
A Machine Learning Approach to Foreign Key Discovery

Alexandra Rostin1 Oliver Albrecht1 Jana Bauckmann2
Felix Naumann2 Ulf Leser1

1Humboldt-Universität zu Berlin, Berlin, Germany, {rostin,oalbrecht,leser}@informatik.hu-berlin.de
2Hasso-Plattner-Institut, Potsdam, Germany {Jana.Bauckmann,Felix.Naumann}@hpi.uni-potsdam.de

ABSTRACT
We study the problem of automatically discovering semantic as-
sociations between schema elements, namely foreign keys. This
problem is important in all applications where data sets need to be
integrated that are structured in tables but without explicit foreign
key constraints. If such constraints could be recovered automati-
cally, querying and integrating such databases would become
much easier. Clearly, one may find candidates for foreign key
constraints in a given database instance by computing all inclu-
sion dependencies (IND) between attributes. However, this set
usually contains many false positives due to spurious set inclu-
sions. We present a machine learning approach to tackle this
problem. We first compute all INDs of a given schema and let
each be judged by a binary classification algorithm using a small
set of features that can be derived efficiently using standard SQL.
We demonstrate the feasibility of this approach using cross-
validation with several state-of-the-art classification algorithms.
With the J48 algorithm, our approach consistently reaches F-
measures above 80% and often close to 100% as evaluated on six
different data sets from three different domains.

1. Introduction
A basic requirement for integrating databases into a unified sys-
tem is to know and to understand the database’s structure and
semantics. For instance, when building a mediator based system
using methods as, for instance, described in [15, 19], domain ex-
perts first must identify semantic correspondences between the
local and global schemas [22]. Obviously, they must be aware of
the structure and – at a higher level – the semantics of the data-
bases to correctly solve this task.
Understanding source schemas often is a time-consuming and
costly process [10], which led to a growing interest in automatic
methods for supporting database integration [9]. Accordingly,
much research has been devoted to automatically find correspon-
dences between schema elements in different database schemas
(schema matching; see Section 5). Surprisingly, much less atten-
tion has been devoted to the problem of identifying relationships
between elements within a schema, although this knowledge is
equally important for building high-quality integrated systems.
One important class of relationships between elements of a sche-
ma are foreign keys or, more precisely, foreign key constraints
(FKC). A FKC essentially states that tuples of a relation (contain-
ing the foreign key) are dependent on tuples of another relation
(containing the primary key); it thus represents a semantic rela-

tionship between tuples. However, in many areas databases do not
provide foreign key definitions [13]. This absence may have sev-
eral reasons, such as the lack of support for checking foreign key
constraints in the host system (e.g., MySQL supports foreign key
constraints only in one of its container types and even there only
under certain rather awkward conditions), the fear that checking
such constraints would impede database performance, or a simple
lack of database knowledge within the development team. All
these reasons are, for instance, quite frequently met in Life Sci-
ence databases. The very popular genome database Ensembl [8] is
shipped as MySQL dump files with more than 200 tables but not a
single foreign key constraint (probably due to the above men-
tioned problems with foreign key constraints in MySQL); equally,
the MSD database of protein structures [21] is available as dump
files for a commercial RDBMS and contains more than 150 tables
but no foreign key definitions. Understanding and integrating
such databases would greatly benefit from a method to recover
foreign keys from the data. Besides its value for integration,
knowing about such intra-schema relationships is also very impor-
tant for database exploration [5].
In this paper, we study the problem of automatically detecting
putative foreign key constraints in database instances that lack of
primary key (PK) and foreign key (FK) constraints. A FKC be-
tween a foreign key A and a primary key B implies that all values
contained in A are also present in B. A pair of attributes where the
values of the one attribute are contained in the set of values of the
other attribute underlie an inclusion dependency (IND). However,
set inclusion only is a necessary but not a sufficient characteristic
for a FKC, because the inclusion of value sets may occur by pure
chance. For instance, in the MSD database there are >40,000
INDs, of which >5,000 have a unique target attribute and are
therefore potential FKs. Many of the non-foreign-key INDs stem
from tables storing a controlled vocabulary that is referenced by a
surrogate key, often numbers starting by 1 in each table. Obvi-
ously, the keys of different such CV tables often value-include
each other without any existing semantic relationship. Or consider
a Boolean attribute containing only 0s and 1s. Such an attribute
almost certainly induces an IND with most Integer attributes.
Unfortunately, foreign keys are semantic relationships and cannot
be inferred with certainty from an instance of a schema alone.
Fortunately, a FKC often exhibits certain characteristics that dis-
tinguish it from a spurious IND. For instance, the set of values of
a foreign key often covers almost all values of its primary key,
and a FK attribute name often contains (exactly or approximately)
the name of its PK, possibly preceded or followed with certain
substring such as “_ID”. Naturally, such evidences can only be
considered as soft filters and do not prove, but increase or de-
crease the trust in a given IND to be a FKC.

Copyright is held by the author/owner.
12th International Workshop on the Web and Databases (WebDB 2009)

Building on this observation, we developed and tested a machine
learning approach to detect probable foreign keys. We defined a
set of characteristics and used them as features, which are fed into
a state-of-the-art classification algorithm to classify an IND as
FKC or not. We evaluated this approach using cross-validation on
six different databases from different domains using four different
classification methods. Overall, the results show that foreign key
discovery can be tackled quite successfully with machine learning
techniques and that our set of features is well capable of separat-
ing foreign key constraints from other INDs.
The rest of this paper is structured as follows: In the next section,
we give an overview of our system. Section 3 describes our set of
features to classify INDs as FKC or not. Section 4 shows the re-
sults of evaluating our approach on different data sets. We discuss
related work in Section 5 and conclude in Section 6.

2. System Overview
We built a system that aims to find in a relational database all
pairs of attributes where one attribute is a primary key and the
other attribute is a corresponding foreign key. To this end, we
regard only the values and names of schema elements. With a
slight abuse of notation, we call such pairs foreign key constraints
(FKC), while we call all INDs that are not FKC spurious INDs.
Our system first learns a “model” to tell FKCs from spurious
INDs using a set of computed properties of positive and negative
examples. This model is later used to classify each new pair of
attributes.
In the learning phase, we analyze a set of databases where all
FKC are known. We determine all INDs (see below) and compute
a feature vector for each (see next section). Pairs that are FKC are
labeled positively, other pairs are labeled negatively. We present
this set of labeled feature vectors to a machine learning algorithm,
which turns it into a model.
In the application phase, we are given a database without FKC
and want to recover them. Again, we first filter the set of all pairs
of attributes to those that form an IND, since only those are can-
didates for PK-FK relationships. We compute the feature vector
for each IND and present it to a classifier, which in turn judges
the feature vector using its previously learned model. For evalua-
tion, we apply this method to a database for which we know all
FKC and count all false positives, false negatives, true positives,
and true negatives.
We determine all INDs using the SPIDER algorithm [1]. Because
detecting all INDs in principle requires a test of all pairs of attrib-
utes, it is vital to have an efficient algorithm at hand to be able to
handle databases of non-trivial size. SPIDER uses three main
tricks to speed up the comparison: First, it persists all attribute
value lists in a sorted manner; second, it tests all pairs concur-
rently with a single sweep over all values lists; third, it exploits
the fact that a single value in the dependent attribute that is not
contained in the referenced attribute is sufficient to exclude this
pair. Using SPIDER we can, for instance, analyze the entire MSD
database (32GB, 2.713 columns, 176 tables) in ~4 hours to find
all of its 40,415 inclusion dependencies. As already stated, most
of these INDs are spurious.
We want to stress again that the detection of INDs is a problem
that can be solved exactly, while the detection of FKC can only
be solved heuristically. An IND is a necessary precondition for a
FKC, but only a human expert can “promote” an IND to a FKC,

because INDs can appear by coincidence. In contrast, FKC are
consciously specified and denote a semantic relationship.

3. Features for Classifying INDs
In this work, features are properties of an IND (A, B) whose val-
ues are used to give hints on whether the IND represents a FKC or
not. Here, B is the primary key (referenced attribute) and A is the
foreign key (dependent attribute). Since it is generally acknowl-
edged that in many applications, the choice of features has more
influence on the achievable performance than the choice of classi-
fication method [11], we performed an extensive manual study to
find meaningful features by using common sense and by carefully
studying positive and negative examples.
We derived a set of ten different features. These features are listed
here, each followed by a brief explanation of its underlying ra-
tionale. Let name(A), name(B) denote the attribute names of A
and B, and let s(A), s(B) denote the set of distinct values of A and
B, respectively.

• DistinctDependentValues (F1): The cardinality of s(A).
Usually, attributes that are foreign keys contain at least some
different values, as otherwise almost none of the referenced
objects have a dependent value.

• Coverage (F2): The ratio of values in s(B) that are contained
in s(A) to all values in s(A). Usually, foreign keys cover a
considerable number of primary keys.

• DependentAndReferenced (F3): Counts how often the de-
pendent attribute A appears as referenced attribute in the set
of all INDs. Usually, an attribute that is a foreign key is not
at the same time a primary key that is referenced as foreign
key by other tables.

• MultiDependent (F4): Counts how often A appears as de-
pendent attribute in the set of all INDs. If s(A) is contained
in the set of values of many other attributes, the likelihood
for each of these INDs being a FKC is decreased.

• MultiReferenced (F5): Counts how often B appears as ref-
erenced attribute in the set of all INDs. We assume that pri-
mary keys are often referenced by more than one foreign
key; therefore, a high number for F5 raises the chances of the
pair under consideration to represent a FKC.

• ColumnName (F6): Measures the similarity between
name(A) and name(B), also considering the name of the ta-
ble of which B is an attribute. We currently only check for
exact matches or complete containment. Using more ad-
vanced string similarity measures would be an obvious im-
provement.

• ValueLengthDiff (F7): The difference between the average
value length (as string) in s(A) and s(B). We expect that the
average length of the values should be very similar whenever
foreign keys reference a non-bias sample of the primary
keys. They should be highly similar if every value of pri-
mary key is referenced (it will not be identical in 1:N rela-
tionships).

• OutOfRange (F8): The percentage of values in s(B) that are
not within [min(s(A)), max(s(A))]. Usually, the dependent
values should be more or the less evenly distributed over the
referenced values and not only cover a small, continuous
range.

• TypicalNameSuffix (F9): Checks whether name(A) ends
with a substring that is an indication for foreign keys. We
currently use only „id“, „key“, and „nr“ (German for “no” -
number; one of our test schemas has German attribute
names).

• TableSizeRatio (F10): The ratio of the number of tuples in
A and the number of tuples in B. Usually dependent attrib-
utes do not reference only a very small subset of their pri-
mary keys.

We developed these features during an extensive phase of trial-
and-error. For instance, we found that roughly 60% of all foreign
keys in our evaluation data set cover all values of their referenced
primary keys, and none covers less than 10%. Similarly, in almost
all FKCs less than 5% of the values of B lie outside the min-max
range spread by A (F8). Accordingly, both features seem to be
good candidate for our purpose. We also evaluated all features
using different feature selection methods, showing that all of them
are useful under some settings (see Section 4.3).
Note that the features in general are not independent of each oth-
er. For instance, a low value in F1 usually implies a low value in
F10 (given that B is not very small). Dealing with those depend-
encies between features is left to the classifier.

Computing feature vectors
Computing the feature values for all INDs of a given database is
very fast. Features F3, F4, F5, F6, and F9 only analyze metadata
and are thus independent of the number of values in the database.
All other features are easily implemented as SQL queries using
only standard SQL functionality. For instance, computing the F1
values for an IND requires nothing more than a count on all dis-
tinct values of the dependent attribute; furthermore, it needs to be
computed only once for all attributes (and not once for each IND
containing it). Since all necessary SQL queries are counts of sin-
gle tables without joins, their execution is rather fast even when
very large tables are involved. Note that computing the feature
values could be made even faster when it would be embedded in
the SPIDER algorithm. Also note that approximate values as kept
by most systems within their database-internal statistics very like-
ly would serve our purpose equally well (though we have not yet
tested it).

4. Evaluation
We evaluated the ability of the chosen features to correctly clas-
sify INDs with four different classification algorithms. These
were (1) Naïve Bayes (NB), (2) Support Vector Machines (SVM),
(3) J48, and (4) Decision Tables (DT). We used the implementa-
tion of these algorithms as provided by the WEKA machine learn-
ing tool1. Details on the specific variants of these methods as they
are implemented in WEKA can be found in the WEKA documen-
tation.

4.1 Data Sets
We used six data sets from three different domains: three data-
bases from the Life Sciences (SCOP, MSD, UniProt) 2, two data-
bases storing information on movies (Movielens, Filmdienst), and

1 http://www.cs.waikato.ac.nz/ml/weka/
2 SCOP is a database of protein families; MSD is a reformatted

version of the PDB protein database; UniProt is a protein se-
quence database, which we imported using BioSQL.

the TPC-H benchmark. An overview of these databases and some
of their properties is given in Table 1. All databases were down-
loaded as SQL dump or were transformed from flatfiles into a
relational representation using publicly available parsers.
For datasets UniProt, Movielens, and TPC-H, foreign key con-
straints are provided with the download files. For Filmdienst,
SCOP, and MSD we deduced them manually by analyzing the
database documentation. However, in case of the MSD, we only
checked 673 of the 5.431 INDs. Of those, 526 were manually
classified as representing semantically meaningful foreign key
relationships.

 Tabs Atts Tuple INDs FKCs Avg
a/t

Min
a/t

Max
a/t

UniProt 28 156 ~8M 36 31 6 2 14

Filmdienst 14 92 >1M 79 15 8 2 32

Movielens 7 20 ~1M 19 6 3 2 5

SCOP 4 22 ~500K 11 5 6 2 12

TPC-H 8 61 ~10M 33 9 8 3 16

MSD 176 2713 ~300M 5431 (*) 15 3 94

Table 1. Properties of the six databases used for training / evalua-
tion. ‘a/t’ means “attributes per table”.

(*) The total number of FKCs in the MSD is unknown

4.2 Feature Selection
We evaluated how well each of the features presented in Section 3
could help to distinguish FKC from spurious INDs by using fea-
ture selection. We performed this test using various methods im-
plemented in WEKA. We omit detailed results here; see Table 2
for some examples. Features F2, F6, F7, and F8 were consistently
under the top-selective features. However, all features were se-
lected from at least one selection method. Therefore, we used the
full feature set for the evaluation of the classifier performance
described in the next section. We also performed tests with sub-
sets of the features, but differences in performance were only
marginal.

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

M1 X X X X X X X

M2 X X X X X X

M3 8 2 10 5 7 3 4 1 9 6

M4 8 3 10 6 7 2 4 1 9 5

Table 2. Results of different feature selection methods. ‘X’ means
that method Mx has selected feature Fy as discriminative. M1: Best

subset using ranked search; M2: same using randomized search; M3:
Rank according to InfoGain; M4: Rank according to X2-statistics.

4.3 Performance of Classifiers
We performed a number of tests to analyze the performance of the
different classifiers. We give results of these tests in terms of F-
Measure. F-Measure is the harmonic of precision and recall,

where precision is the percentage of correctly identified FKCs
under all positively classified INDs, and recall is the number of
recovered FKCs from the gold standard relative to all positively
classified INDs. Because the differences between precision and
recall were rather small (for instance, only 5% on average for
J48), we omit them for the sake of brevity.
Machine learning approaches heavily depend on the data sets used
for learning and their differences or similarities to the data sets
used for evaluation. Showing the generality of results is an impor-
tant issue. The method that is used most often is cross-validation,
where a labeled data set is repeatedly split into a training set and
an evaluation set. The performance of the classifier on unseen
data is then estimated as the average performance of the different
runs. There are various variations of this method regarding the
proportion of data held back for testing versus training, the way
how the single examples are sample etc. [11].
There are two ways how cross-validation could be applied to our
problem: (1) Consider all INDs (recall that we classify INDs) as
one data set, regardless of their original database. Applying this
option to the D0 dataset (see Table 3) would mean that we ran-
domly partition its 179 INDs into k sets and iteratively learn on k-
1 partitions and evaluate on the k’th partition. (2) Take into ac-
count that different INDs stem from different databases and per-
form a cross-validation at database-level. Thus, INDs from one
database are always used either only for training or only for eval-
uation.

ID INDs FKs Dataset

D6 142 35 D0 - Uniprot

D7 99 53 D0 - Filmdienst

D8 159 62 D0 - Movielens

D9 167 63 D0 - SCOP

DA 149 59 D0 - TPCH

D0 178 68 All - MSD

 (b)
Table 3. Datasets used for training (b) and evaluation (a).

We decided to use a leave-one-out evaluation at the level of data-
bases, i.e., option (2) (except for MSD, which we held back as an
independent test dataset). This choice means that we systemati-
cally used all INDs from all but one database for learning and
evaluated the learned model on the INDs of the missing database.
We favored this approach over option (1), because we hypothe-
sized that databases differ significantly in the way how the data
underlying an FKC look like and thus in the properties that dis-
cern a spurious IND from a true foreign key relationship. Thus, if
we used a training set that contained examples from all databases,
the classifier would be able to learn the particularities of all data-
bases and would thus have a big advantage during evaluation
compared to the situation when it would be evaluated on an en-
tirely new database. Moreover, the usual application scenario is
seeing a new database, not seeing a new IND in an already known
database. Therefore, cross-validation on the IND level would lead

to overly optimistic estimates of the classifier performance in
real-life scenarios.
This evaluation plan leads to the datasets shown in Table 3. Es-
sentially, we built ten datasets, where five are made from four
databases and five are made from just one. Furthermore, we built
dataset D0, which contains all databases except MSD, and dataset
DX, which consists only of MSD, for a final test.
Results of the resulting five experiments with using four classifi-
ers are shown in Table 4. There are a number of interesting obser-
vations. Overall, the worst performance is 0.71, whereas the best
performance is 1. The decision-tree-like algorithms J48 and Deci-
sionTable have better results on average and also gather the best
results most often, but for classifying the D1 set (UniProt), SVM
achieves the best results. The smallest database, SCOP (D4), is
classified perfectly by all methods; however, there is no general
tendency that results would be better with more or less FKCs or
with a larger or smaller ratio of FKCs to spurious INDs. The dif-
ferences in the results show that there are clear differences in the
way how different databases use foreign keys. For instance,
Movielens is quite different from the other four databases, be-
cause the model learned only on those four reaches an F-measure
of 0.805 on average3.

DS for learning /
evaluation

Naive
Bayes

SVM J48 DecisionTab Avg

D6 / D1 0.86 0. 0.92 84 0.8 0.855

D7 / D2 0.80
ID INDs FKs Dataset

D1 36 31 UniProt

D2 79 15 Filmdienst

D3 19 6 Movielens

D4 11 5 SCOP

D5 33 9 TPCH

DX 673 526 MSD

(a)

0 0..86 86 0.93 0.817

D8 / D3 0.71 0 1..71 0 0.8 0.805

D9 / D4 1.0 1. 1.0 0 1.0 1.0

DA / D5 0.86 0 0..90 95 0.95 0.915

Average 0.846 0 0..78 930 0.896

Table 4. Results (F-Measure) of four different classifiers on five dif-
ferent datasets. Best results per row are in bold.

We also performed an experiment where we learned from the
combined dataset D0 and evaluated the results on the withheld
dataset DX. This test is different from the previous ones as MSD
was not used during the feature engineering phase; thus, while we
tried to capture properties of FKCs in the five databases with our
feature sets, this was not the case for the MSD database. There-
fore, this experiment is more realistic than the previous ones. The
results, shown in Table 5, are rather encouraging and show that
our features seem to generalize quite well.
Finally, we wanted to explicitly test our hypothesis that databases
have different characteristics. To this end, we evaluated on the
DX dataset using J48 with two models:

• learning on the D0 dataset, and

3 All databases are classified perfectly when the learning data

includes the evaluation data, which shows that the instances are
classifiable (data not shown).

• learning on a dataset that contains all INDs from D0 and a
randomly chosen 10% sample of the 673 INDs from MSD
(we call this dataset D0+).

In the first case, J48 reaches an F-measure of 0.78 (see Table 5).
When learning on the D0+ dataset, J48 reaches an F-measure of
0.99. Thus, adding only a very small sample of all INDs of a da-
tabase was, in this case, sufficient for the classifier to build a
much better model.

Dataset for lear-
ning / evaluation

Naive
Bayes

J48 Decisi-
onTab

D0 / DX 0.84 0.78 0.79

Table 5. Results (F-Measure) from learning from UniProt, Filmdi-
enst, SCOP, TPC-H and evaluating on the MSD.

For illustration, we show the complete decision tree that J48 gen-
erated from the D0+ dataset in Figure 1. In accordance to Table 2,
features F6 (ColumnName) and F8 (OutOfRange) are most dis-
criminative.

Figure 1. Decision tree computed by the J48 algorithm,
learned on dataset D0+.

4.4 Error Analysis
We performed a preliminary analysis of the cases in which many
classifiers make errors. We observed a number of different situa-
tions, some of which might be overcome by an improved set of
heuristics, some not. The following is a list of situations where the
classification-based approach errs for many classifiers:

• Empty tables. One of the schemas (UniProt) contains a FKC
defined on an empty table. This attribute is never included in
an IND and is thus never classified. Detecting such cases
will be hard, but, on the other hand, it is doubtful whether it
is sensible trying to do so.

• Transitive foreign keys. We observed the situation that an
attribute B is a foreign key referencing an attribute A while
B itself is referenced as primary key by a third attribute C.
This rather unusual case is covered by F3. However, the
problem here was not that the classifier erred in classifying
(B,A), but it also classified (C,A) as FKC. Thus, our method
detected a semantically meaningful yet technically redundant
FKC that was not specified in the schema and thus counts as
false positive during evaluation.

• One-to-one relationships. Whenever a 1:1 relationship be-
tween two tables (with attributes A, B) holds, our method

will judge both (A, B) and (B, A) as IND and will very likely
also classify both as FKC. Semantically, this makes sense,
but bidirectional FKC are not supported in most RDBMS
and thus, again, one of the directions will appear as false
positive.

• Small tables. Some of the schemas contain tables that have
only few tuples which proved difficult to classify. For in-
stance, the Filmdienst database has a table for awards refer-
encing the actors table; however, as only a very small frac-
tion of all actors receive an award (that is represented in
Filmdienst), the dependent attribute has only very low cover-
age of the referenced attribute and additionally a high OutOf-
Range percentage. Thus, it was misclassified frequently.

Many remaining errors were related to surrogate keys. For in-
stance, the TPC-H schema has a column storing quantities of
goods; the concrete values are randomly generated from the TPC
data generator as small integers and grossly overlap with the sur-
rogate keys of other tables with few tuples, such as suppliers.

5. Related Work
In [14] we described the Aladin project and its vision of a do-
main-specific data integration system that performs as much of
the integration steps as possible using fully automatic techniques.
It targets a specific type of integration in that it does not try to
create a unified schema, but “only” tries to automatically link
semantically associated schema elements, both within databases
(intra-schema) and across databases (inter-schema). Such rela-
tionships support query rewriting, data browsing, or data analysis
[3]. Clearly, we expect that reliance on automatic techniques in-
evitably introduces a certain level of error into the system. The
overall research goal of our project, into which the present work
fits, is precisely to study how low one can push this error on vari-
ous tasks.
Foreign key constraints are a special case of a semantic relation-
ship between attributes. Finding relationships between attributes
has been studied intensively in the schema matching community.
Approaches can be classified into schema-based (those that use
the names and structure of schema elements), instance-based
(those that use the data stored under schema elements), and hybrid
approaches [20]. However, this line of research was and still is
mostly devoted to the inter-schema case, while we target the intra-
schema case and only a very specific question therein. Further-
more, schema matching approaches concentrate on semantically
equivalent attributes, which is different from our case. Neverthe-
less, there are several projects that propose machine learning for
schema matching [2, 6, 17], which also inspired our work. How-
ever, the types of features they use mostly are quite different
(with name similarity being a notable exception), precisely be-
cause they compare attributes from different schemas, while we
classify pairs of attributes from the same schema. Furthermore,
we can exploit the fact that only INDs can classify as FKC, a
restriction that is not applicable in the schema matching case.
The only other approach to the detection of foreign keys we are
aware of is that of Lopes et al. [16]. It uses SQL workloads to
deduce foreign keys under the assumption that join operations are
usually (if not always) performed by equating a key with a for-
eign key. This approach completely depends on the availability of
a sufficiently large workload. In data integration projects, such a
workload is rarely available.

A related line of research to the problem we study is finding func-
tional dependencies within a single relation, either for the exact or
approximate case [12] or for the conditional case [7]. Similarly,
the problem of computing INDs has been studied both exactly and
approximately [1, 5, 18]. In these projects, the problem was at-
tacked using an algorithmic approach that assumes a relationship
to hold when all or a sufficiently large percentage of tuples of the
database under study obey it. Brown and Haas study algebraic
constraints between pairs of attributes to use them in query opti-
mization [4]. In contrast to all these prior work, we follow a ma-
chine learning based approach to avoid fixed thresholds and to be
able to exploit existing examples in a systematic manner.

6. Conclusions
Data integration is a perpetual problem on the web and is fre-
quently associated with high cost, instable systems, and low data
quality [10]. We take a step forward by reducing the high upfront
cost: We presented a method that, given a database without any
specified constraints, computes with high precision and high re-
call all PK–FK relationships. Clearly, this method could easily be
extended to also detect relationships across databases, a step we
are currently investigating.
We consider our study still in a preliminary state. One of the most
important next steps is to test on more databases to be able to
better judge the method’s generality. If sufficient examples can be
gathered, it would be interesting to see whether there are domain-
dependent differences: Do, for instance, database developers deal
differently with foreign keys than, say, developers of commercial
ERP systems? Using more and more heterogeneous databases
might also lead to the detection of new features. We also plan to
study the trade-off between precision and recall, an aspect we
mostly ignored in this paper. In its current setting, our method
achieves roughly identical precision and recall, but in some appli-
cations it is important to tune a system either towards higher pre-
cision (i.e., when the results of the predictor are used in fully
automatic systems sensitive to false positives) or higher recall
(i.e., when the results are used in an interactive system where all
proposed foreign key constraints are checked and approved by
human experts). We are also working towards the detection of
relationships between sets of attributes, i.e., non-unary inclusion
dependencies and foreign key constraints.
Finally, we believe that a tool like the one we presented could
also be very helpful in databases design. Actually, it can be used
to suggest missing foreign keys in complex, populated schemas.

Acknowledgements
We thank Silke Trißl for manually evaluating more than 600 FK-
candidates on the MSD schema, Tobias Flach for developing a
GUI, and the WEKA team for providing their software.

References
[1] Bauckmann, J., et al. Efficiently Detecting Inclusion De-

pendencies. in International Conference on Data Engineer-
ing. 2007. Istanbul, Turkey.

[2] Berlin, J. and A. Motro. Database Schema Matching Using
Machine Learning with Feature Selection.. in 14th CAiSE.
2002. Toronto, Canada.

[3] Bleiholder, J., et al., BioFast: Challenges in Exploring
Linked Life Science Sources. SIGMOD Record, 2004. 33(2).

[4] Brown, P. and P.J. Haas. BHUNT: Automatic Discovery of
Fuzzy Algebraic Constraints in Relational Data. in 29th In-
ternational Conference on Very Large Databases 2003.

[5] Dasu, T., et al. Mining Database Structure: Or, How to Build
a Data Quality Browser. SIGMOD. 2002. Madicon, USA.

[6] Doan, A., P. Domingos, and A. Halevy. Reconciling Sche-
mas of Disparate Data Sources: A Machine-Learning Ap-
proach. in SIGMOD. 2001. Santa Barbara, CA.

[7] Fan, W., et al., Conditional functional dependencies for cap-
turing data inconsistencies. ACM TODS, 2008. 33(2).

[8] Flicek, P., et al., Ensembl 2008. Nucleic Acids Res, 2008.
36(Database issue): p. D707-14.

[9] Halevy, A., M. Franklin, and D. Maier. Principles of Datas-
pace Systems. in PODS. 2006. Chicago, USA.

[10] Halevy, A., A. Rajaraman, and J. Ordille. Data Integration:
The Teenage Years. in VLDB. 2006. Seoul, South Korea.

[11] Hastie, T., R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning. 2001: Springer.

[12] Huhtala, Y., et al., TANE: An Efficient Algorithm for Dis-
covering Functional and Approximate Dependencies. Com-
puter Journal, 1999. 42(2): p. 100-111.

[13] Johnson, T., A. Marathe, and T. Dasu, Database Exploration
and Bellman. IEEE Data Eng. Bull., 2003. 26(3): p. 34-39.

[14] Leser, U. and F. Naumann. (Almost) Hands-Off Information
Integration for the Life Sciences. in Conference on Innova-
tive Database Research (CIDR 2005). 2005. Asilomar, CA.

[15] Levy, A.Y., A. Rajaraman, and J.J. Ordille. Querying Het-
erogeneous Information Sources Using Source Descriptions.
in 22nd VLDB. 1996. Bombay, India.

[16] Lopes, S., J.-M. Petit, and F. Toumani, Discovering interest-
ing inclusion dependencies: application to logical database
tuning. Information Systems, 2002. 27(1): p. 1-19.

[17] Madhavan, J., et al. Corpus-based schema matching. in 21st
International Conference on Data Engineering. 2005.

[18] Marchi, F.D., S. Lopes, and J.-M. Petit. Efficient Algorithms
for Mining Inclusion Dependencies. in Int. Conf. on Extend-
ing Database Technology (EDBT). 2002.

[19] Naumann, F., U. Leser, and J.C. Freytag. Quality-driven
Integration of Heterogeneous Information Systems. in 25th
VLDB. 1999. Edinburgh, UK.

[20] Rahm, E. and P.A. Bernstein, A survey of approaches to
automatic schema matching. The VLDB Journal, 2001.
10(4): p. 334-350.

[21] Tagari, M., et al., E-MSD: improving data deposition and
structure quality. Nucleic Acids Res, 2006. 34(Database is-
sue): p. D287-90.

[22] Ullman, J.D. Information Integration using Logical Views. in
6th Int. Conference on Database Theory. 1997. Delphi,
Greece.

	1. Introduction
	2. System Overview
	3. Features for Classifying INDs
	4. Evaluation
	4.1 Data Sets
	4.2 Feature Selection
	4.3 Performance of Classifiers
	4.4 Error Analysis

	5. Related Work
	6. Conclusions
	Acknowledgements
	References

