
script that should not be marked up.

Taken together, structural and context rules allow a teacher to specify in detail a
particular test/hypothetical structure linked to well-defined parts of the transcript.
However, we are not advocating an approach in which the student’s graph is com-
pared against an expert solution. Due to the ill-structuredness of the legal domain, it is
not possible to define a small set of “correct” solutions. Instead, we use the graph
grammar formalism to partially specify solutions (e.g., only the two most important
test versions and six central hypotheticals are required to be marked up by students).

3.3 Content Weaknesses

Finally, the content of the textual elements created by the student can be inappropri-
ate, even if the overall argument structure is good and related to the transcript in a
reasonable way. Students may well have difficulties in understanding, e.g., the es-
sence of a proposed test, as evidenced by a poor paraphrase in the corresponding test
node they add to the graph. Obviously, this type of weakness is hardest to check,
since it involves interpretation of legal argument in textual form. In addition, due to
the ill-structured domain, student answers will not be simply either right or wrong, but

 Toward Legal Argument Instruction with Graph Grammars 233

instead have a certain quality in terms of a number of criteria. For instance, location
(3) in Figure 1 contains the student’s description of the test proposed in the argument.
For a general reader (and also for an ITS), it is hard to tell if this is an adequate sum-
mary of the test or not. The graph structure and peers working on the same task
can help.

Our two-step approach to address the problem is NLP-free and involves a tech-
nique known as “collaborative filtering” (Konstan and Riedl 2002) – we make the
assumption that a larger group of students works on the same task, either individually
or in small groups. In our variant of the collaborative filtering method, students are
asked to rate samples of other’s work relative to their own work. The system then
combines the ratings into an overall score and thus “filters” for quality. More specifi-
cally, for selected parts of the transcript (i.e., parts where a test is mentioned), after a
student has created a corresponding element in the graph, he is first presented with a
small number of alternative answers (given by peers) and asked to select all those he
considers similar to his own answer. Then, the student gets a second selection of
answers (some known to be good, some known to be of poor quality, some given by
peers) and is asked to select all those he considers at least as good as his own. The
system then uses a combination of similarity and recommendation ratings to compute
a heuristics of the quality of student answers.

A base rating bx of an answer given by student x can be calculated based on the
recommendations given by x. If the student had n answers to choose from, and the
ones he selected as being at least as good as his own had a quality measure q1, …, qk
(0 for very bad, 1 for very good, see below for the calculation of quality measures for
peer answers), while those he did not recommend had quality measures qk+1, …, qn,
then bx can be calculated as

⎟
⎠
⎞

⎜
⎝
⎛

−+= ∑∑
+==

n

ki
i

k

i
ix qq

n
b

11

)1(
1

Figure 2 shows a window presented to the student for the base rating calculation.
In the figure, three answers can be selected as “at least as good as his own” by the
student. If the three available answers have quality ratings of 1, 0.8, and 0.3 (i.e., two
good ones and two bad ones), and the first two have been selected like the figure
shows, then the base rating for the student’s answer is bx = 0.33*(1+0.8+0.7) = 0.825.
Considering the good quality of the test description provided by the student, this base
rating is acceptable as an initial value.

The base rating bx measures in how far a student can recognize good answers and
thus serves as a heuristic of his own answer’s quality, but does not rate the answer the
student has actually typed in himself. In our approach, the base rating is therefore
supplemented by two other ratings which measure the quality of what the student has
actually typed in. First, the similarity estimations given by the students are used. If
students with good own ratings rate another solution as similar, this raises the rating
of the peer solution (the peer rating will also be reduced based on similarity with poor
solutions). Second, the recommendations that a student’s answer receives by his peers
are used, with recommendations by good students having a higher impact. The overall
quality qx of a student answer is then calculated as the weighted average of bx and
the other two measures. The weights of the peer-dependent ratings are based on the

234 N. Pinkwart et al.

number of selection options that peers had. This takes into account the importance of
peer’s opinions while at the same time eliminating the cold start problem (how to
handle the first users of the system, before peer ratings are available?) through the
inclusion of relations to known correct/incorrect solutions, which feed into bx.

Fig. 2. Similarity rating dialog

3.4 Tutor Feedback

The previous sections described how different kinds of weaknesses can be detected in
the student’s argument graphs. Having detected a weakness, the question is how the
system should react to it. Our notion of weakness includes the possibility of “false
alarms”: a student’s solution can be of high quality and still cause a tutor intervention.
This seems inevitable in an ill-structured domain, where correctness is hard to define
even for human domain experts, for example: Does the fact that the student distin-
guishes two hypotheticals (see location 1 in Figure 1) without relating the hypotheti-
cals to the current fact situation indicate that the student did not understand the role of
hypotheticals in the argument, or was this just a wrong use of graphical elements?

Since these questions cannot be answered in a general way by an ITS, it does not
make sense for an ITS to use most of the detected weaknesses as a basis for telling
users directly that they were wrong in their answer. However, following the idea of
weaknesses as the presumably weak parts of student’s work, it makes sense to use
them as tailored and personalized self-explanation prompts by inviting the student to
re-think and explain these parts of his work. Self-explanation has been shown to be
effective in many domains, including ill-structured ones (Schworm and Renkl 2002).
Table 1 shows some of the weaknesses that were identified within this article together
with related short versions of self-explanation prompts.

 Toward Legal Argument Instruction with Graph Grammars 235

Table 1. Examples of self-explanation prompts

Weakness Description Type Self-explanation prompt (short version)
Isolated hypothetical
distinguished from hypo-
thetical

structural In your solution, the hypotheticals H1 and H2 are
distinguished from each other. Yet, hypothetical
H2 is not related to any test or the current fact
situation. Please explain why you did so, either in
free text or by modifying the diagram.

Important part of tran-
script not marked

context Please look at this part of the transcript (scroll to
line L) and explain its role within the argument.

Low quality rating of
contribution

content Please reexamine what you marked here (scroll to
line L) and explain it again.

4 Conclusions and Outlook

The approach as presented in this paper is designed to support first-year law students
in learning legal argumentation skills by having them create graphical models of ar-
gument transcripts, and presenting them feedback on the weaknesses in their models.
The ITS used to generate this feedback is based on two formalisms, which enable a
heuristic check of student answers for different types of weaknesses: a graph grammar
formalism and a collaborative filtering technique. It does not make use of NLP, which
can be considered an advantage in the highly interpretive and ill-structured domain of
legal argumentation, but nevertheless is able to give content-related feedback. Fur-
thermore, the approach requires only very minimal system-side knowledge about
specific legal cases, which facilitates using the system with a new transcript.

The pilot studies we conducted essentially confirmed the suitability of the onto-
logical categories and the graphical representation format. Based on these, further
research will try to find empirical evidence for the effectiveness of the presented tu-
toring approach, both compared to control groups that make use of the diagram tool
without feedback, and also to groups that work traditionally. In particular, we are
interested in “fine tuning” the selection of feedback prompts and the collaborative
filtering mechanism in terms of which peer answers are best to present to a student.

Acknowledgements

This research is sponsored by NSF Award IIS-0412830. The contents of the paper are
solely the responsibility of the authors and do not necessarily represent the official
views of the NSF.

References

1. Aleven, V. 2003. Using Background Knowledge in Case-Based Legal Reasoning: A Com-
putational Model and an Intelligent Learning Environment. Artificial Intelligence 150:
183-238.

2. Ashley, K. 1990. Modeling Legal Argument: Reasoning with Cases and Hypotheticals.
Cambridge MA, MIT Press/Bradford Books.

236 N. Pinkwart et al.

3. Bench-Capon, T., Leng, P., and Staniford, G. 1998. A computer supported environment
for the teaching of legal argument. J. of Information, Law & Technology 3

4. Carr, C. 2003. Using Computer Supported Argument Visualization to Teach Legal Argu-
mentation. In Visualizing Argumentation, 75-96. London, Springer.

5. Farzan, R., and Brusilovski, P. 2005. Social Navigation Support through Annotation-
Based Group Modeling. In Proc. of UM, 387-391. Berlin, Springer.

6. van Gelder, T. 2002. Argument Mapping with Reason!Able. The American Philosophical
Association Newsletter on Philosophy and Computers 85-90.

7. Konstan, J., and Riedl, J. 2002. Collaborative Filtering: Supporting social navigation in
large, crowded infospaces. In Designing Information Spaces: The Social Navigation Ap-
proach, 43-81. Berlin: Springer.

8. Muntjewerff, J., and Breuker, J. 2001. Evaluating PROSA, a system to train solving legal
cases. In Proc. of AIED, 278–285. Amsterdam, IOS Press.

9. Paolocci, M., Suthers, D., and Weiner, A. 1996. Automated Advice-Giving Strategies for
Scientific Inquiry. In Proc. of ITS, 372 - 381. Berlin, Springer.

10. Pinkwart, N. 2005. Collaborative Modeling in Graph Based Environments. Berlin, disser-
tation.de Verlag.

11. Reed, C., and Rowe, G. 2004 Araucaria: Software for Argument Analysis, Diagramming
and Representation. International Journal of AI Tools 14:961-980.

12. Rekers, J., and Schürr, A. 1997. Defining and parsing visual languages with layered graph
grammars. Journal of Visual Languages and Computing 8:27-55.

13. Rissland, E. 1989. Dimension-Based Analysis of Hypotheticals from Supreme Court Oral
Argument. In Proc. of AI & Law, 111-120. New York, ACM Press.

14. Schworm, S., and Renkl, A. 2002. Learning by solved example problems: Instructional
explanations reduce selfexplanation activity. In Proceedings of the 24th Annual Confer-
ence of the Cognitive Science Society, 816-821. Lawrence Erlbaum.

15. Suthers, D., and Hundhausen, C. 2003. An Experimental Study of the Effects of Represen-
tational Guidance on Collaborative Learning Processes. Journal of the Learning Sciences
12:183-218.

16. Toulmin, S. 1958. The Uses of Argument. Cambridge University Press.
17. Verheij, B. 2003. Artificial argument assistants for defeasible argumentation. Artificial In-

telligence 150:291-324.
18. Walton, D. 2002. Legal Argumentation and Evidence. Penn State Press.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

