The Space Complexity of k-Tree Isomorphism

V. Arvind!, Bireswar Das', and Johannes K&bler?

! The Institute of Mathematical Sciences, Chennai 600 113, India
{arvind,bireswar}@imsc.res.in
2 Institut fiir Informatik, Humboldt Universitit zu Berlin, Germany
koebler@informatik.hu-berlin.de

Abstract. We show that isomorphism testing of k-trees is in the class
StUSPACE(logn) (strongly unambiguous logspace). This bound follows
from a deterministic logspace algorithm that accesses a strongly unam-
biguous logspace oracle for canonizing k-trees. Further we give a logspace
canonization algorithm for k-paths.

1 Introduction

It often turns out that NP-hard graph problems when restricted to the class of
partial k-trees for constant k have efficient polynomial-time algorithms [Bod88|,
[SS8T]. Partial k-trees are also known as the class of graphs of treewidth k.
For constant k, in general, they are known as bounded treewidth graphs (formal
definitions are given in Section).

Graph Isomorphism is the problem of deciding whether two given graphs are
isomorphic. I.e. the problem is to test whether there is a bijective function that
maps vertices of the first graph to vertices of the second graph and preserves
the edge relation. Graph Isomorphism has attracted much algorithmic research.
It is one of the few problems in NP that is neither known to be computable
in polynomial time nor to be NP-complete. Polynomial time algorithms have
been designed for the problem for several interesting restricted graph classes
[Luk82l MiI83, [Bab&6|, including the class of partial k-trees [Bod90]. Bodlaender
Bod90] gave the first polynomial-time algorithm for testing the isomorphism of
partial k-trees. Bodlaender’s algorithm, based on dynamic programming, runs
in time O(nk+49).

Our interest is in a complexity-theoretic characterization of Graph Isomor-
phism for partial k-trees using space bounded complexity classes. We explain
our motivation for studying the space complexity of k-tree isomorphism. On the
one hand, we have Lindell’s result JKMTO03] that tree canonization is
complete for deterministic logspacell which tightly characterizes the complex-
ity of both isomorphism and canonization of trees. What about partial k-tree
isomorphism? The recent TC' upper bound for isomorphism of partial k-trees
by Grohe and Verbitsky [GV06] raises the question about a tight complexity-
theoretic classification of the problem. It is tempting to conjecture that partial

! Provided that the tree is given in the pointer notation; using the parenthesis notation

the problem is NC!'-complete [Bus97, [TKMT03]

T. Tokuyama (Ed.): ISAAC 2007, LNCS 4835, pp. 822 2007.
© Springer-Verlag Berlin Heidelberg 2007

The Space Complexity of k-Tree Isomorphism 823

k-tree isomorphism should also be complete for deterministic logspace, just like
ordinary tree isomorphism. However, the best known complexity bound for even
recognizing partial k-trees is LOGCFL (the class of decision problems that are
logspace many-one reducible to CFLs) [Wan94].

The TC' bound of [GV06] suggests that we can put the problem in a natural
complexity class contained in TC' like LOGCFL or DET, or perhaps somewhere
in the logspace counting hierarchy. The logspace counting classes, introduced
in the seminal paper [AO96], contain many natural problems sitting in NC?
and have been used to characterize most natural problems in NC? satisfactorily
from a complexity-theoretic viewpoint. A comprehensive study can be found in
Allender’s survey article [AT104].

In this paper we show that full k-tree canonization is in FLNY. Recall that
the canonization problem for graphs is to produce a canonical form canon(Q)
for a given graph G such that canon(@) is isomorphic to G and canon(G;) =
canon(Gz) for any pair of isomorphic graphs G; and Gs. Canonization is clearly
at least as hard as Graph Isomorphism. In fact, it is easy to see that Graph
Isomorphism is even AC” reducible to Graph Canonization. However, in general
it is not known if the two problems are even polynomial-time equivalent.

Interestingly, the NL oracle required for k-tree canonization is a language
computed by an NL machine M that is strongly unambiguous: for any two
configurations x and y of machine M there is at most one computation path
from x to y. The class of languages accepted by such NL machines is denoted
StUSPACE(logn) (StUL for short) by Allender and Lange [AL89]. As shown in
[AL89], StUL is in fact contained in DSPACE(log? n/loglogn), improving the
DSPACE(log® n) bound given by Savitch’s theorem. Furthermore, the complex-
ity class StUL is closed under complementation and even closed under logspace
Turing reductions [BJLRII, Corollary 15]. Thus, it follows that k-tree isomor-
phism is in StUL. The class StUL is not known to be contained in L. In fact,
it contains the class ULIN of unambiguous linear languages which is
not known to be in L. To the best of our knowledge, no explicit example of a
language in StUL is known that is not already in L. Thus, k-tree isomorphism
is the first natural problem in StUL which is not known to be in L.

We note that parallel algorithms are known for k-tree isomorphism. For ex-
ample, in [GSS02] a processor efficient AC? algorithm was given for k-tree iso-
morphism. Since StUL C UL C NL C AC!, our upper bound is tighter than
previously known bounds from a complexity-theoretic perspective. We also look
into the problem of canonizing k-paths, a special case of k-trees, and give a
logspace canonization algorithm for k-paths.

2 Preliminaries

By graphs we mean finite simple graphs. For basic graph theoretic definitions
we refer the reader to [Die97]. For a graph G, let V(G) denote its vertex set and
E(Q) denote its edge set. The set {w € V(G) | {v,w} € E(G)} of all neighbors of

824 V. Arvind, B. Das, and J. Kobler

v € V(G) is denoted by N (v). For a subset U C V(G), we use G[U] to denote the
induced subgraph of G, where V(G[U]) = U and E(G[U]) ={e € E(G) |e CU}.

Two graphs G and H are isomorphic if there is an edge-preserving bijection
7 : V(G) — V(H), ie., for all u,v € V(G), {u,v} € E(G) if and only if
{r(u),7(v)} € E(H). In case the vertices of G and H are labeled, then the
isomorphism 7 must also preserve the labels.

Next we recall some complexity classes defined by circuits and some space
bounded classes.

A language A is in the complexity class NC* (resp. ACi) if there is a uniform
family of circuits {C,,},, of depth O(log’ n) and size poly(n) with internal AND,
OR and NOT gates with bounded (resp. unbounded) fan-in that accepts A. TC!
is the extension of AC" where we additionally allow unbounded MAJORITY
gates.

The complexity class L consists of all languages A accepted by a deterministic
O(logn) space bounded Turing machine. NL is defined in the same way by using
nondeterministic machines. FL is the class of all functions computable by a
deterministic O(logn) space bounded Turing machine.

A nondeterministic Turing machine M is called unambiguous, if for any input
x, it has at most one accepting computation path.

M is said to be reach-unambiguous if it is unambiguous and for any input z,
there is at most one computation path from the starting configuration to any
other configuration.

M is said to be strongly unambiguous if it is unambiguous and for any pair of
configurations u and v of M there is at most one computation path from v to v.

A mangrove is a directed acyclic graph such that there is at most one directed
path from 7 to j for any two nodes ¢ and j in the graph. In other words, a directed
graph is a mangrove if and only if for any node u the subgraph induced by u
and all nodes reachable from w is a rooted directed tree.

Note that an unambiguous machine M is strongly unambiguous if and only
if its configuration graph is a mangrove.

A language A is in the class UL (RUL, StUL) if there is an O(logn)
space bounded unambiguous (reach-unambiguous, strongly unambiguous, re-
spectively) Turing machine accepting A. It is well known that

NC!' C L C StUL € RUL C UL C NL C AC' C TC' C NC?.

The following result of Allender and Lange [AL89] shows that Savitch’s log®n
space deterministic simulation of NL can be improved for StUL and RUL.

Theorem 1. [AL89] StUL € RUL C DSPACE(log® n/ loglogn).

3 k-Tree Canonization

Let G be a class of (encodings of) graphs. We say that f computes a complete
invariant for G, if

VG, HeG:G=H < f(G) = f(H).

The Space Complexity of k-Tree Isomorphism 825

A complete invariant f for G that computes for any graph G € G a graph f(G)
that is isomorphic to G is called a canonization for G. We call f(G) the canon
of G (w.r.t. f).

Notice that if there is a polynomial time computable canonization for G then
the graph isomorphism problem restricted to G can also be solved in polynomial
time. As shown by Gurevich, canonization of general graphs is polynomial-time
equivalent to computing a complete invariant [Gur97].

Certain complete invariants are known to be intractable. For example, it is
NP-hard to compute the lexicographically least graph (w.r.t. some specific rep-
resentation) isomorphic to the given graph [BL83]. However, the approach of
computing complete invariants has been successful for solving the graph isomor-
phism problem efficiently for some graph classes [BL83| [Spi90].

The classes of k-trees and partial k-trees were introduced by Arnborg and
Proskurowski (see e.g. [AP89]).

Definition 2. The class of k-trees is inductively defined as follows.

— A clique with k vertices (k-clique for short) is a k-tree.

— Gwen a k-tree G' with n wvertices, a k-tree G with n + 1 vertices can be
constructed by introducing a new verter v and picking a k-clique C in G’
and then joining v to each vertex w in C. Thus, V(G) = V(G') U {v},
E(G)=EG)U{{u,v}|ueC}.

A partial k-tree is a subgraph of a k-tree.

Before we go into the k-tree canonization we notice that the following charac-
terization of k-trees gives a logspace algorithm for recognizing k-trees.

Definition 3. Let G = (V,E) be a graph. A subset S of V is called a
vertex separator for two nonadjacent vertices u,v € V, if in the subgraph of G
induced by the vertex set V. — S the two vertices u,v are in different connected
components. A vertex separator S for u,v is called minimal, if no proper subset
of S is a vertex separator for u and v. A subset S C V is a minimal vertex
separator if S is a minimal vertex separator for some pair of vertices u,v € V.

Lemma 4. [CI88] A graph G with n > k vertices is a k-tree if and only if

— every pair of nonadjacent vertices u and v has a k-clique as a minimal vertex
separator and
— E(G) contains exactly (]29) + k(n — k) edges.

It is easy to see that the two conditions of Lemma [can be checked in logspace.
Hence, from now on we can assume that the input graph G is a k-tree. Further
we assume that V(G) = {1,...,n}.

Our algorithm for k-tree canonization works by reducing the problem to the
problem of canonizing certain labeled trees that encode essential information
about k-trees. Our initial goal is to define this labeled tree. For this we use the
concept of the layer decomposition of a k-tree with respect to a base B. This

826 V. Arvind, B. Das, and J. Kobler

concept was introduced in [KCP82] for testing isomorphism in hookup classes.
Subsequently, it was used in [Cha90, [GSS02] for the design of efficient k-tree
isomorphism algorithms.

Definition 5. (cf. [KCP82 [GSS02]) Let G = (V, E) be a k-tree and let B C
V' be a k-clique in G. Then the B-decomposition of G is the sequence of sets
B(0),...,B(p) such that B(0) = B and p = max{i > 0 | B(i) # 0}, where
B(i + 1) is inductively defined by

B(i+1)={veV —DBl[i]| N(v)n BJi] is a k-clique}.
Here, Bli| denotes the union Bli] = B(0)U---U B(i).

The set B(7) is called the ith layer of the B-decomposition of G. Intuitively, the
layers of the B-decomposition indicate the order in which vertices could be added
to G when we choose B as the initial k-clique. More precisely, starting with the
k-tree Gy = G[B], Giy1 = G[B][i + 1]] can be constructed from G; = G[BJi]]
by adding the vertices in B(i + 1) to G;. Recall that v can be added to G; if
and only if the set N(v) N B[i] of v’s neighbors in Bli], henceforth denoted by
N;(v), induces a k-clique in G;. In [KCP82, this set N;(v) is called the support
of v € B(7)).

If this process is successful, i.e., if each vertices of G is covered by some layer
B(#), then B is called a base of G (cf. [KCP82]).

We first show that any k-clique B in GG can be used as a base for constructing
G (see Lemma [)).

Definition 6. (cf. [GSS02]) A vertez v of a k-tree G is called simplicial, if N (v)
induces a k-clique in G.

Claim 7. Any k-tree G with n > k + 2 wvertices has at least two nonadjacent
simplicial vertices.

Proof. The proof is by induction on n. If n = k 4 2, then G is obtained from
a (k + 1)-clique G’ by choosing a k-clique C' in G’ and introducing a new node
v which is joined to each vertex in C. Let u be the unique vertex in G’ not
covered by C. Then u and v are two nonadjacent simplicial vertices in G. For
the inductive step assume that G has n > k 4 2 vertices. Then G has been
obtained from a k-tree G’ by introducing a new node v and joining it to each
vertex in a k-clique C of G’. Clearly, v is simplicial in G. Further, by the induction
hypothesis, G’ has two nonadjacent simplicial vertices u; and wus. Since u; and
ug are nonadjacent, at least one of them does not belong to C' and therefore it
is also simplicial in G. O

Claim 8. Let B be a k-clique of a k-tree G with n > k+ 1 vertices. Then G has
a simplicial vertex v ¢ B.

Proof. If n = k + 1, then the only vertex not in B is simplicial. If n > k + 1,
then Claim [[guarantees the existence of two nonadjacent simplicial vertices that
cannot be both in B. O

The Space Complexity of k-Tree Isomorphism 827

Lemma 9. For any k-tree G = (V, E) and any k-clique B, the B-decomposition
forms a partition of V.

Proof. The proofis by induction on n. The base case n = k is clear. For the induc-
tive step assume that n > k + 1 and let B(0),..., B(p) be the B-decomposition
of G. By Claim [G has a simplicial vertex v not in B. It is easy to prove that
G — v is a k-tree and hence, by the induction hypothesis, the B-decomposition
B'(0),...,B(p') of G—wv forms a partition of V —{v}. Now let i > 0 be the mini-
mum integer such that N(v) C B’[i]. Then it follows that B(i+1) = B’(i+1)U{v}
and B(j) = B’(j) for all j # i+ 1, implying that V = Blp]. O

The following properties of the B-decomposition have been proved in [KCP82].

Proposition 10. If B is a base for a k-tree G = (V,E), then the B-
decomposition B(0),...,B(p) has the following properties.

1. Any two vertices in B(i), i > 1, are nonadjacent. Hence, N;_1(v) = N;(v)
for any vertex v € B(1).

2. Any vertex v € B(i), i > 2, has a unique neighbor f(v) € B(i — 1), called
the father of v w.r.t. B.

In order to efficiently compute information on the B-decomposition of a k-tree
G we use a directed graph D(G, B) which is defined as follows (whenever G' and
B are clear from the context we simply write D instead of D(G, B)). D has the
vertex set

V(D) ={B}U{(C,v) | v ¢ C and C U{v} is a (k + 1)-clique in G}
and the vertices of D are joined by the directed edges in the set

E(D) ={(B,(B,v)) | (B,v) € V(D)} U
{((Co), (C", V) [ve W ¢ClCnC|| =k —1}.

This means that in D we provide a transition from (C,v) to (C’,v") if C' can be
obtained from C by replacing some vertex u € C by v, i.e.,, C' = (C'—{u})U{v}.
Our next aim is to show that D is a mangrove (see Lemma [[3).

Claim 11. For any vertez v € B(i), i > 1, D has a directed path of length 1
from B to (N;—1(v),v).

Proof. We prove the claim by induction on 7. The base case i = 1 is clear. For
the inductive step assume that v € B(i), ¢ > 2 and let f(v) € B(i — 1) be
the father of v. By the induction hypothesis it follows that D has a directed
path of length i — 1 from B to (N;—2(f(v)), f(v)). Clearly, f(v) € N,_1(v) and
v & N;_o(f(v)). Further, since f(v) is the only vertex in N;_;(v) belonging to
B(i — 1), the remaining k — 1 vertices belong to B[i — 2] and, as they are also
neighbors of f(v), they belong to the support N;_o(f(v)) of f(v). This shows
that D has an edge from (N;—2(f(v)), f(v)) to (N;—1(v),v). O

828 V. Arvind, B. Das, and J. Kobler

Claim 12. If D has a directed path B, (C1,v1),...,(Ci—1,vi—1), (C,v) of length
i > 1 from B to some vertex (C,v), then v € B(i) and C = N;_1(v) C BU
{1}1, . 7’01‘_1}.

Proof. Again the proof is by induction on 4. If E(D) contains the edge (B, (B, v)),
then clearly v € B(1) via the support Ny(v) = B.

For the inductive step let us assume that B, (Cq,v1),...,(Ci—1,v;—1), (C,v)
is a directed path of length ¢ > 2 from B to (C,v). Then by the induction hy-
pothesis it follows that v;_; € B(i — 1) via the support C;—1 = N;_a(v;—1) C
BU {U17~ . .,Ui_z}. As Ni_z(vi_l) = Ni_l(vi_l) by part 1 of PI‘OpOSitiOH m
this implies that C;_; contains all neighbors of v;—; in B[i — 1]. Since v is a
neighbor of v;_; that does not belong to C;_1, v cannot be in B[i — 1]. As
((Ciz1,vi—1), (C,v)) € E(D), it follows that C' is obtained from C;_; by re-
placing some vertex w in Cj—1 by v;_1, i.e., C = (Cim1 — {u}) U{v;_1} C

BU{wvi,...,v;—1}. Hence, all vertices in C belong to B[i— 1] and are adjacent to
v, implying that v € B(i) via the support N;_1(v) = C (notice that C C N;_1(v)
would imply v ¢ Bp]). |

Lemma 13. For any k-clique B in a k-tree G, the graph D(G, B) is a mangrove.

Proof. We first show that D = D(G, B) does not have different paths from B
to the same node (C,v).

By Claim [[2] all paths from B to (C,v) have the same length. In order
to derive a contradiction let ¢ be minimal such that there are two different
paths B, (Cy,v1),...,(Ci—1,vi—1), (C,v) and B, (C1,v}),...,(Cl_,vi_,), (C,v)
of length i from B to some node (C,v). Then v;_; and v_; must be different,
since otherwise Claim [Tl implies that C;—1 = N;_a(v;—1) = Nj—2(vi_;) = C}_;,
contradicting the minimality of the path length i. But now Claim implies
that v;—1 and v._; both belong to B(i — 1) as well as to the support C' of v,
contradicting part 2 of Proposition [I0l

To complete the proof suppose there are different directed paths between
two nodes (C,v) and (C’,v") in D(G, B). Then we would also have different
directed paths between the two nodes C' and (C’,v") in D(G, C'), contradicting
the argument above. O

Now let T = T(G, B) be the subgraph of D(G, B) induced by the vertices
reachable from B. Then Lemma[[3]implies that T is a directed rooted tree with
root B.

In fact, from Claims [IT] and it is immediate that by projecting the first
component out from the nodes (C,v) € V(T') we get exactly the tree T(G)
defined in [KCP82]. There, the following labeling with respect to a bijection
0:B — {1,2,...,k} has been defined.

Let (C,v) be a node in T. W.lLo.g. suppose that C = {wy,...,vx} where
CNB={vy,...,v} for some m < k. Notice that by part 1 of Proposition [I{,
the k —m vertices in C' — B belong to k —m different layers B(i1), ..., B(ik—m)-
Then vertex (C,v) is labeled by the set {6(v1),...,0(m), k+i1,. .., k+ik—m}

The Space Complexity of k-Tree Isomorphism 829

We denote the tree T together with this labeling by T'(G, B, 0). The following
theorem is due to |[KCP82|.

Theorem 14. Let G and G’ be two k-trees, let B be a base for G and let
0:B—{1,...,k} be a bijection. Then G and G' are isomorphic if and only
if there exists a base B' for G' and a bijection ¢’ : B — {1,...,k} such that the
two labeled trees T'(G, B,0) and T(G', B',0") are isomorphic.

The proof of Theorem [I4] crucially hinges on the fact that each isomorphic copy
T’ of the labeled tree T(G, B, 0) provides enough information to reconstruct G
from T up to isomorphism. To see why, for > 1 let B; be the set of vertices of T”
that have distance ¢ from the root of 7" and let p be the maximum distance of any
vertex in T’ from the root. Then starting with a k-clique Go we can successively
add in parallel all the vertices v € B; to G;—1 for ¢ = 1,...,p. The crucial
observation is that the labeling {0(v1),...,0(vm),k + 41,...,k + ix—m} of the
node v in T” tells us to which vertices in G;_1 vertex v should be connected (recall
that Claim [[2] guarantees that all vertices in the support of a node either belong
to the base or lie on the path from the root to that vertex in the corresponding
tree).

To canonize k-trees we use Lindell’s deterministic logspace canoniza-
tion algorithm for trees which can be made to work for any labeled tree by
constructing gadgets for labels. More precisely, consider the algorithm A that
on input a k-tree G' computes the canon of all labeled trees T'(G, B, 0) for all
k-cliques B in G and all bijections 6 : B — {1, ..., k} and picks the lexicograph-
ically least among them. Then Theorem [[4] implies that

— if two k-trees G and H are isomorphic then any tree of the form T(G, B, 0)
is isomorphic to some tree of the form T'(H, B’, ") and

— if G and H are non-isomorphic then no tree of the form T'(G, B, 0) is iso-
morphic to some tree of the form T'(H, B, 0").

Hence, A outputs the same tree T for both k-trees G and H if and only if G and
H are isomorphic, implying that A computes a complete invariant for k-trees.

Furthermore, as explained above, the output tree T' of A on input G provides
enough information to reconstruct G from T in logspace up to isomorphism.
The combination of A with this reconstruction procedure thus yields the desired
canonization algorithm A’ for k-trees. It remains to show that A can be imple-
mented in FL5'YY In the next lemma we show that the labeled trees T'(G, B, 6)
can be computed in logspace relative to some oracle in StUL. The following claim
provides this oracle.

Claim 15. The problem of deciding whether a vertez (C,v) of D has distance i
from B is in StUL.

Proof. The algorithm tries to guess a path of length ¢ from B to (C,v) in the
tree T'=T'(G, B). For that, starting with vertex B, it iteratively guesses a next
node (C’,v") and checks if T provides an edge from the actual node to that node.
If after ¢ steps the algorithm reaches (C,v) then it accepts, otherwise it rejects.

830 V. Arvind, B. Das, and J. Kobler

Clearly, the algorithm runs in logspace since it has to store only two nodes of T’
and some counters. Since D(G, B) is a mangrove by Claim [[3] it is easy to see
that the configuration graph is also a mangrove. O

Lemma 16. On input a k-tree G, a k-cliqgue B and a bijection ¢ : B —
{1,...,k}, the labeled tree T(G,B,0) can be computed in logspace relative to
some oracle in StUL.

Proof. The algorithm for generating T = T'(G, B, 0) first outputs V(T') by check-
ing for each node (C,v) in V(D) whether it is reachable from B by using the
StUL oracle of Claim If so, it computes the label of (C,v) by recomputing
the layer numbers of all the vertices in C' (again using the StUL oracle). Finally,
for each distinct pair of nodes in V(T') it checks whether D provides a directed
edge between them. O

This shows that the algorithm A described above can indeed be implemented in
logspace relative to some oracle in StUL. Hence, we can state our main result.

Theorem 17. For each fized k there is a canonizing algorithm for k-trees that
runs in FLSVL,

As StUL is closed under logspace Turing reductions [BJLRIT], Corollary 15], we
immediately get the following complexity upper bound for testing isomorphism
for k-trees.

Corollary 18. The isomorphism problem for k-trees is in StUL.

4 k-Path Canonization

A k-path is a special type of k-tree. The subgraphs of k-paths are called par-
tial k-paths. They coincide with the graphs of pathwidth at most k [Pro89]. In
a polynomial time algorithm for subgraph isomorphism for bounded
pathwidth graphs was given. Here we look at the space complexity of the can-
onization problem for k-paths.

Definition 19. An interval graph is a graph whose vertices can be put in one
to one correspondence with a set of open intervals on the real line such that two
vertices are adjacent if and only if the corresponding intervals have a nonempty
intersection.

Definition 20. [KIo94] A k-path is a k-tree which is an interval graph.

An alternative constructive definition of k-paths is given in [GNPRO5|. The idea
is to restrict the choice of the k-clique used as support for adding a new vertex
depending on the support of the previously added vertex. The restriction can be
best described by maintaining the notion of current clique.

The Space Complexity of k-Tree Isomorphism 831

Initially the starting clique is the current clique. When a new vertex is added
it is joined to each vertex in the current clique. After adding the new vertex the
current clique may remain the same (in that case the new vertex added becomes
simplicial) or it may change by dropping a vertex and adding the new vertex in
the current clique. Clearly, when a vertex is dropped it cannot come back in the
current clique.

The difference between the definition of k-tree and the constructive definition
of k-path is that for k-trees a new vertex can be joined to any k-clique when
expanding a k-tree, whereas for k-paths a new vertex can only be added to the
current clique of a k-path.

From this constructive definition of k-paths the following characterization of
k-paths in the terminology of Section Bl can be obtained. Recall that a caterpillar
is a rooted tree in which each node has at most one child that is not a leaf.

Lemma 21. A k-tree G is a k-path if and only if for some base B of G, the
tree T (G, B) is a caterpillar.

Proof (sketch). Assume that G = (V, E) is a k-path and let C;, i =k,...,n—1,
be the current k-clique that has been used as support for adding vertex v;11
to G; = G[{v1,...,v;}], where Cy, = {v1,..., v} is the initial k-clique. Notice
that C; # Ci4+1 implies C; # C; for all j > i. Now it is easy to verify that T' =
T(G, C1) is a caterpillar with vertices Ci, (Ck, Vk+1), - - -, (Cn—1,v,) containing
for each j > k with C; = Cj, the edge (Ci, (Cr,vj4+1)) and for each pair 4, j with
C; # Ciy1 = Cj the edge ((Ci,vit1), (Cj,vj41))-

For the backward direction assume that T'= T(G, B) is a caterpillar and let
B(0),...,B(p) be the B-decomposition of G. We call v € V — B a leaf node
if (N;—1(v),v) is a leaf in T. Now we can order the vertices of G in such a
way that all the vertices in B(i) precede the vertices in B(i + 1) and within
each layer B(i), ¢ > 0, the leaf nodes come first. Let vy,...,v, be such an
ordering. Then it is easy to verify that we can construct G from the initial k-
tree G, = G[B] = G[{v1,...,v;}] by successively adding the vertices v;41 to
G; = G[{v1,...,v;}] using N;(viy1) as the current clique. m]

To canonize a given k-path G we use a similar approach as the one that we used
in Section [for k-trees. In fact, the only difference is that now our algorithm
A additionally checks for each base B whether T'(G, B) is a caterpillar. Notice
that this can easily be done in logspace as follows.

Starting with the root B as the current node, the algorithm verifies that the
current node has at most one child (C’,v") in T(G, B) that is not a leaf and then
proceeds with (C’,v') as the next current node (if the current node has two or
more non leaf children, the algorithm detects that T'(G, B) is not a caterpillar).

As soon as the algorithm reaches a node that has only leaves as children it
decides that T(G, B) is a caterpillar and starts to compute the canons of the
labeled trees T'(G, B, 0) for all bijections § : B — {1,...,k} as explained in
Section [3

Since for a caterpillar T'(G, B) the oracle described in Claim is clearly
decidable in logspace, we have proved the following result.

832 V. Arvind, B. Das, and J. Kobler

Theorem 22. For each fixed k there is a logspace canonizing algorithm for k-
paths. Hence, the isomorphism problem for k-paths is in L.

References

[AL89)

[ATI04]

[AO96]

[APS9]

[Babg6]

[BJLRYI]

[BLS3]

[Bod88]

[Bod90]

[Bus97]

[Cha90]

[CI8S]

[Die97]

[GNPROS5]

[GSS02]

[Gur97]

Allender, E., Lange, K.-J.: RUSPACE(log n) is contained in DSPACE(log?
n/loglog n). Theory of Computing Systems 31, 539-550 (1989)

Allender, E.: Arithmetic circuits and counting complexity classes. In:
Krajicek, J. (ed.) Complexity of Computations and Proofs, Seconda Uni-
versita di Napoli. Quaderni di Matematica, vol. 13, pp. 3372 (2004)
Allender, E., Ogihara, M.: Relationships among PL, #L and the deter-
minant. R.A.LR.O. Informatique Théorique et Applications 30(1), 1-21
(1996)

Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard prob-
lems restricted to partial k-trees. Discrete Applied Mathematics 23(2),
11-24 (1989)

Babai, L.: A Las Vegas-NC algorithm for isomorphism of graphs with
bounded multiplicity of eigenvalues. In: Proc. 27th IEEE Symposium on
the Foundations of Computer Science, pp. 303-312. IEEE Computer So-
ciety Press, Los Alamitos (1986)

Buntrock, G., Jenner, B., Lange, K.-J., Rossmanith, P.: Unambiguity and
fewness for logarithmic space. In: Budach, L. (ed.) FCT 1991. LNCS,
vol. 529, pp. 168-179. Springer, Heidelberg (1991)

Babai, L., Luks, E.: Canonical labeling of graphs. In: Proc. 15th ACM
Symposium on Theory of Computing, pp. 171-183 (1983)

Bodlaender, H.: Dynamic programming on graphs with bounded
treewidth. In: Lepisto, T., Salomaa, A. (eds.) Automata, Languages and
Programming. LNCS, vol. 317, pp. 105-118. Springer, Heidelberg (1988)
Bodlaender, H.: Polynomial algorithm for graph isomorphism and chro-
matic index on partial k-trees. Journal of Algorithms 11(4), 631-643 (1990)
Buss, S.: Alogtime algorithms for tree isomorphism, comparison, and can-
onization. In: Gottlob, G., Leitsch, A., Mundici, D. (eds.) KGC 1997.
LNCS, vol. 1289, pp. 18-33. Springer, Heidelberg (1997)
Chandrasekharan, N.: Isomorphism testing of k-trees is in NC. Information
Processing Letters 34(6), 283-287 (1990)

Chandrasekharan, N., Iyengar, S.S.: NC algorithms for recognizing chordal
graphs and k trees. IEEE Transactions on Computers 37(10), 1178-1183
(1988)

Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173.
Springer, Heidelberg (1997)

Gupta, A., Nishimura, N., Proskurowski, A., Ragde, P.: Embeddings of
k-connected graphs of pathwidth k. Discrete Applied Mathematics 145(2),
242-265 (2005)

Del Greco, J.G., Sekharan, C.N., Sridhar, R.: Fast parallel reordering and
isomorphism testing of k-trees. Algorithmica 32(1), 61-72 (2002)
Gurevich, Y.: From invariants to canonization. Bulletin of the Euro-
pean Association of Theoretical Computer Science (BEATCS) 63, 115-119
(1997)

[GV06]

[JKMTO3]

[KCP82

[K1094]
[Lin92]

[Luk82]
[Mil83]

[Pro89]

[Spi96)

[SS87]

[Wan94|

The Space Complexity of k-Tree Isomorphism 833

Grohe, M., Verbitsky, O.: Testing graph isomorphism in parallel by playing
a game. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, 1. (eds.) ICALP
2006. LNCS, vol. 4051, pp. 3—14. Springer, Heidelberg (2006)

Jenner, B., Kobler, J., McKenzie, P., Torén, J.: Completeness results for
graph isomorphism. Journal of Computer and System Sciences 66, 549-566
(2003)

Klawe, M.M., Corneil, D.G., Proskurowski, A.: Isomorphism testing in
hookup classes. STAM Journal of Algebraic Discrete Methods 3(2), 260
274 (1982)

Kloks, T. (ed.): Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994)
Lindell, S.: A logspace algorithm for tree canonization. In: Proc. 24th ACM
Symposium on Theory of Computing, pp. 400-404. ACM Press, New York
(1992)

Luks, E.: Isomorphism of bounded valence can be tested in polynomial
time. Journal of Computer and System Sciences 25, 42-65 (1982)

Miller, G.L.: Isomorphism of k-contractible graphs. Information and Com-
putation 56(1/2), 1-20 (1983)

Proskurowski, A.: Maximal graphs of path-width k or searching a partial
k-caterpillar. Technical Report UO-CIS-TR-89-17, University of Oregon
(1989)

Spielman, D.A.: Faster isomorphism testing of strongly regular graphs. In:
Proc. 28th ACM Symposium on Theory of Computing, pp. 576-584. ACM
Press, New York (1996)

Scheffler, P., Seese, D.: A combinatorial and logical approach to linear-time
computability. In: Davenport, J.H. (ed.) ISSAC 1987 and EUROCAL 1987.
LNCS, vol. 378, pp. 379-380. Springer, Heidelberg (1989)

Wanke, E.: Bounded tree-width and LOGCFL. Journal of Algo-
rithms 16(3), 470-491 (1994)

	The Space Complexity of k-Tree Isomorphism
	Introduction
	Preliminaries
	k-Tree Canonization
	k-Path Canonization

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

