
On the Isomorphism Problem for
Decision Trees and Decision Lists?

V. Arvind1, Johannes Köbler2, Sebastian Kuhnert2,
Gaurav Rattan1, and Yadu Vasudev1

1 The Institute of Mathematical Sciences, Chennai, India
{arvind,grattan,yadu}@imsc.res.in

2 Institut für Informatik, Humboldt-Universität zu Berlin, Germany
{koebler,kuhnert}@informatik.hu-berlin.de

Abstract. We study the complexity of isomorphism testing for Boolean
functions that are represented by decision trees or decision lists. Our
results include a 2

√
s(lg s)O(1) time algorithm for isomorphism testing of

decision trees of size s. Additionally, we show:

• Isomorphism testing of rank-1 decision trees is complete for logspace.
• For r ≥ 2, isomorphism testing for rank-r decision trees is polynomial-

time equivalent to Graph Isomorphism. As a consequence we obtain a
2
√
s(lg s)O(1) time algorithm for isomorphism testing of decision trees

of size s.
• The isomorphism problem for decision lists admits a Schaefer-type

dichotomy: depending on the class of base functions, the isomor-
phism problem is either in polynomial time, or equivalent to Graph
Isomorphism, or coNP-hard.

1 Introduction

Two Boolean functions f, g : {0, 1}n → {0, 1} are said to be isomorphic if there is
a permutation π of the input variables x1, x2, . . . , xn so that f(x1, x2, . . . , xn) and
g(xπ(1), xπ(2), . . . , xπ(n)) are equivalent Boolean functions. The Boolean function
isomorphism problem is to test if two given Boolean functions f and g are
isomorphic. The complexity of this problem, when f and g are given as either
Boolean circuits, formulas, or branching programs, has been studied before [AT96].
The isomorphism problem for Boolean circuits is in Σp

2 and is coNP-hard even for
DNF formulas. It is also known [AT96] that the problem is not hard for Σp

2 unless
the polynomial hierarchy collapses. Thierauf [Thi00] further studied isomorphism
and equivalence for various models of Boolean functions. He has shown that
the isomorphism problem for read-once branching programs is not NP-complete
unless the polynomial hierarchy collapses to Σp

2 . From an algorithmic perspective,
Boolean Function Isomorphism can be solved in 2O(n) time [Luk99] by reducing it
to Hypergraph Isomorphism, and this is the best known algorithm in general. The

? This work was supported by Alexander von Humboldt Foundation in its research
group linkage program. The third author was supported by DFG grant KO 1053/7-1.

2 V. Arvind, J. Köbler, S. Kuhnert, G. Rattan, Y. Vasudev

best known algorithm for Graph Isomorphism, on the other hand, has running
time 2O(

√
n lgn) [BL83].

In this paper, our aim is to explore Boolean function representations for which
the isomorphism problem has faster algorithms. We focus on the problem when
the functions are given as decision trees and decision lists.

Definition 1.1. A decision tree Tf on variables X = {x1, . . . , xn} is an ordered
binary tree in which each leaf is labeled with a Boolean value and each inner node
is labeled with a variable in X and has exactly two children. Any assignment
b1, . . . , bn defines a path from the root of Tf to a leaf: At an inner node labeled
with xi, proceed to the left child if bi = 0 and to the right child otherwise. The
function value Tf (b1, . . . , bn) is the label of the leaf node reached along this path.

Decision trees are a natural representation for Boolean functions and are
fundamental to Boolean function complexity. The size of a decision tree is the
number of its leaves.

The satisfiability and equivalence problems for decision trees have simple
polynomial-time algorithms. Thus, the isomorphism problem for decision trees,
denoted DT-Iso, is in NP.

Our main result is a 2
√
s(lg s)O(1) time algorithm for isomorphism testing of

size-s decision trees. We obtain this algorithm by examining the connection
between bounded rank decision trees and hypergraphs of bounded rank. The
rank of a hypergraph is the maximum hyperedge size in the hypergraph, and
the rank of a decision tree T is the depth of the largest full binary tree that
can be embedded in T . It turns out that rank-r decision trees can be encoded
as hypergraphs of rank O(r) and this transformation can be carried out in
time nO(r). Since decision trees of size s have rank at most lg s, this gives
the 2

√
s(lg s)O(1) time algorithm for isomorphism by applying the algorithm for

bounded rank Hypergraph Isomorphism described in [BC08]. Further, it turns out
that isomorphism of rank-1 decision trees is complete for deterministic logspace.

The next main topic of the paper is the isomorphism problem for decision
lists, which were originally introduced by Rivest [Riv87] in learning theory.

Definition 1.2 ([Riv87]). A C-decision list (C-DL) L, where C is a class of
Boolean functions, is a sequence of the form (fi, bi)i≤m where fi ∈ C, bi ∈ {0, 1}
and fm = 1. For a Boolean assignment x, the value computed by the decision list
L(x) is defined as bi, where i = min{j ≥ 1 | fj(x) = 1}.

If C consists of single literals then C-DL coincides with rank-1 decision trees.
Similarly, if C consists of conjunctions of r literals then every r-CNF or r-DNF
formula has a C-decision list. We call such decision lists r-decision lists (or
r-DLs, in short). For r ≥ 3, the satisfiability problem for r-DLs is clearly NP-
complete, and the equivalence problem is coNP-complete. Furthermore, every
rank-r decision tree of size s has an r-decision list of size O(s). Our results on
isomorphism testing for decision lists are summarized below. We restrict our
attention to classes C of Boolean functions depending only on at most k variables,
for constant k.

On the Isomorphism Problem for Decision Trees and Decision Lists 3

1. If C consists of parities on 2 literals, isomorphism testing for C-DLs is in
polynomial time.

2. Isomorphism testing for C-DLs is GI-complete,3 when C is one of the following:
(i) the conjunction of two literals, (ii) a conjunction of literals with at most
one negative literal, (iii) a conjunction of literals with at most one positive
literal, and (iv) parities on three or more literals.

3. In all other cases for C, isomorphism testing for C-DLs is coNP-hard.

The above results show a Schaefer-type dichotomy for the C-DL isomorphism
problem. It is interesting to compare with the dichotomy results for C-CSP
isomorphism obtained by Böhler et al. [BHRV04]. In their paper, the dichotomy
exactly corresponds to Schaefer’s original classification [Sch78]. In our results
above, we have the Boolean complements of the Schaefer classes.

We observe that any C-CSP F = C1 ∧C2 ∧ . . .∧Cs is equivalent to the C-DL
given by L = (¬C1, 0), . . . , (¬Cs, 0), (1, 1), proving the following lemma.

Lemma 1.3. Let C be any class of Boolean functions closed under negation.
Given a C-CSP F of size s, there is a C-decision list L of size s + 1 that is
equivalent to F .

We now recall the notion of rank for decision trees [EH89]. Let T be a
decision tree and v be a node in T . If v is a leaf node then its rank is rk(v) = 0.
Otherwise, suppose v has children v1 and v2 in T . If rk(v1) 6= rk(v2), define
rk(v) = max{rk(v1), rk(v2)}; if rk(v1) = rk(v2), define rk(v) = rk(v1) + 1. The
rank of the decision tree rk(T) is the rank of its root node. The rank rk(f) of a
Boolean function f is the minimum rank over all the decision trees computing f .

In general, by a representation of a Boolean function f : {0, 1}n → {0, 1}
we mean a finite description R for f , such that for any input x ∈ {0, 1}n we
can evaluate R(x) = f(x) in time polynomial in n. Examples of representations
include circuits, branching programs, formulas, decision trees, decision lists etc.

Let π be a permutation of the input variables x1, x2, . . . , xn. Then fπ denotes
the Boolean function f(xπ(1), xπ(2), . . . , xπ(n)). Similarly, for any representation R
of the function f we denote by Rπ the representation for fπ obtained by replacing
each input variable xi in R by xπ(i).

Let R and R′ be sets of representations of Boolean functions. A permutation
preserving normal form representation (in short, normal form) for R is a mapping
N : R → R′ such that (i) for any R ∈ R, NR and R describe the same function,
(ii) if R1 and R2 describe the same function then NR1

= NR2
, and (iii) for each

permutation π we have NRπ = (NR)π.
A canonical form representation for R is a mapping C : R → R′ such that

(i) for any R ∈ R, the function represented by CR is isomorphic to the one
described by R, and (ii) for any two representations R1 and R2, the functions
described by R1 and by R2 are isomorphic if and only if CR1

= CR2
.

Suppose f is a rank-r Boolean function, and f is given as a decision tree Tf
which is not necessarily of rank r. There is a recursive nO(r) time algorithm for

3 We say that a decision problem is GI-complete if it is polynomial-time equivalent to
Graph Isomorphism.

4 V. Arvind, J. Köbler, S. Kuhnert, G. Rattan, Y. Vasudev

computing a rank-r decision tree for f . This procedure is useful in isomorphism
testing for bounded rank decision trees. As base case, suppose f is rank 1 and
is given by Tf . Then there is a variable x such that f |x←0 or f |x←1 is constant,
where f |x←b denotes f with x set to b. This can be checked by setting x = b in Tf
and verifying that all leaves in the modified decision tree are labeled by the same
constant. Suppose xi is a variable such that f |xi←0 is the constant function 1,
then the function f |xi←1 is of rank 1 and has only n− 1 variables. Proceeding
thus, in time polynomial in the size of Tf we can check if f is of rank 1 and also
compute a rank-1 decision tree for it. For checking if f has rank r, we sketch
a simple recursive procedure: Find a variable xi such that f |x←b is of rank at
most r − 1 (checked recursively), where b ∈ {0, 1}. If f |x←b has rank at most r
(checked recursively) then f is of rank r, else f has rank more than r. If no such
variable exists then f is not rank r. The correctness and running time bounds
are straightforward by induction arguments.

Theorem 1.4. Given as input a decision tree T , we can check if the computed
Boolean function has rank r and, if so, construct a rank-r decision tree for it in
time (nr · |T |)O(1).

2 GI-Hardness of DT-Iso and C-DL-Iso

We will show that isomorphism testing even for rank-2 decision trees is GI-hard.
Let G = (V,E) be a graph with V = {v1, v2 . . . , vn} and E = {e1, e2, . . . , em}.

We encode G as a Boolean function fG on n+m Boolean variables v1, . . . , vn and
e1, . . . , em as follows: fG(e1, . . . , em, v1, . . . , vn) = 1 if and only if exactly three
variables ei, vj , vk are 1, all remaining variables are 0, and ei = (vj , vk) ∈ E. Here
the Boolean variables vi and ej correspond, by abuse of notation, to elements of
V ∪E. The proofs for the following simple observations are omitted for lack of
space.

Lemma 2.1. For any graph G(V,E), the function fG is of rank 2 and can be
represented by a rank-2 decision tree of size O(|G|2).

Theorem 2.2. Let G and H be two graphs and let fG and fH be the functions
as defined above. Then, G ∼= H if and only if fG ∼= fH .

Corollary 2.3. GI ≤mp DT-Iso.

We now give a simple reduction from Graph Isomorphism to 2-DNF Iso-
morphism. Since C-DLs, where C is the class of conjunctions of 2 literals or of
k literals with at most 1 negative literal, contains 2-DNFs [Riv87], this will prove
C-DL-Iso is GI-hard for this choice of C.

Given a graph G(V,E), define the following functions over the variable set V :

f̌G =
∨
e=(u,v)∈E u ∧ v, f̂G =

∨
e=(u,v)∈E u ∧ v.

Lemma 2.4. Let G,H be two graphs. Then G ∼= H if and only if f̌G ∼= f̌H if
and only if f̂G ∼= f̂H .

On the Isomorphism Problem for Decision Trees and Decision Lists 5

Böhler et al. [BHRV04] have considered C-CSP Isomorphism, where the
constraints in C are all XORs of k literals for constant k ≥ 3. They have shown
that this problem is GI-hard. Combined with Lemma 1.3 and Lemma 2.4, this
yields the following.

Proposition 2.5. GI ≤mp C-DL-Iso, where C consists either of (i) conjunctions
of two literals, (ii) conjunctions of k literals with at most one positive literal each,
(iii) conjunctions of k literals with at most one negative literal each or (iv) XORs
of k ≥ 3 literals, for some constant k.

In Section 4 we will show that these problems are GI-complete.

3 Isomorphism for Bounded Rank Decision Trees

We first show that the isomorphism problem for rank-1 Boolean functions is in
polynomial time. In fact, we will give a polynomial-time algorithm for computing
a canonical form representation for rank-1 Boolean functions. If the rank-1
function is given as a rank-1 decision tree, we show that the isomorphism problem
is complete for deterministic logspace. Building on the rank-1 case, we give a
polynomial-time reduction from the isomorphism problem for bounded rank
Boolean functions to isomorphism of bounded rank hypergraphs. This yields a
moderately exponential time algorithm for isomorphism testing of bounded rank
decision trees.

Let f be a rank-1 Boolean function given by some decision tree Tf which is
not necessarily rank 1.

Since rk(f) = 1, for some variable xi the function f |xi←b is a constant.
Let V1(f) be the subset of variables xi ∈ {x1, x2, . . . , xn} such that f |xi←1 or
f |xi←0 is a constant function. We define two subsets of V1(f): V1,0(f) =

{
xi
∣∣

f |xi←0 is constant
}

and V1,1(f) =
{
xi
∣∣ f |xi←1 is constant

}
. The set V1(f) is

computable in polynomial time from Tf : to check if xi ∈ V1(f) we fix xi to a
constant in Tf and see if all leaves in the resulting decision tree have the same
label.

In general, if T is a decision tree computing a function f , xi is some variable
and b is a Boolean constant, we can obtain the decision tree T |xi←b for the
function f |xi←b by removing the subtree corresponding to the b path of any node
labeled with the variable xi. To check if this is the constant function, it is enough
to verify if all the leaves of this modified decision tree have the same constant.

Next, we define f0 = f and fi = fi−1|V1,0(fi−1)←1,V1,1(fi−1)←0. We also define
the variable sets Vi(f) = V1(fi−1), which are again classified into Vi,0(f) =
V1,0(fi−1) and Vi,1(f) = V1,1(fi−1). The variable set {x1, x2, . . . , xn} is thus
partitioned into V1(f), . . . , Vk(f) for some k ≤ n. The level of a variable xi is the
index j such that xi ∈ Vj(f).

The normal form for the rank-1 function f is defined as the sequence of
pairs 〈li, ci〉1≤i≤r where li is a variable or its complement, and ci ∈ {0, 1}. The
pairs 〈li, ci〉 in the sequence are ordered from left to right in increasing order
of variable levels. Within each level they are in increasing order of variable

6 V. Arvind, J. Köbler, S. Kuhnert, G. Rattan, Y. Vasudev

indices. For xi ∈ Vj,0(f), add 〈xi, fj−1|xi←0〉 to the sequence; for xi ∈ Vj,1(f),
add 〈xi, fj−1|xi←1〉 to the sequence.

Suppose f is a rank 1 function given by a decision tree T . Let the above
sequence computed from T be NT (which is actually a decision list for f). This
sequence NT defines a normal form representation for T . This follows from the
next two lemmas.

Lemma 3.1. Suppose f and g are two isomorphic rank-1 Boolean functions and
π is an isomorphism from f to g. For any input variable x, if x is in level j
for f then variable π(x) is in level j for g.

This implies that the number of variables in each level coincides for two
isomorphic Boolean functions of rank 1. The next lemma is in the converse
direction.

Lemma 3.2. Let T1 and T2 be decision trees for two Boolean functions of rank 1,
defined on the n variables x1, . . . , xn. Let NT1

and NT2
be the corresponding

normal form sequences obtained as in the discussion above. Suppose for each level i,
|Vi,0(f)| = |Vi,0(g)| and |Vi,1(f)| = |Vi,1(g)|, then T1 and T2 are isomorphic.

Hence, the defined sequences are normal forms for rank-1 functions and in
time polynomial in the size of the input decision tree we can compute the normal
form. Given T1 and T2, Lemma 3.2 shows that by comparing the sizes of the
sets Vi,0 and Vi,1 for the two functions we can check if the Boolean functions are
isomorphic or not. This gives us the following theorem.

Theorem 3.3. Given Boolean functions of rank 1 by decision trees, there is a
polynomial time algorithm that checks if the functions are isomorphic.

We now show that if the rank-1 function f is given as a decision tree Tf which
is of rank 1, then the canonization problem is in logspace. For each internal node
of Tf at least one of its children is a leaf (labeled by a constant). We can partition
the internal nodes in the tree into subsets L1, . . . , Lm, where L1 has consecutive
nodes starting from the root that have a leaf child labelled with the same Boolean
constant as at the root, L2 is the next set of consecutive nodes with a leaf child
labelled with the Boolean constant opposite to the one at the root, and so on. We
further classify the variables in each Li into the subset Li,0 of nodes in Li whose
left child is a leaf and subset Li,1 of nodes whose right child is a leaf. These sets
can be computed in logspace by inspection of the input decision tree. Since for
each x ∈ L1,b, the restriction f |x←b is a constant, L1,b ⊆ V1,b(f). Also, notice
that no variable outside the set L1,b has this property. Hence L1,b = V1,b(f).
Likewise, we can argue that Li,b = Vi,b(f) for all i and b. As a consequence we
can state the following lemma.

Lemma 3.4. Let T and T ′ be two rank-1 decision trees computing equivalent
Boolean functions. Then Li,b = L′i,b for all i and b.

In order to obtain the canonical form for rank-1 decision trees, we first order
the variables of Li such that all the nodes whose left child is a constant come

On the Isomorphism Problem for Decision Trees and Decision Lists 7

first followed by the nodes whose right child is a constant. We do this for all
the sets L1, . . . , Lm. Now starting from the root, rename the variables with the
root node getting the variable x1 followed by x2 and so on. This new decision
tree Tc, which is clearly computable in logspace, will be the canonical form for
the original decision tree. By Lemma 3.4, a rank-1 decision tree isomorphic to the
given tree is obtained by permuting the variables in Li in some way for each i.
Hence given two rank-1 decision trees computing isomorphic Boolean functions,
the above procedure outputs the same rank-1 decision tree proving that it is a
canonical form.

We now show the logspace completeness. We will give a reduction from the
problem PathCenter, which is known to be complete for L [ADKK12]. The input
to PathCenter is a directed path P of odd length and a vertex u. The problem is
to test if u is the center of the path. We construct two decision trees T1 and T2
from P : For each v ∈ V there is a variable xv, and both T1 and T2 contain
one internal node for each xv. If v is the successor of v′ in P , xv becomes the
right child of xv′ in T1, and xv′ becomes the right child of xv in T2. The right
child of xv, where v is the vertex without successor (or without predecessor,
respectively) is a leaf labeled with 1. In both trees, the left child of xu is a leaf
labeled with 1. The left children of all other variables are leaves labeled with 0.

Lemma 3.5. Let T1 and T2 be the decision trees constructed from an instance
(P (V,E), u) of PathCenter. Let f1 and f2 be the functions computed by the deci-
sion trees, respectively. Then, f1 ∼= f2 if and only if (P (V,E), u) ∈ PathCenter.

We now consider rank-r Decision Tree Isomorphism. Using the normal form
representation for rank-1 Boolean functions, we will obtain normal forms for
Boolean functions of rank r. Similar to rank-1 decision trees, where the normal
form consists of literal and constant pairs, for bounded rank functions the normal
form will consist of pairs of literals and a normal form of a rank r − 1 Boolean
function. Let V1(f) be the subset of variables xi such that f |xi←0 or f |xi←1 has
rank at most r−1. Let V1,b(f) ⊆ V1(f) consist of xi such that f |xi←b has rank at
most r− 1 for b ∈ {0, 1}. Further partition V1,b into subsets V `1,b for 1 ≤ ` ≤ r− 1

where V `1,b = {xi ∈ V1(f) | f |xi←b has rank `}.
For each xi ∈ V `1,0 in increasing order of index i, include the pair 〈xi, Nxi〉

in the sequence, where Nxi is the normal form for f |xi←0, defined recursively.
Similarly for xi ∈ V `1,1 in the increasing order of the variable name, add the tuple
〈xi, Nxi〉 to the sequence. The above procedure is carried out for ` increasing
from 1 to r− 1. Now define, f1 = f |V1,0(f)←1,V1,1(f)←0, and continue constructing
the normal form for f1 as explained above. In general, we define the variable
subsets V `i,b(f) = V `1,b(fi−1). Since for each xi, checking if f |xi←b is a rank-`

function and to compute it takes poly(nr−1|T |) time by Theorem 1.4, and
since this process has to be repeated for at most n steps, the normal form can
be constructed in time poly(nr|T |). The normal form consists of a sequence
〈li, Nxi〉i≤m where m ≤ n and li ∈ {xi, xi}. We summarize the discussion in the
following lemma (without proof).

8 V. Arvind, J. Köbler, S. Kuhnert, G. Rattan, Y. Vasudev

Lemma 3.6. Given a decision tree T computing a Boolean function f of rank r,
a normal form representation NT for the function can be computed in time
poly(nr|T |).

We now describe our reduction of rank-r Decision Tree Isomorphism to
bounded rank Hypergraph Isomorphism, where the rank of a hypergraph is the
maximum size of any hyperedge in it.

Given a rank-r Boolean function as a decision tree, we first construct the
normal form for f , Nf in time nO(r) as described earlier. The next step is to
construct a vertex-colored hypergraph corresponding to the normal form. We will
encode all the information in the normal form using hyperedges. The construction
is inductive.
Rank-1 functions: The case of rank-1 functions is easy, since the normal form for
a rank-1 Boolean function consists of a decision tree where for each node, one of its
children is a constant. In the hypergraph corresponding to the rank-1 function f ,
for each variable xi that appears in the normal form we add a vertex vi. Add the
vertices (i, b) where 1 ≤ i ≤ n and b ∈ {0, 1}. We also add two vertices 0 and 1
corresponding to the constants. Now for each variable xi, if xi ∈ Vj,b(f) and one
of its children is labeled with the constant c, add the hyperedge (vi, (j, b), c) in
the hypergraph. We color all the vertices corresponding to the variables with one
color and each (j, b) with a separate color. The vertices 0 and 1 are colored with
different colors as well. Call the resulting rank-3 hypergraph Hf . We have the
following lemma.

Lemma 3.7. Let f and g be Boolean functions of rank 1 given by decision trees,
and let Hf and Hg be the hypergraphs constructed as above. Then, f and g are
isomorphic as functions if and only if the hypergraphs Hf and Hg are isomorphic.

Rank-r functions: Let f be a rank-r function, and let Nf = 〈li, Nxi〉i≤k,
where k ≤ n and li ∈ {xi, xi}, be the normal form for f . The vertex set for
the hypergraph Hf is {u1, . . . , un} ∪ {vd1 , . . . , vdn | 1 ≤ d ≤ r} ∪ {(l, i, b, j) | 1 ≤
l ≤ r, 1 ≤ i ≤ n, 1 ≤ j ≤ r, b ∈ {0, 1}} ∪ {0,1}. Intuitively, the vertices
u1, . . . , un will encode the variables x1, . . . , xn and v11 , . . . , v

1
n will encode the

variables x1, . . . , xn at the outermost level in (l1, Nxi) pairs. Let Hi denote the
hypergraph encoding Nxi , constructed inductively. The vertex set of Hi will
be {vd1 , . . . , vdn | 2 ≤ d ≤ r} ∪ {(l, i, b, j) | 1 ≤ l ≤ r − 1, 1 ≤ i ≤ n, b ∈ {0, 1},
2 ≤ j ≤ r} ∪ {0,1}. We define the edge set for Hf as follows: For every 〈li, Nxi〉
in the normal form and every edge e ∈ Hi, we include e ∪ {v1i } ∪ {(l, j, b, 1)} in
the edge set if xi ∈ V lj,b(f) (where b encodes whether li is xi or xi) and the edges

{ui, v1i } for all i. Assume, inductively, that Hi is of rank at most 2(r − 1) + 1.
Then clearly Hf is of rank at most 2r + 1. If f ∼= g via π ∈ Sn, then since
Nf and Ng are their normal form representations (Nf)π = Ng, where (Nf)π is
obtained by replacing xi by xπ(i) for all i in Nf . By induction on the rank r, we
can easily argue that there is a π ∈ Sn such that (Nf)π = Ng if and only if the
hypergraphs Hf and Hg are isomorphic.

On the Isomorphism Problem for Decision Trees and Decision Lists 9

Lemma 3.8. Let f and g be Boolean functions of rank r given by decision trees.
Let Hf and Hg be the hypergraphs constructed as above. Then, f and g are
isomorphic as functions if and only if the hypergraphs Hf and Hg are isomorphic.

According to the construction, the hypergraph Hf corresponding to the
rank-r function f has 2nr vertices and rank 2r + 1. The size of the hypergraph
is at most nO(r) since any rank-r Boolean function has a rank-r decision tree
of size nO(r). In particular, the normal form that we construct is of size at
most nO(r). We formulate these observations in the following theorem.

Theorem 3.9. Let f and g be Boolean functions of rank r given by decision
trees Tf and Tg. There is an algorithm running in time nO(r) that outputs two
hypergraphs Hf and Hg of rank 2r + 1 and size nO(r) such that f and g are
isomorphic if and only if the hypergraphs Hf and Hg are isomorphic.

Since any decision tree of size s has rank at most O(log s), it has a normal
form representation of size nO(log s) which can be computed in nO(log s) · sO(1).
Hence we have the following corollary.

Corollary 3.10. Let f and g be two decision trees of size s. There is an sO(log s)

time algorithm which computes hypergraphs Hf and Hg of logarithmic rank and
size sO(log s) such that f and g are isomorphic if and only if Hf ∼= Hg.

Combining this with the isomorphism algorithm for hypergraphs of bounded
rank due to Babai and Codenotti [BC08], we observe the following:

Corollary 3.11. Given two Boolean functions f and g as decision trees of size s,
there is a 2

√
s(log s)O(1) time algorithm to check if f ∼= g.

4 Isomorphism for Decision Lists

We now consider C-DL Isomorphism (defined in Section 1), where C consists either
of (i) conjunctions of k literals with at most one negated each, or (ii) conjunctions
of k literals with at most one positive each, or (iii) conjunctions of 2 literals,
or (iv) XORs of k literals. In all these cases, the C-DL isomorphism problem
is reducible to GI. Moreover, when C consists of XORs of two literals this
isomorphism problem is in polynomial time. We will refer to this last case as
2⊕-DL. We have shown that Graph Isomorphism is reducible to C-DL-Iso when
C is any of the above four classes. For all other C, by Lemma 1.3, C-DL-Iso is
coNP-hard. This shows the Schaefer-type dichotomy for the isomorphism problem
of decision lists.

Let L be a 2⊕-DL, i.e., L is given by a sequence of pairs (pi, bi) where
bi ∈ {0, 1} and each pi is an XOR of two literals. We say that a pair (pi, bi) fires
on an assignment x, if i is the least index such that pi(x) = 1. Let fL denote the
function computed by L.

We first construct a normal form representation for 2⊕-DLs to obtain an
equivalent decision list where the tuples are partitioned into the sets B1, . . . , Bm,

10 V. Arvind, J. Köbler, S. Kuhnert, G. Rattan, Y. Vasudev

where the second component of each pair in Bi is 0 if i is odd, and is 1 if i is
even, for all i (in this normal form the set B1 could possibly be empty). We then
exploit the structure of the normal form and in polynomial time transform the
2⊕-DL isomorphism problem to Tree Isomorphism which can be solved efficiently.

We first explain the normal form NL (which is also a 2⊕-DL) for a given
2⊕-DL L. For each pair of literals li and lj , if li⊕ lj = 1 implies that the function
value is 0, we add (li ⊕ lj , 0) to the set of pairs B1 of NL. We can find such
pairs by replacing all occurrences of lj by li in the decision list and checking
if it computes the constant function 0. After B1 is computed, we compute the
set B2 as follows: find literals lr and lp such that (lp ⊕ lr) ∧

∧
pi∈B1

¬pi ⇒ fL.
It is easy to see that such pairs can be found efficiently. For each such pair we
include (lr ⊕ lp, 1) in B2. Continuing this construction, we obtain sets of pairs
B1, B2, . . . , Bm. This 2⊕-DL is the normal form NL for L. The following lemma
summarizes this normal form construction.

Lemma 4.1. If L is a 2⊕-DL then NL is a normal form representation for L.
Moreover, NL is computable in time polynomial in |L|.

Let L be a 2⊕-DL and NL be its normal form. We will efficiently encode
NL as a rooted tree TL so that the following holds: For two 2⊕-DLs L1 and L2,
fL1

and fL2
are isomorphic if and only if the trees TL1

and TL2
are isomorphic.

Recall that the normal form NL consists of sets of pairs B1, B2, . . . , Bm. Consider
inputs for which none of the pairs (li ⊕ lj , 0) ∈ B1 fire. For all such inputs li = lj
holds for each pair (li ⊕ lj , 0) ∈ B1. These equalities induces a partition on the
set of all variables into subsets A1,p, A1,nA2,p, A2,n . . . , Ak,p, Ak,n, so that on any
input for which the decision list reaches B2 and for each `, all variables in A`,p
are equal and all variables in A`,n are equal and complementary to the variables
in A`,p. Let A` = A`,p ∪A`,n. Notice that some of the A` could be singletons, e.g.
when the corresponding literals do not occur in B1, and some A`,p or A`,n could
be empty.

Now, we construct a new 2⊕-DL from NL as follows: Delete B1 from NL.
Introduce a new variables y`, 1 ≤ ` ≤ k, and in the decision list B2, . . . , Bm
replace by the variable y` all occurrences of variables in A`,p and replace by y`
all occurrences of variables in A`,n, for each `.

Let L̂ = (B̂2, . . . , B̂m) denote this new 2⊕-DL defined on the new input
variables y`, 1 ≤ ` ≤ k. Recursively, we obtain a rooted tree TL̂ with leaves

labeled by y`, 1 ≤ ` ≤ k corresponding to L̂. Now, to obtain the rooted tree TL
from TL̂, we insert two children (`, p) and (`, n) to the leaf labeled y`, and make
the elements of A`,p children of (`, p) and the elements of A`,n children of (`, n).
To complete the construction note that the base case when NL consists of only
B1 is easy to handle (since it is a constant function we create a depth one rooted
tree TL with one leaf for each variable).

Since NL is a normal form representation for L, for any permutation π of
the variables x1, x2, . . . , xn we have NLπ = (NL)π. Suppose L1 and L2 are 2⊕-
DLs computing isomorphic functions and π is an isomorphism: Lπ1 and L2 are
equivalent functions. Now, since NL1

and NL2
are normal forms for L1 and L2

On the Isomorphism Problem for Decision Trees and Decision Lists 11

we have (NL1
)π = NLπ1 = NL2

. By the above construction it is easy to see that
the rooted trees TL1

and TL2
are isomorphic via a permutation ψ such that

ψ restricted to the leaves of TL1 is the permutation π (indeed, ψ is the unique
extension of π to the internal nodes of TL1). Conversely, if TL1 and TL2 are
isomorphic via a permutation ψ then, from our construction we can argue that
L1 and L2 are isomorphic, where the isomorphism is given by ψ restricted to the
leaves of TL1

. We summarize the above discussion in the following lemma.

Lemma 4.2. The Boolean functions computed by two 2⊕-DLs L1 and L2 are
isomorphic if and only if the rooted trees TL1 and TL2 are isomorphic. Furthermore,
given an isomorphism from TL1 to TL2 we can recover in polynomial time an
isomorphism from fL1

to fL2
.

Since testing isomorphism between trees can be done efficiently, we have the
following theorem.

Theorem 4.3. The 2⊕-DL isomorphism problem is in polynomial time.

We now turn to the remaining variants of the C-DL isomorphism problem.
A C-DL is a list of pairs (C(xi1 , . . . , xir), b), where r is some fixed constant and
C(xi1 , . . . , xir) is a C-term. We will consider C to be one of the following classes
of functions: (i) The C-terms are of the form li ∧ lj . (ii) The C-terms are of the
form li1 ∧ · · · ∧ lir , where r is a fixed constant and at most one literal is positive.
(iii) The C-terms are of the form li1 ∧ · · · ∧ lir , where r is a fixed constant and
at most one literal is negative. (iv) The C-terms are of the form li1 ⊕ · · · ⊕ lir ,
where r ≥ 3.

We show that in all these cases C-DL Isomorphism is reducible to Graph
Isomorphism.

Theorem 4.4. The C-DL isomorphism problem, where C is one of the function
classes above, is polynomial-time reducible to Graph Isomorphism.

We give a reduction from C-DL-Iso to the label-respecting isomorphism
problem of labeled trees which is equivalent to Graph Isomorphism [RZ00]. In
this problem, we are given two rooted trees and additionally each vertex has
a label. We ask if there is an isomorphism between the trees which is label-
respecting. I.e. if two vertices in the first tree have the same label, their images in
the second tree have the same label. An equivalent generalized version is finding
isomorphism of colored labeled trees, in which each vertex also has a color and
we ask for color-preserving, label-respecting isomorphism.

Given a C-DL L on variables {x1, . . . , xn}, we compute a normal form in
polynomial time for the associated Boolean function fL.

We find all r-tuples of literals, T1, such that setting the associated C-term
to true forces fL to be constant. In general, we find all r-tuples of literals, Ti,
such that setting the associated C-term to true given the premise that all the
C-terms in Tj , j < i are false forces fL to be constant. For the cases of C we are
considering, checking this amounts to solving either 2CNF or Horn formula or
Anti-Horn formula satisfiability or solving linear equations modulo 2.

12 V. Arvind, J. Köbler, S. Kuhnert, G. Rattan, Y. Vasudev

Such a process yields a sequence T1, . . . , Tm of sets of r-tuples of literals
which partitions all (the at most (2n)r many) r-tuples of literals. As we saw for
2⊕-DLs, this sequence T1, . . . , Tm actually yields a C-DL which is a normal form
representation for L.

We will now encode NL as a labeled tree TL (in the sense of [RZ00]). It
turns out that two C-DLs L1 and L2 compute isomorphic functions if and only
if there is a label-respecting tree isomorphism from TL1

to TL2
. We outline the

encoding algorithm which takes NL as input and computes a labeled tree TL:
Let T1, T2, . . . , Tm be the r-tuple sets defining NL. We create a root node with
m children corresponding to T1, T2, . . . , Tm, where the node for Ti is colored i. In
the subtree rooted at the node corresponding to Ti we create a child c for each
r-tuple C ∈ Ti. The node c will have r children which are leaves labeled by the
corresponding variable name (in x1, x2, . . . , xn) and colored p or n depending on
whether that literal occurring in C is positive or negative.

This completes the construction of the labeled tree TL. It is easy to verify
that if the Boolean functions computed by L1 and L2 are isomorphic via a permu-
tation π then, in fact, π acting on the leaf labels of TL1

induces an isomorphism
from TL1

to TL2
. Conversely, if there is a label-respecting isomorphism ψ from TL1

to TL2
, then ψ induces a permutation π on the leaf labels of TL1

which turns
out to be an isomorphism from fL1

to fL2
. This completes the proof sketch of

Theorem 4.4.

References

[ADKK12] V. Arvind, Bireswar Das, Johannes Köbler, and Sebastian Kuhnert, The
isomorphism problem for k-trees is complete for logspace, Inf. Comput. 217
(2012), 1–11.

[AT96] Manindra Agrawal and Thomas Thierauf, The Boolean isomorphism prob-
lem, FOCS, 1996, pp. 422–430.

[BC08] László Babai and Paolo Codenotti, Isomorhism of hypergraphs of low rank
in moderately exponential time, FOCS, 2008, pp. 667–676.

[BHRV04] Elmar Böhler, Edith Hemaspaandra, Steffen Reith, and Heribert Vollmer,
The complexity of Boolean constraint isomorphism, STACS, 2004, pp. 164–
175.

[BL83] László Babai and Eugene M. Luks, Canonical labeling of graphs, STOC,
1983, pp. 171–183.

[EH89] Andrzej Ehrenfeucht and David Haussler, Learning decision trees from
random examples, Inf. Comput. 82 (1989), no. 3, 231–246.

[Luk99] Eugene M. Luks, Hypergraph isomorphism and structural equivalence of
Boolean functions, STOC, 1999, pp. 652–658.

[Riv87] Ronald L. Rivest, Learning decision lists, Machine Learning 2 (1987), no. 3,
229–246.

[RZ00] Sarnath Ramnath and Peiyi Zhao, On the isomorphism of expressions, Inf.
Process. Lett. 74 (2000), no. 3-4, 97–102.

[Sch78] Thomas J. Schaefer, The complexity of satisfiability problems, STOC, 1978,
pp. 216–226.

[Thi00] Thomas Thierauf, The computational complexity of equivalence and iso-
morphism problems, LNCS, vol. 1852, Springer, 2000.

	On the Isomorphism Problem for Decision Trees and Decision Lists

