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Abstract. The significance of regular path queries (RPQs) on graph-
like data structures has grown steadily over the past decade. RPQs are,
often in restricted forms, part of graph-oriented query languages such
as XQuery/XPath and SPARQL, and have applications in areas such as
semantic, social, and biomedical networks. However, existing systems for
evaluating RPQs are restricted either in the type of the graph (e.g., only
trees), the type of regular expressions (e.g., only single steps), and/or the
size of the graphs they can handle. No method has yet been developed
that would be capable of efficiently evaluating general RPQs on large
graphs, i.e., with millions of nodes/edges.

We present a novel approach for answering RPQs on large graphs.
Our method exploits the fact that not all labels in a graph are equally
frequent. We devise an algorithm which decomposes an RPQ into a se-
ries of smaller RPQs using rare labels, i.e., elements of the query with
few matches, as way-points. A search thereby is decomposed into a set
of smaller search problems which are tackled in a bi-directional fashion,
supported by a set of graph indexes. Comparison of our algorithm with
two approaches following the traditional methods for tackling such prob-
lems, i.e., the usage of automata, reveals that (a) the automata-based
methods are not able to handle large graphs due to the amount of mem-
ory they require, and that (b) our algorithm outperforms the automata-
based approach, often by orders of magnitude. Another advantage of our
algorithm is that it can be parallelized easily.

1 Introduction

A general regular path query (RPQ) is a regular expression R over the (edge or
node) labels of a graph G [28]. Its result is the set of all cycle-free paths in G
whose concatenation of labels (edge or node) spells out R. Different flavors of
RPQs are used in a wide range of applications. For instance, XPath supports
a restricted form of RPQs on XML documents [25]. SPARQL supports a very
simple form of RPQs for RDF graphs, and various proposals exist for enhancing
SPARQL syntax with full RPQs (e.g., [4,5,9,20]). [11] describes a restricted form
of RPQs important for graph pattern matching, and [32,33] describe languages
supporting restricted forms of RPQs for studying social networks. A particularly
important application domain for RPQs are the Life Sciences, where understand-
ing the interactions of different biological entities is of great importance. Such
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interactions are typically modeled as graphs, and RPQs are used to find specific
biochemical pathways between distant nodes [23].

None of these works support general RPQs on large graphs, but all focus on re-
stricted languages which typically allow for more efficient evaluation. Evaluating
RPQs on arbitrary graphs is an NP-hard problem [28]. We illustrate the prob-
lem and our main idea by an example. Suppose a graph of researchers (nodes),
either labeled as Professors or STudents, connected by directed edges such as
Supervised or Joint work. In this graph, the query P (JP )(JP )? finds all paths
between a professor and direct or indirect co-workers. (PS)(PS) + (P |T ) finds
all paths between a professor and his doctorate descendants. Now suppose we
also model research prizes as nodes (such as Nobel Prize or Sigmod Award), and
connect them to researchers with edges labeled Honored. Then, we can find the
doctorate predecessors of all Nobel Prize winners using the query (PS)+PHN ,
and those of any prize winner using the query (PS) + PH(N |A).

RPQs have been studied intensively for XML, where the predominant ap-
proach is to use automata [13]. Both the graph and the query are represented as
automata, whose intersection automaton is the subgraph specified by the query.
In this process, the graph needs to be translated into a DFA, which can be of ex-
ponential space and may need exponential construction time. Research in XML
query languages has shown that automata-based RPQ evaluation works well for
trees (XML) [30], but we will show that its space consumption is enormous on
general graphs (see Section 6). Furthermore, automata-based approaches com-
pletely disregard the fact that certain labels are much more frequent than others,
which can be exploited for speeding up query execution. For instance, to answer
the query for Nobel Laureates, it is sensible to first search for nodes labeled with
N , because (a) one such node must be in any matching path and (b) there are
much less Nobel Laureates than professors. Having all N nodes, complete paths
can be computed easily by traversing the graph.

Such reasoning is the basis of the approach we propose in this paper; however,
finding a good evaluation strategy is not always as easy as in the example, as
a query usually contains various labels with different frequencies in the graph.
To this end, we first gather all labels in the query that only occur a few times
in the graph and use these as fix points for a series of bi-directional searches.
Thus, we split the query at these rare labels into smaller queries, and answer
these individually. We search all matching paths between each two adjacent rare
labels as well as at the start and end of the query, and combine the results to
answer the original query. The main advantage of this approach is that we do not
need to consider the whole graph, but only those fractions of it that lie between
adjacent rare labels. In Section 6 we will show that this strategy, over a wide
range of small to large synthetic and real-life graphs, is considerably faster and
especially much less space-demanding than automata-based methods ([39,14]).

Figure 1 illustrates this idea. Suppose we want to answer the RPQ a+ b c+
on a graph (Fig. 1b). Since there is only one edge labeled with b, we use it as
rare label and split the query there. Now, the two smaller queries a+ and c+
have to be answered, using the b edge as end point or start point, respectively.
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Fig. 1. a) The RPQ a+ b c+ shown as a (nondeterministic) automaton; b) a path
fulfilling the RPQ in a small exemplary graph

The result of the original query is the combination of the smaller queries and
the rare label.

Our idea can also be used for variations of the general RPQ problem, such as
finding all shortest matching paths spelling out a regular expression, or finding
all matching paths between two given nodes. Especially the latter is important
if RPQs are used as predicates in a general query language (see, for instance,
[20]), where variables for defining the start and the end of a path often already
have been bound by other predicates before RPQs are evaluated. For space
constraints, in this paper we only describe in detail the algorithm for solving
the general RPQ problem (finding all acyclic paths matching a given regular
expression) without bindings for the start and end nodes, as this is the most
complex case. Furthermore, we only consider RPQs over edge labels; extensions
to include node labels are straight-forward. Adaptations of our method targeting
such variations of the RPQ problem are described in [21], which also contains a
number of additional experiments we omit here for space constraints.

This paper is structured as follows. Section 2 gives an overview on related
work. In Section 3, we define the basic concepts. In Section 4, we describe our
novel RPQ evaluation algorithm and give implementation details in Section 5.
We evaluate our method in Section 6 using various real and synthetic graphs
and conclude in Section 7.

2 Related Work

The most common approach for answering RPQs is based on automata. One
implementation of this idea are DataGuides by Goldman and Widom [13], based
on Lorel [1]. Therein, the graph is considered as an NFA that is first converted
into a DFA and then minimized. This minimized DFA (a DataGuide) is then
used as an index. However, this index can become much larger than the original
graph, which is a problem when dealing with arbitrary graphs (but not for reg-
ularly structured XML). Goldman and Widom therefore propose “Approximate
DataGuides” [14] which reduce the index size using heuristics. As the imple-
mentation of Lorel (and DataGuides) is not supported any more since 2000, we
re-implemented the algorithms and compare them to our approach in Section 6.
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After the uptake of the semi-structured data model in XML, many propos-
als have been put forward to use automata in optimizing queries on XML (see
e.g. [25,30]). However, these works mostly use tree automata [30] and are not
applicable to arbitrary graphs. Additional index structures have been proposed,
for instance, by Milo and Suciu [29] and Kaushnik et al. [19], but, again, they
are designed to work with XML data and cannot be applied to non-tree graphs.
Fernandez and Suciu present another interesting approach to speed up graph
searching based on Graph Schemas [12]; however, these have to be created man-
ually, a step that seems unfeasible for graphs with millions of nodes.

An area where RPQ queries on graphs are important is querying RDF data.
However, SPARQL, the official W3C recommendation as an RDF query lan-
guage, does not support regular path queries, which spurred research into ex-
tending SPARQL with RPQs. Alkhateeb et al. [4] developed the query language
PSPARQL that includes RPQs, but the authors focus on formal semantics of
RPQs on RDF and do only describe a proof-of-concept implementation based
on backtracking. Detwiler et al. [9] present the GLEEN system, an extension
to SPARQL including RPQs that is implemented as an extension to the ARQ
library for SPARQL processing (see Section 6.2 for a comparison). Anyanwu
et al. [5] present another extension to SPARQL that also includes RPQs, but
no method for evaluating them is described. Zauner et al. [39] present a path
language for RDF supporting RPQs and does provide an implementation; the
system is based on automata, and we compare against it in Section 6.2. SPAR-
QLeR is another RDF querying language encompassing RPQs, again based on
automata, for which an implementation was described in [20], but is not publicly
available. Note that the runtimes reported in the paper range in the order of sec-
onds for queries with bound start and end nodes on moderately sized graphs, a
setting in which our algorithm only needs milliseconds (see [21]).

There were also a number of proposals for general graph query languages that
are not based on RDF. Leser [23] proposes a query language for querying biolog-
ical pathways, which syntactically supports RPQs, but does not describe a scal-
able resolution technique. Graphs-at-a-time is a query language based on graph
grammars that is capable of expressing RPQs, but the presented implementation
does not cover such predicates [15]. The query language proposed in [10], which
also includes a type of RPQs, is not accompanied by any implementation. Several
systems have been designed to support extremely large graphs (hundreds of mil-
lions nodes and edges), such as Pregel [26], GRAIL [38], or DEX [27], however,
none of these systems support RPQs. Finally, Sevon and Eronen [34] describe a
method for querying paths in labeled graphs using context-free grammars. They
traverse the graph breadth-first and use a context-free parser to find matches.
While context-free grammars are more powerful than regular expressions, [34]
only focus on finding paths between fix start and end nodes and do not provide
optimization techniques as we do.

Another line of related work are concerned with graph pattern matching.
Fan et al. [11] show that a language supporting reachability and a restricted
form of RPQs allows for an evaluation in cubic time. Jin et al. [18] present
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algorithms for finding paths which only consist of labels from a predefined set of
labels. Ronen and Shmueli [32] describe a graph query language that supports
conditions on labels being contained or not contained in paths and also supports
ranking (provided that the edges are weighted) and aggregation over sets of
paths. In contrast to these works, our approach supports full RPQs.

Zou et al. introduced the Distance-join [40] as a technique to find subgraphs
with similar connections to a query pattern. The work most related to ours is
probably [7], in which Cheng et al. present algorithms for finding subgraphs that
are homeomorphic to a query graph, i.e., where each edge of the query may be
mapped to a path of unbounded length in the graph. In some sense, this can be
seen as a generalization of the RPQ problem we study in this paper; however, a
transformation would be non-trivial (mapping of edges to nodes and vice versa;
introduction of special edges which must be mapped to exactly one edge for
labels without ’?’ or ’*’ modifier etc.). Besides, the source code of [7] seems to
be not available for comparisons.

Matching regular expressions (REs) on strings is a related problem that was
recently picked up by the database community. Examples are [6,8], which both
use index structures that are similar in spirit to our method, i.e., concentrating
on rare characters in the query. Another line of related research is graph indexing.
Here, the idea of using frequencies of labels has been used extensively, especially
in mining and searching of subgraphs [36,22].

In summary, despite a large body of research around evaluating RPQs on
graphs, we are aware of only two available implementations supporting full RPQs
as we do [39,9]. In Section 6, we compare our approach to these methods and
also to a re-implementation of the DataGuide system [13] and show that, for
large graphs, they suffer from excessive memory consumption and are clearly
outperformed by our method.

3 Terms and Definitions

We use labeled directed multigraphs, i.e., a graphG is a tuple G = (V,E, f, l, Σ),
where V is a finite set of nodes, E is a finite set of edges, l : E → Σ specifies the
edge labels Σ, and f : E → V × V is the connection function, specifying which
nodes are connected by which edges.

The topological properties of a graph can be measured through node degree
and label distribution. A graph is called scale-free if the number of nodes with
degree k is P (k) ∼ k−λ for large values of k. Scale-free graphs are the likely
outcome of various random growth processes, and, indeed, many graphs discov-
ered in biological research are scale-free [24]. The label distribution in a graph
is called Zipfian if the frequency of the labels occurring in the graph follows the
power law F (k) ∼ k−δ, with δ ≈ 1.

A regular path query (RPQ) is a regular expression over Σ. We use the defini-
tion for regular expressions as in [16]. To evaluate regular path queries, a regular
expression can be converted into an automaton that can be used to match paths.
We assume definitions for deterministic (DFA) and non-deterministic automata
(NFA) as in [3].
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Several kinds of questions can be answered for a given regular expression R
and a given graph G. (1) Does G contain any path fulfilling R? (2) Which is
the shortest path in G fulfilling R? (3) Is there a path in G between two fixed
nodes fulfilling R? (4) Which paths in G fulfill R? In this paper, we discuss our
proposal using the latter problem as show case as it subsumes all other types of
queries. In Section 6, we will show that, for instance, fixing the start and end
nodes of an RPQ allows to drastically speed-up query processing compared to
the more liberal problem of returning all paths in the graph.

4 Answering RPQs Using Rare Labels

In this section, we present our novel algorithm for efficiently answering RPQs.
The basic idea is to search the graph while simultaneously advancing in the
query automaton. Compared to an approach which converts both the graph and
the query into automata, our method has several advantages: No preprocessing
of the large graph is needed, it only uses space linear in the size of the graph,
the search is easily parallelizable, and it can be enhanced with techniques that
take label frequencies into account.

4.1 Rare Labels

Definition 1. Let G be a graph and R be a RPQ. We call a label occurrence
in R mandatory iff it is not followed by a modifier other than +, i.e. it occurs
in every possible result of R in G. We call a label rare iff it occurs at most m
times in G and is mandatory in R (where m is a parameter of the method, see
Section 4.3).

For example, in the regular expression a b+ c∗ d?, a and b are mandatory, while
c and d are not. Finding all rare labels in a query is very fast if a list of all labels
in the graph together with their frequencies is stored. If this list is indexed by
labels, finding all rare labels for a given query is linear to the size of the query
pattern.

If a query contains a rare label, then any match of the query in the graph
must contain an occurrence of it. Therefore, we can use the occurrences of rare
labels as way-points during the search process. If we can find two or more rare
labels in a query, we can use a two-way search algorithm to find all matching
paths between their matches in the graph. Every additional rare label further
reduces the search space.

Note that our implementation (see Section 5.1) also treats disjunctions (regu-
lar expressions of the form (a|b|...)) as mandatory by searching for any occurrence
of the labels. A further, not yet implemented optimization would be to rewrite
expressions of the form R S∗ T , where R, S, and T are regular expressions,
as two expressions RT and R S+ T . Thus, the original expression could be
answered by evaluating two expressions, one of which is shorter and the other
contains an additional mandatory label for our optimization.
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4.2 Searching the Graph Using Rare Labels

For queries that include at least one rare label, we split the query at these
rare labels and use them as fix points in the search. Searching the graph and
advancing in the regular expression at the same time, we search all paths between
each two adjacent rare labels, all paths from the first rare label backward to the
start of the regular expression, and from the last rare label forward to the end.
As shown above, the number of nodes that need to be visited during this search
shrinks with every additional rare label but grows with increasing numbers of
occurrences of rare labels.

Besides keeping the search space smaller, rare labels often also allow for early
stops. If there is no path between any two adjacent rare labels, then there can be
no path fulfilling the original query, and the search can be stopped immediately.

In the following, we use the term first rare nodes for all nodes that are starting
point of an edge of which the label is the first rare label, according to the regular
expression. Analogously, last rare nodes are the end nodes of all edges with the
last rare label. Answering RPQs using rare labels is done in the following 6 steps.

1. Gather all rare labels for the query in the graph.
2. If more than one rare label exists, find the paths between the first and second

rare label, the second and third etc. using a two-way search algorithm. If no
path can be found in any of these search processes, stop the search and
return an empty result for the query.

3. If more than one rare label exists: Using the results from step 2, find all
paths from the first rare nodes to the last rare nodes and remove all rare
nodes that are on no path, as these cannot be on a result path.

4. Beginning at all remaining first rare nodes, find all paths to the beginning
of the regular expression, searching backward.

5. Beginning at all remaining last rare nodes, find all paths to the end of the
regular expression (forward).

6. Using the results, enumerate all paths in the graph that fulfill the regular
expression and return the result.

Figure 2 shows the principle of the algorithm. On a sample graph (edge labels
and directions omitted), the query a+ b c+ d e+ is executed, assuming that b and

Fig. 2. Search process example for the query a+ b c+ d e+ in an arbitrary graph (edge
labels and directions omitted)



184 A. Koschmieder and U. Leser

d are rare labels. In step 1, rare label edges are gathered (b and d edges). In step
2, we search all paths between the end nodes of the b edges and the beginning of
the d edges. These paths must fulfill the regular expression between the two rare
labels, in this case c+. Here, two such paths can be found. For one rare edge, no
path could be found, thus it is removed from further consideration in step 3.

In step 4, a one-way backward search is performed, starting at the start nodes
of the b edges. The search ends once all paths have been found that fulfill the
first part of the regular expression (a+). In step 5, we search all paths from
the end of the last rare label to the end of the regular expression in forward
direction. As a last step (not shown in the picture), we enumerate all paths by
combining the results of the previous steps. In this case, there are 4 distinct
paths. The result subgraph can be gathered by enumerating all nodes and edges
of the result paths.

Our approach specifically aims at queries that include labels that do not occur
often in the graph. While most queries used in Bioinformatics are interested in
these rare labels, there are also queries in which no rare label is present. In such
cases, our algorithm automatically switches to a brute force search, starting a
search at every node in the graph (respectively at the given start/end nodes, if
specified). In Section 6 we show that our implementation is faster than other
approaches (in particular, the automata-based one) even for those cases.

4.3 Determining Rare Labels

The algorithm described above assumes a fixed value for m, the parameter de-
termining which labels are considered rare. The choice of m needs to find a
compromise between treating as many labels as rare as possible and keeping
the number of occurrences of rare labels as small as possible. If a rare label has
many occurrences in the graph, the search space increases because each occur-
rence needs to be included in the search (forward and backward). On the other
hand, multiple different rare labels in a query speed up its execution, because
partial paths that need to be searched are shorter.

We know of no simple way to determine the best value for m. It depends on
the graph as well as on the query, so using a fixed value is not the best approach.
We therefore use an adaptive heuristic for determining which labels to consider
rare for a given graph and query. The idea is that if, for a given query, there are
several possible rare labels, we set the threshold for rare labels higher than if only
very few rare labels can be found. This, on the one hand, produces less queries
without any rare labels. On the other hand, for queries with many potential rare
labels, only labels with a small number of occurrences are included.

Our proposed heuristic works as follows. We first acquire a list of all potential
rare labels for the query. We then reduce this list depending on the overall
number of paths that would need to be searched in the current configuration.
Labels that produce the most paths are removed first; we can compute the
number of paths between any two adjacent rare labels r1, r2 as |r1| · |r2|. The
overall number of paths is the sum of all paths between all adjacent pairs. For
the first and last rare labels, we also add their number of occurrences to account
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for the search to the beginning and to the end of the path. We repeatedly remove
the rare label that produces the most paths, until the sum of all paths is below
a threshold.

5 Implementation

In this section, we give a short overview of the architecture of our system and
the data structures used. We describe the implementation of our algorithms in
some more detail and give a complexity analysis of our search algorithms.

We use a node based storage schema, which means that the nodes in the graph
are represented explicitly, while the edges only exist as attributes of the nodes
in the form of adjacency lists. Edges are stored in forward and backward direc-
tion, which enables two-way searching but almost doubles memory consumption.
Labels are always stored as integers; if the labels are given as strings, a global
mapping table is used to map them to numbers. To be able to efficiently gather
rare labels from the graph, we also use an index on the edge labels also encoding
their multiplicity. Figure 3 visualizes the architecture of our system.

Regular path queries are represented as NFAs. Converting a regular expression
into an NFA is straight-forward. The automaton is stored as states and transi-
tions, which are labeled with the number representing the label for the transition.
Transitions are stored in both directions for two-way search. To speed up query
execution, we create a list for every state with all labels that are accepted in
that state, and a list showing into which states the automaton may transition
for each label. We call these labeled follow sets as a reference to follow sets used
in compiler construction [3].

Our current implementation requires about 2 GB of memory for a graph with
10 million nodes and 20 million edges, including all additional data structures
described in the following. Thus, working with graphs even much larger than the
ones we use for evaluation (see Section 6.1) would, in the first place, not be a
problem of memory.

5.1 Search Algorithms

Answering RPQs involves several algorithms. In this section, we give an overview
of the most important ones.

Fig. 3. Storage schema and query evaluation process of our system
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Rare Label Search. The first task in executing a query is to find the rare
labels. To this end, we go through the automaton representing the query from
start to end. For every state, we check if it is mandatory (i.e., does not have
a modifier as * or ?). If it is mandatory, we look up the edge label the state
represents in the edge label index (which requires constant time). This index
gives us the number of occurrences of the label in the graph. If it is below the
given threshold, the current state is added to the list of rare states. We consider
alternatives (e.g., a|b) as rare if the sum of the number of occurrences of all
alternatives is below the threshold. Items in brackets can only be mandatory if
the bracket itself is mandatory.

Two-way Search. If two or more rare labels have been found, we use a two-
way search algorithm to find paths between each two neighboring rare labels.
Since rare labels can occur more than once, this is a many-to-many search,
starting at the end nodes of all edges with one rare label, and ending at the start
nodes of all edges with the next rare label. The search is performed breadth-first
by iterating through the graph and the query automaton at the same time. A
search state (one specific point during the search process) consists of the current
position in the graph and the current state of the automaton. Different search
states can be at the same position in the graph but in different states of the
automaton, or vice versa. When traversing an edge in the graph, we check if its
label is in the labeled follow set of the current state. In that case, new entries are
added to the end of the list of search states to be processed. One search state is
created for each entry in the follow set.

The aim of the search is to find all paths for each pair of fix start and end
nodes. A path is found if a forward and a backward search meet at a node and
are in the same state of the query automaton. We keep lists for every node where
we store in which states a search passed the node. This is used to find completed
paths as well as to prevent cycles in the result paths. The search ends once the
list of unprocessed search states is empty.

Start and End Search. Searching for the start and end of the path works
much like the two-way search algorithm. The only differences are that we search
one-way and that we do not end when finding specific nodes, but when hitting a
finish state in the query automaton (or a start state, for the backward search).

5.2 Two-Way Search Complexity

Theoretically, all nodes might need to be searched during a two-way search, and
every node could be visited in every state of the automaton, and from every
start or end node, resulting in a complexity of O(|V | · |S| · r), with S being
the states of the automaton and r the number of start plus end nodes, i.e., the
occurrences of the rare labels used for that search. In reality, however, the search
space is limited because the labels on the path must match the automaton (a
query should thus be as small as possible, e.g. not include a∗a∗ instead of a∗).
Also, the number of start and end nodes is much smaller than |V | (depending
on which labels are considered rare). Due to two-way search, the search space is
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reduced further in most cases, since complete paths are only half as long from
both directions.

Additional checks have to be made during the search, but they do not add
to its complexity. For finish and cycle checks, we need to check for all nodes
encountered on the path whether they have already been visited in the same state
in the same direction (indicating a circle) or in the other direction (indicating a
completed path). This can be done in constant time. However, cycle checks might
be performed more than once per node, if a node has multiple incoming edges:
In the worst case, the check is performed as often as the number of edges in the
graph. Thus, the overall worst-case complexity sums up to O((|V |+ |E|) · |S| ·r).

5.3 Parallelization

The search process can be parallelized in different ways. For a query that contains
n rare labels, n+1 smaller queries have to be answered. This is performed as n+1
independent searches which are executed in parallel. Also, the search algorithm
is a many-to-many search if the rare labels occur more than once in the graph.
This can also run in parallel, with different threads processing different start
points.

6 Experimental Results

In this section, we present an experimental evaluation of our method. We com-
pare our rare-label based algorithm with other implementations available and
show results for different graphs and different kinds of queries. Further experi-
ments are devoted to scalability with regard to the size and density of graphs,
to the effects of parallelization, different query types, and different label distri-
butions. All tests were executed on a Quad-Core AMD Opteron machine with
16 GB of main memory. The execution times for queries given in the following
were gathered by executing 10,000 queries and building the average.

As threshold for the number of path combinations in the rare label optimiza-
tion (see Section 4.3), we used a value of 100; higher values did not yield any
significant changes in runtimes, while lower values lead to slower queries.

6.1 Graphs and Queries

We use real graphs (from biological research) as well as artificially created graphs
for the evaluation. We present results for two real-world graphs which we call
AliBaba and Extracts. AliBaba is a network of protein-protein-interactions ex-
tracted by text mining on all of PubMed [31]. The graph has about 50,000 nodes
and 340,000 edges. Extracts is a graph of enzymes and their relations, also ex-
tracted by text mining from biomedical abstracts, containing about 80,000 nodes
and one million edges. Note that these graphs are not toys; such networks today
are used regularly in Systems Biology, for instance to improve protein function
prediction [17] or disease-gene identification [2]. Their size is roughly comparable
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or larger to that of the largest databases of biological networks (the KEGG net-
work currently contains approximately 45.000 nodes), but their density is consid-
erably higher. Thus, they represent rather difficult cases for this domain. Results
for other biological networks we tested were similar to those on these two graphs.

To systematically study the scalability of the algorithms with regard to var-
ious parameters, we created artificial graphs with sizes between 1000 and one
million nodes, with different average degrees and different label distributions.
All real and all synthetic graphs are scale-free and roughly have a Zipfian dis-
tribution of edge label frequencies. The influence of the type of graph and the
label distribution is shown in [21].

For our evaluation, we used both real-life queries from the Bioinformatics
domain as well as large, artificially generated sets of queries with similar proper-
ties. The biological queries on the AliBaba graph are used in a Systems Biology
application analyzing networks of transcription regulation and protein-protein
interactions [37]. They consist of 4-12 labels, which may or may not be rare.
Artificial queries are used to evaluate the influence of the queries on the run-
time (see Section 6.4). The queries have been created with special properties
(e.g. number or occurrences of rare labels) and are structurally similar the the
biological queries. See the full paper [21] for more details.

6.2 Comparing with other Implementations

We are aware of just two implementations of regular path queries on graphs and
considered both as competitors of our algorithm.

RPL [39] evaluates RPQs on RDF graphs using an automata-based imple-
mentation. Using the original code provided by the authors, we observed that
the system works well on small RDF graphs. However, it cannot handle graphs of
the size we target with our work. For answering queries on a graph with approx.
10,000 nodes and 20,000 edges, the system already required 16 GB of main mem-
ory. Queries on this graph required already several seconds per query, while our
algorithm answers those queries in less than 100ms. All larger graphs, including
our real-world biological graphs, could not be handled anymore. Therefore, we
do not include this system in the following systematic evaluation.

GLEEN [9] is implemented as an extension to the ARQ library for SPARQL
processing. Thus, a comparison of runtimes would be rather unfair, as the ARQ
extension mechanism is based on an iterative load-and-verify of single edges of
a graph, which cannot be compared to our approach of loading the entire graph
into memory at once.

This leaves the re-implementation of the DataGuides system [14] (called AUT
from now on) to compare with. Automata-based methods generally work as
follows. First, the graph and the query are transformed into NFAs. Both NFAs
are then converted into DFAs that are minimized in a third step. Then, both
minimized DFAs are intersected. The result is an automaton that is equivalent to
the subgraph (of the graph) embracing all paths that match the query. Extracting
all matching paths from this subgraph is straight-forward. While this approach
works very well for evaluating RPQs on schema-based (i.e. sequences of labels
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Fig. 4. Average runtime (log scale) to answer one query on different graphs. The left
diagram shows the results for queries without rare labels. On the right, each query
contains at least one rare label. Queries on Extracts as well as on the synthetic graph
with 100K nodes could not be executed with AUT.

follow a schema) or tree-like data (e.g. XML), it has problems with general
graphs and schemaless label distributions, as in our case. For such structures,
the DFA generated from the NFA often grows extremely in size (recall that the
DFA for an NFA can be exponential in size of the NFA in the worst case). As
we show shortly, even mid-sized graphs cannot be processed by this method.

For comparing our RLmethod with AUT, we use sets of queries with rare labels
as well as completely random queries (which may contain an arbitrary number of
rare labels or none). As we are not aware of any efficient parallelization scheme for
automaton minimization and determinization, we only compare single-threaded
versions of both implementations; the additional speed-up that is possible with
our algorithm on current (multi-core) hardware will be evaluated in Section 6.5.

Figure 4 shows the average runtime (averaged over 10,000 queries) for an-
swering an RPQ with RL and with AUT. The former is faster in all cases. For
queries without rare labels, the runtimes do not differ much for small graphs,
but differences get significant for larger graphs. For a graph of 10,000 nodes and
20,000 edges, RL already performs almost two orders of magnitude faster than
AUT. For queries that contain at least one rare label, again, RL is always faster,
and its superiority increases with graph size; differences for those queries are
larger than for queries without rare labels.

Rare labels have a considerable influence on the runtime of RL. In contrast,
we found that for AUT, the runtime for different queries on the same graph is
about equal. However, time is only one problem of this method; the other is
space. The NFA-DFA conversion in AUT incurs an exponential increase in the
number of nodes. In our implementation, the whole process requires 350 MB
for the graph with 1000 nodes and 2000 edges, but already 3.8 GB for the 10
times larger graph – which still is considerably less space than required by RPL
(see above). Running AUT on the AliBaba or Extracts real-life graphs or on the
100K synthetic graph failed due to memory overflow.

6.3 Scalability: Graph Size and Density

To test different scalability aspects of RL, we used artificially created graphs
with varying properties. All queries contain at least one rare label. For this
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Fig. 5. Average runtime for answering one query on synthetic graphs with different
numbers of nodes and edges. The left diagram shows results for a fixed node to edge
ratio of 1:2, while the number of nodes is 100,000 on the right.

evaluation, we used the multi-threaded implementation with a fixed number of
four threads. We evaluated the effect of our rare-label optimization by comparing
it to a baseline method, which performs a brute-force search starting at every
node (also in parallel) without considering label frequencies.

Figure 5 (left) shows how RL scales with the size of the graph at a fixed
node/edge ratio. The smallest graph has 10K nodes and 20K edges, and the
largest graph has 1 million nodes and 2 million edges. Clearly, the scaling of the
implementation with the rare-label optimization is much better than that of the
baseline. Even for the largest graphs we tested, RL can answer a regular path
query in few seconds on average.

Figure 5 (right) shows scalability of RL with the average graph degree. Using
multiple artificial graphs with 100,000 nodes, we increased the number of edges
(and thus the average degree), leaving all other properties equal. Again, the
increase in execution time is favorable compared to the baseline.

Both experiments also show that execution times grow super-linearly with
increasing graph size and graph density. Also, the absolute times cannot be
compared to those achieved for answering, for instance, reachability queries on
graphs of similar size [38,35]. But one should not forget that evaluating RPQs on
graphs is a NP-hard problem, whereas reachability can be answered in O(n3).

6.4 Influence of Query Types

To evaluate the influence of our optimizations on different types of queries, we
created ten sets of 1000 queries each differing in the number of occurrences
of rare labels. One set does not contain any rare labels (set 0). All other sets
contain exactly one rare label, but with an increasing number of occurrences in
the graph. The rare labels found in query set 1 appear only once in the graph,
rare labels from set 2 exactly twice, and so on. The runtimes for the different
query sets are shown in Figure 6.
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Fig. 6. Left: average runtime for answering one query from the respective query set.
Right: Number of queries taking up to 10 ms, 100ms, 1s, and 10s to execute. The
synthetic graph that was used has 10,000 nodes and 20,000 edges.

As expected, answering queries without rare labels is considerably slower than
for queries containing rare labels. The difference between queries without rare
labels and those with one rare label appearing exactly once in the entire graph
is almost three orders of magnitude. Also, queries with a rare label that occurs
less frequently in the graph generally are executed faster. However, this trend
is partly out-weighed by noise generated through the random complexity of the
queries in the workload.

To further study how runtimes change for different queries, we categorized
the runtimes of all queries from our query set on a given graph. As Figure 6
shows, more than 90% of all queries are answered in less than 10ms, and more
than 95% are answered in less than 100ms. But a few queries take exceptionally
longer than all others. These pathological queries are queries that contain only
very frequent labels, leading to exceptionally large result sets. For instance, the
most difficult query from our set took about 4 seconds and generated a result
set of 230 million matching paths. However, we believe that such queries rarely
occur in any real application.

We also investigated the influence of query lengths, i.e., the number of labels
in the regular expression of the query. Comparing the execution times of queries
depending on their lengths, we found that the query length only has a minor
influence on execution speed (data not shown). The reason is that, although
longer queries are more complicated to answer in general, they often do not have
as many matches in the graph, which reduces the search space. For execution
speed, the number of occurrences of the labels and the number of rare labels are
much more important than the sheer number of labels in the query.

6.5 Parallelization

Figure 7 shows the effect of using multiple threads for RL. The scale-up is very
good for up to four threads, but the additional advantage of adding more threads
levels out for more than 4 threads. This behavior can be explained by the fact
that our current implementation uses additional threads only for additional rare
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Fig. 7. Average runtime for answering a query containing rare labels on a graph with
10,000 nodes and 20,000 edges against the number of threads used

labels. For example, a query containing two rare labels uses three threads: One
for searching the paths between the rare labels, one for searching to the start
and one for searching to the end of the query. Since few queries contain more
than three rare labels, the scaling diminishes. However, it would be possible to
enhance the implementation by also running the searches between two instances
of a rare label in parallel. Since most rare labels appear more than once in the
graph, finding paths between them is a many-to-many search and could use
different threads starting at different nodes.

7 Conclusion

We presented a novel approach for answering regular path queries on large
graphs. Our main idea is to structure a graph traversal along those labels from a
query that are infrequent in the graph, but guaranteed to occur in any matching
path. We use these rare labels as start-, end-, and way-points during traversal,
thus essentially breaking up a very large search space into many much smaller
ones. We compare our novel method with a traditional approach using automata
and find that the former outperforms the latter over a wide range of different
graphs and queries; furthermore, it requires only linear preprocessing and is able
to handle much larger graphs. We also showed that using the rare-label opti-
mization considerably improves scalability with regard to the size of the graph
and to graph density.
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